
Operating System 
Design and 

Implementation
Lecture 14: I/O memory

Tsung Tai Yeh
Tuesday: 3:30 – 5:20 pm

Classroom: ED-302

1



Acknowledgements and Disclaimer
• Slides was developed in the reference with 

MIT 6.828 Operating system engineering class, 2018
MIT 6.004 Operating system, 2018
Remzi H. Arpaci-Dusseau etl. , Operating systems: Three easy pieces. WISC
Onur Mutlu, Computer architecture, ece 447, Carnegie Mellon University

2



Outline

• I/O hardware
• Memory-mapped I/O
• Direct memory access (DMA)

3



I/O hardware

• The variety of I/O devices
• Storage, communication

• Common concepts for I/O hardware
• Bus: an interconnection between components
• Port: connection point for device
• Controller: component that controls the device

• Can be integrated to device or separate circuit board
• Usually contains processor, microcode, private memory, bus controller, 

etc..
• I/O access can use polling or interrupt

4



I/O hardware

• Some CPU architecture has dedicated I/O instructions
• E.g. x86: in, out, ins, outs

• Devices usually provide registers for data and control I/O 
• Device driver places commands and data to register
• Data(in/out), status, control (command) register
• Typically 1 – 4 bytes, or FIFO buffer 

• Devices are assigned addresses for registers or on-device 
memory
• Direct I/O instructions
• Memory-mapped I/O

5



Communicating with devices

• Most devices can be considered as 
memories
• With an “address” for R/W
• To transfer data to or from a particular

device, the CPU can access special 
addresses

• Here, a video card can be accessed via
addresses 3B0-3BB, 3C0 – 3DF and 
A0000 – BFFFF

• There are two ways these addresses can
be accessed

6



Memory-mapped I/O

• Memory-mapped I/O
• Data and command registers mapped

to processor address space
• Access to the I/O device registers using

normal load/store instruction
• Most widely used I/O method across

the different architecture supported by 
Linux

7

MMIO registers

RAM

Physical memory



Memory-mapped I/O

• With memory-mapped I/O
• One address space is divided into two parts
• Addresses for I/O devices
• Other addresses did reference main memory
• I/O addresses are shared by many peripherals

• E.g. Apple IIe, C010 is attached to the keyboard
where C030 goes to the speaker

8

I/O

memory

memory

FFFF

D000

C000

0000



Programming memory-mapped I/O

9

• The CPU sends data to appropriate I/O address
• The address and data are also transmitted along the bus

• Each device monitors the address bus to see if it is the target
• The speaker only responds when C030 appears on the address bus

https://courses.cs.washington.edu/courses/cse378/09wi/lectures/lec21.pdf



Isolated I/O

• Isolated I/O
• Separate address spaces for memory and I/O devices
• With special instructions that access the I/O space

• In 32-bit address space, 8086 machines
• Regular instructions like MOV reference RAM
• The special instructions IN and OUT access a 

separate 64 KB I/O address space

10https://courses.cs.washington.edu/courses/cse378/09wi/lectures/lec21.pdf



Memory-mapped v.s. isolated I/O

• Memory-mapped I/O
• A single address space is nice
• The same instructions that access memory can also access I/O 

devices
• Issuing MIPS sw instructions to the proper addresses can store 

data to an external device 

• Isolated I/O
• Special instructions are used to access devices
• This is less flexible for programming

11



Mapping I/O memory

• Load/store instructions work with virtual addresses
• To access I/O memory

• Drivers need to have a virtual address that the processor can handle
• I/O memory is not mapped by default in virtual memory

• The ioremap function satisfies this need:

12

#include <asm/io.h>
void __iomem *ioremap(phys_addr_t phys_addr, unsigned long size);
void iounmap (void __iomem *addr);



ioremap()

13https://bootlin.com/doc/training/linux-kernel/linux-kernel-slides.pdf



Managed API

• request_mem_region() and ioremap() is now deprecated
• Using below managed functions instead

• devm_ioremap(), devm_iounmap()
• devm_ioremap_resource()

• Takes care of both the request and remapping operations

14



Access MMIO devices

• To do PCI-style, little-endian access
• unsigned read[bwlq](void *addr);
• void write[bwlq] (unsigned val, void *addr);

• To do raw access, without endianness conversion
• unsigned __raw_read[bwlq] (void *addr);
• void __raw_write[bwlq] (unsigned val, void *addr);
• For example:

15

32 bit write (drivers/tty/serial/uartlite.c)
writel(c & 0xff, port->membase + 4);



Avoid I/O access issues

• The compiler and/or CPU can reorder memory accesses
• Might cause trouble for devices is they expect one register to be 

read/written before another one
• Memory barriers are available to prevent this reordering
• rmb() is a read memory barrier, prevents reads to cross the barrier
• wmb() is a write memory barrier
• mb() is a read-write memory barrier
• Note that readl(), writel() and similar functions already contain 

barriers

16



How data between a device and memory ?

• Programmed I/O
• The CPU makes a request and waits for the

device to be ready
• Buses are only 32-64 bits wide
• How to do for large data transfers ?

• Repeated writes words to main memory
• A lot of CPU time is needed for this !!

• If the device is slow the CPU might have to wait
for a long time

• The CPU is involved as a middleman for the actual
data transfer

17
yeshttps://courses.cs.washington.edu/courses/cse378/09wi/lectures/lec21.pdf



Polling

• Polling
• Continually checking to see if a device is ready
• It is not an efficient use of the CPU
• Most devices are slow compared to modern CPUs
• The processor has to ask often enough to ensure

that it doesn’t miss anything
• The CPU cannot do much else while waiting

18https://courses.cs.washington.edu/courses/cse378/09wi/lectures/lec21.pdf



Interrupt-driven I/O

• Interrupt-driven I/O
• The device interrupts the processor when

the data is ready
• The data transfer steps are the same as

with programmed I/O, and still occupy
the CPU

19

yes

https://courses.cs.washington.edu/courses/cse378/09wi/lectures/lec21.pdf



Interrupt-driven I/O steps

20https://www.cs.fsu.edu/~zwang/files/cop4610/Fall2016/chapter13.pdf



Direct memory access (DMA)

• Direct memory access (DMA)
• Copy data directly between devices 

and RAM and bypass the CPU
• OS issues commands to the DMA

controller
• The pointer of the command written into

the command register
• When done, device interrupts CPU to 

signal completion

21

CPU sends read request 
to DMA unit

CPU does other stuff
…

CPU receives DMA 
interrupt



DMA controller

• The DMA controller is a simple
processor
• The CPU asks the DMA controller

to transfer data between a device
and main memory

• After that, the CPU can continue with other tasks
• The DMA controller issues requests to the right I/O device
• DMA waits and manages the transfers between the device and 

main memory
• Once completed, the DMA controller interrupts the CPU

22https://bootlin.com/doc/training/linux-kernel/linux-kernel-slides.pdf



Six steps of DMA transfer

23https://www.cs.fsu.edu/~zwang/files/cop4610/Fall2016/chapter13.pdf



Peripheral DMA

• Some device controller embedded 
their own DMA controller
• Can do DMA on their own

24https://bootlin.com/doc/training/linux-kernel/linux-kernel-slides.pdf



DMA controllers

• An external DMA controller (on the SoC)
• Their drivers need to submit DMA descriptors to this 

controller

25
https://bootlin.com/doc/training/linux-kernel/linux-kernel-slides.pdf



DMA descriptors

• DMA descriptors describe the various attributes of a DMA 
transfer, and are chained

26
https://bootlin.com/doc/training/linux-kernel/linux-kernel-slides.pdf



Constraints with a DMA

• A DMA deals with physical addresses
• The memory accessed by the DMA shall be physically contiguous

• The CPU can access memory through a data cache
• Using the cache can be more efficient (faster accesses to the cache 

than the bus)
• The DMA does not access the CPU cache
• Need to take care cache coherency
• Either clean (write back to memory) or invalidate the cache lines 

corresponding to the buffer accessed by DMA and processor at the 
right times

27



DMA memory constraints

• Need to use contiguous physical memory space
• Can allocate memory by using 

• kmalloc() (up to 128 KB) or __get_free_pages() (up to 8 MB)

• Cannot use 
• vmalloc() 

28



Memory synchronization issues

• Memory caching could interfere with DMA
• Before DMA to device

• Need to make sure all writes to the DMA buffer are completed
• Corresponding cache lines are cleaned

• After DMA from device
• Before drivers read from a DMA buffer, need to ensure that the 

corresponding cache lines are invalidated

29



Linux DMA API

• The kernel DMA utilities can take care of 
• Either allocating a buffer in a cache coherent area
• Or making sure caches are handled when required
• Managing the DMA mappings and IOMMU
• Most subsystems (such as PCI or USB) supply their own DMA API
• See core-api/dma-api for details in the Linux DMA generic API

30



Coherent DMA mappings

• Coherent mappings
• The kernel allocates a suitable buffer and sets the mapping for the 

driver
• Can simultaneously be accessed by the CPU and device
• Has to be in a cache coherent memory area
• Usually allocated for the whole time the module is loaded

31

#include <asm/dma-mapping.h>
void *dma_alloc_coherent (struct device *dev, size_t size, dma_addr_t
*handle, gfp_t gfp);
void dma_free_coherent (struct device *dev, size_t size, void *cpu_addr, 
dma_addr_t handle);



Starting DMA transfers

• In peripheral DMA
• No external API is involved

• In external DMA controller
• Ask the hardware to use DMA, so that it will drive its request line
• Use Linux DMAEngine framework such as slave API

32



DMAEngine slave API

• DMA transfer with DMAEgnine by using following functions 
in the driver
• Request a channel for exclusive use with dma_request_channel()
• Configure it for our use case by filling a struct dma_slave_config

and pass it as an argument to dmaengine_slave_config()
• Start a new transaction with dmaengine_pre_slave_single() or 

dmaengine_pre_slave_sg()
• Put the transaction in the driver pending queue using 

dmaengine_submit()
• Ask the driver to process all pending transactions using 

dma_async_issue_pending()
33

https://bootlin.com/doc/training/linux-kernel/linux-kernel-slides.pdf



Characteristics of I/O devices

• I/O devices
• Block I/O
• Character I/O (stream)
• Memory-mapped file access
• Network sockets

• Direct manipulation of I/O device
• Linux’s ioctl call that sends commands to a device driver

34



Block and character devices

• Block devices access data in blocks such as disk drives
• Commands include read, write, seek
• Raw I/O, direct I/O, or file system access
• Memory-mapped file access possible
• DMA

• Character devices include keyboards, mice, serial ports …

35



Synchronous/asynchronous I/O

• Synchronous I/O
• Blocking I/O: process suspended until I/O completed

• Simple, but less efficient
• Non-blocking I/O: I/O calls return as much data as available

• Process returns whatever existing data
• Use to find if data is ready, then read or write to transfer data

• Asynchronous I/O
• Process runs while I/O executes
• I/O subsystem signals process when I/O completed via signal
• Difficult to use but efficient

36



Life cycle of an I/O request

37
https://www.cs.fsu.edu/~zwang/files/cop4610/Fall2016/chapter13.pdf



Summary

• Approaches to communicate with I/O devices
• Direct I/O instructions
• Memory-mapped I/O 

• Polling in programming I/O
• Interrupt-driven I/O
• Direct memory access(DMA)

• Copy the data between devices and RAM without going through 
the CPU

38


