Operatmg Syste
Design and
Implementation

Lecture 14:1/0 memory
Tsung Tai Yeh

Tuesday: 3:30 —5:20 pm
Classroom ED-302

Acknowledgements and Disclaimer

* Slides was developed in the reference with
MIT 6.828 Operating system engineering class, 2018
MIT 6.004 Operating system, 2018
Remzi H. Arpaci-Dusseau etl. , Operating systems: Three easy pieces. WISC
Onur Mutlu, Computer architecture, ece 447, Carnegie Mellon University

Outline

* |/O hardware
* Memory-mapped I/O
* Direct memory access (DMA)

/O hardware

* The variety of I/O devices
* Storage, communication

* Common concepts for |/O hardware
* Bus: an interconnection between components
* Port: connection point for device

* Controller: component that controls the device
* Can be integrated to device or separate circuit board

* Usually contains processor, microcode, private memory, bus controller,
etc..

* |/O access can use polling or interrupt

/O hardware

* Some CPU architecture has dedicated I/O instructions
* E.g. x86: in, out, ins, outs
* Devices usually provide registers for data and control |/O
* Device driver places commands and data to register
* Data(in/out), status, control (command) register
* Typically 1 — 4 bytes, or FIFO buffer
* Devices are assigned addresses for registers or on-device

memory
* Direct 1/0 instructions
 Memory-mapped I/O

Communicating with devices

* Most devices can be considered as
memories

* With an “address” for R/W

* To transfer data to or from a particular
device, the CPU can access special
addresses

* Here, a video card can be accessed via
addresses 3B0-3BB, 3CO — 3DF and
AO0000 — BFFFF

* There are two ways these addresses can
be accessed

RADEON MOBILITY 7500 (Omega 2.4.07a) Properties

General | Driver = Resources

g RADEON MOBILITY 7500 (Omega 2.4.07a)
-

B r ttings:

Px

Resource type Setting
W 1/0 Range 03B0 - 03BB
¥ /0 Range 03C0- 03DF

¥ Memory Range 000A0000 - DOOBFFFF

Conflicting device list:

No conflicts.

] [Cancel

Memory-mapped I/O

* Memory-mapped I/O

* Data and command registers mapped
to processor address space MMIO registers

 Access to the 1/0O device registers using

normal load/store instruction

* Most widely used I/O method across RAM
the different architecture supported by

Linux

Physical memory

Memory-mapped I/O

* With memory-mapped 1/0
* One address space is divided into two parts
* Addresses for |/O devices
* Other addresses did reference main memory

* |/O addresses are shared by many peripherals

* E.g. Apple lle, C0O10 is attached to the keyboard
where C030 goes to the speaker

memory

/0

memory

FFFF

D000
CO000

0000

Programming memory-mapped |/O

Control

Address

Data

CPU

Memory

Hard disks

CD-ROM

Network

Display

* The CPU sends data to appropriate |/O address
* The address and data are also transmitted along the bus

* Each device monitors the address bus to see if it is the target
* The speaker only responds when C030 appears on the address bus

https://courses.cs.washington.edu/courses/cse378/09wi/lectures/lec21.pdf

Isolated |/O

* |solated I/O

 Separate address spaces for memory and I/O devices
* With special instructions that access the 1/0O space

* In 32-bit address space, 8086 machines
* Regular instructions like MOV reference RAM

* The special instructions IN and OUT access a
separate 64 KB |/O address space

Main
memory

FFFFFFFF

00000000

A VN

[/0
devices

O000OFFFF

00000000

https://courses.cs.washington.edu/courses/cse378/09wi/lectures/lec21.pdf 10

Memory-mapped v.s. isolated /O

* Memory-mapped I/O
* A single address space is nice

* The same instructions that access memory can also access |/0
devices

* Issuing MIPS sw instructions to the proper addresses can store
data to an external device

* |solated I/O

 Special instructions are used to access devices
* This is less flexible for programming

11

Mapping I/O memory

* Load/store instructions work with virtual addresses

* To access I/O memory
* Drivers need to have a virtual address that the processor can handle
* |[/O memory is not mapped by default in virtual memory

* The ioremap function satisfies this need:

I#lnclude <asm/io.h> E
Iv0|d __iomem *ioremap(phys_addr_t phys_addr, unsigned long size); E
.v0|d iounmap (void __iomem *addr); i

12

ioremap()

MMIO
registers

RAM

Physical Memory
Address Space

0xCDEFA000,

0xAFFEBCO00
~
”~
”~
”~
”~
-~ ~
”~ -
”
-~
7~
”~
”~
~

Kernel

RAM

User

Virtual Memory
Address Space

1oremap (OxAFFEBC0OO, 4096) = OxCDEFA0QQ

https://bootlin.com/doc/training/linux-kernel/linux-kernel-slides.pdf

13

Managed AP]

* request_mem_region() and ioremap() is now deprecated

* Using below managed functions instead
e devm_ioremap(), devm_iounmap()

 devm_ioremap_resource()
* Takes care of both the request and remapping operations

14

Access MMIQO devices

* To do PCl-style, little-endian access
e unsigned read[bwlq](void *addr);
* void write[bwlqg] (unsigned val, void *addr);

* To do raw access, without endianness conversion
e unsigned __raw_read[bwlqg] (void *addr);
e void __raw_write[bwlg] (unsigned val, void *addr);
* For example:

32 bit write (drivers/tty/serial/uartlite.c)
writel(c & Oxff, port->membase + 4);

15

Avoid |/O access issues

* The compiler and/or CPU can reorder memory accesses

* Might cause trouble for devices is they expect one register to be
read/written before another one

 Memory barriers are available to prevent this reordering

* rmb() is a read memory barrier, prevents reads to cross the barrier
« wmb() is a write memory barrier

* mb() is a read-write memory barrier

* Note that readl(), writel() and similar functions already contain
barriers

16

How data between a device and memory ?

CPU sends read
request to device

* Programmed 1/0O

. Not read
* The CPU makes a request and waits for the S
device to be ready CPU waits
- . for device
* Buses are only 32-64 bits wide
* How to do for large data transfers ?] Ready
* Repeated writes words to main memory e
* A lot of CPU time is needed for this !!
* If the device is slow the CPU might have to wait S E——
for along time to main memory
 The CPU is involved as a middleman for the actual

data transfer No @
17

https://courses.cs.washington.edu/courses/cse378/09wi/lectures/lec21.pdf yes

POl | | ﬂ g CPU sends read

request to device

. Polllng Not ready
e Continually checking to see if a device is ready
* It is not an efficient use of the CPU
* Most devices are slow compared to modern CPUs

* The processor has to ask often enough to ensure
that it doesn’t miss anything

* The CPU cannot do much else while waiting

CPU waits
for device

18

https://courses.cs.washington.edu/courses/cse378/09wi/lectures/lec21.pdf

CPU sends read
request to device

Interrupt-driven 1/0 1

CPU does other stuff

* Interrupt-driven 1I/O

* The device interrupts the processor when
the data is ready

CPU receives interrupt

CPU reads word

* The data transfer steps are the same as from device
with programmed |/O, and still occupy
the CPU CPU writes word

to main memory

No @

yes

https://courses.cs.washington.edu/courses/cse378/09wi/lectures/lec21.pdf 19

Interrupt-driven 1/O steps

CPU
1

A

T
1
1
i

CPU executing checks for
interrupts between instructions
I

¥

CPU receiving interrupt,

device driver initiates /O \
initiates 1/0

1/O controller

y

4 input ready, output

transfers control to
interrupt handler

[

A

interrupt handler
processes data,
returns from interrupt

6

CPU resumes
processing of
interrupted task

complete, or error
generates interrupt signal

https://www.cs.fsu.edu/~zwang/files/cop4610/Fall2016/chapter13.pdf

20

Direct memory access (DMA)

CPU sends read request
* Direct memory access (DMA) to DMA unit

* Copy data directly between devices 1
and RAM and bypass the CPU

: CPU does other stuff
 OS issues commands to the DMA

controller

* The pointer of the command written into CPU receives DMA
the command register Interrupt

* When done, device interrupts CPU to 1

signal completion

21

DMA controller

* The DMA controller is a simple
processor

e The CPU asks the DMA controller
to transfer data between a device
and main memory

e After that, the CPU can continue with other tasks
* The DMA controller issues requests to the right I/O device

CPU

Data Cache

DMA

Bus

Memory

Peripheral

* DMA waits and manages the transfers between the device and

main memory

* Once completed, the DMA controller interrupts the CPU

https://bootlin.com/doc/training/linux-kernel/linux-kernel-slides.pdf

22

Six steps of DMA transfer

1. device driver is told
to transfer disk data CPU
to buffer at address X
5. DMA controller 2. device driver tells
transfers bytes to disk controller to
buffer X, increasing transfer C bytes
memory address from disk to buffer cache
and decreasing C at address X
untilC =0 DMA/buS
6. when C = 0, DMA el — X
nteupEePL fodional ér;t;:gflztr [+ CPU memory bus —| memory | buffer
transfer completion
4 PCI bus |
3. disk controller initiates
IDE disk DMA transfer
controller 4. disk controller sends

each byte to DMA

@ @ controller
@l @

https://www.cs.fsu.edu/~zwang/files/cop4610/Fall2016/chapter13.pdf

Peripheral DMA

Descriptor

e Some device controller embedded

RAM

Buffer

their own DMA controller A
e Can do DMA on their own

DMA
Controller

Random Device Controller

https://bootlin.com/doc/training/linux-kernel/linux-kernel-slides.pdf

24

DMA controllers

* An external DMA controller (on the SoC)

* Their drivers need to submit DMA descriptors to this

controller

DMA controller

A

A

A

RAM
Descriptor Buffer Descriptor Buffer Descriptor Buffer
T A
: >
Y l
FIFO FIFO FIFO
SPI Audio Network
Controller Interface Controller

Request Lines

https://bootlin.com/doc/training/linux-kernel/linux-kernel-slides.pdf

25

DMA descriptors

* DMA descriptors describe the various attributes of a DMA

transfer, anc

Source

Destination
Size

Configuration

Next

>

are chained

Source

_)

Destination
Size

Configuration

Next

Source

End

Destination
Size

Configuration

Next

https://bootlin.com/doc/training/linux-kernel/linux-kernel-slides.pdf

26

Constraints with a DMA

A DMA deals with physical addresses
* The memory accessed by the DMA shall be physically contiguous

* The CPU can access memory through a data cache

» Using the cache can be more efficient (faster accesses to the cache
than the bus)

* The DMA does not access the CPU cache
* Need to take care cache coherency

 Either clean (write back to memory) or invalidate the cache lines
corresponding to the buffer accessed by DMA and processor at the
right times

27

DMA memory constraints

* Need to use contiguous physical memory space

* Can allocate memory by using
e kmalloc() (up to 128 KB) or __get_free_pages() (up to 8 MB)

* Cannot use
» vmalloc()

28

Memory synchronization issues

* Memory caching could interfere with DMA

 Before DMA to device

* Need to make sure all writes to the DMA buffer are completed
* Corresponding cache lines are cleaned

e After DMA from device

» Before drivers read from a DMA buffer, need to ensure that the
corresponding cache lines are invalidated

29

Linux DMA API

* The kernel DMA utilities can take care of
* Either allocating a buffer in a cache coherent area
* Or making sure caches are handled when required
* Managing the DMA mappings and IOMMU
* Most subsystems (such as PCl or USB) supply their own DMA API
* See core-api/dma-api for details in the Linux DMA generic API

30

Coherent DMA mappings

* Coherent mappings

* The kernel allocates a suitable buffer and sets the mapping for the

driver
* Can simultaneously be accessed by the CPU and device
* Has to be in a cache coherent memory area
e Usually allocated for the whole time the module is loaded

#include <asm/dma-mapping.h>
void *dma_alloc_coherent (struct device *dey, size_t size, dma_addr_t
*handle, gfp_t gfp);

void dma_free_coherent (struct device *dey, size t size, void *cpu_addr,
dma_addr_t handle);

31

Starting DMA transfers

* In peripheral DMA
 No external APl is involved

* In external DMA controller
* Ask the hardware to use DMA, so that it will drive its request line
e Use Linux DMAEnNngine framework such as slave API

32

DMAENgine slave AP|

* DMA transfer with DMAEgnine by using following functions
in the driver
* Request a channel for exclusive use with dma_request_channel()

* Configure it for our use case by filling a struct dma_slave config
and pass it as an argument to dmaengine_slave_config()

e Start a new transaction with dmaengine_pre_slave single() or
dmaengine pre_slave sg()

* Put the transaction in the driver pending queue using
dmaengine _submit()

* Ask the driver to process all pending transactions using
dma_async_issue_pending()

https://bootlin.com/doc/training/linux-kernel/linux-kernel-slides.pdf

33

Characteristics of I/O devices

* |/O devices
* Block I/O
e Character /O (stream)
* Memory-mapped file access
* Network sockets

* Direct manipulation of I/O device
e Linux’s ioctl call that sends commands to a device driver

34

Block and character devices

* Block devices access data in blocks such as disk drives
e Commands include read, write, seek
* Raw |/0O, direct I/0O, or file system access
* Memory-mapped file access possible
* DMA

* Character devices include keyboards, mice, serial ports ...

35

Synchronous/asynchronous /0

* Synchronous 1I/O

* Blocking 1/O: process suspended until I/O completed
» Simple, but less efficient

* Non-blocking 1/0: 1/0O calls return as much data as available
* Process returns whatever existing data
* Use to find if data is ready, then read or write to transfer data

* Asynchronous I/O
* Process runs while 1/0O executes
* |/O subsystem signals process when I/O completed via signal
* Difficult to use but efficient

36

system call

Life cycle of an I/O request

device-controller commands ?ﬁd!"mm

interrupt

https://www.cs.fsu.edu/”zwang/files/cop4610/FaII2016/chapt4r13.ndf

37

summary

* Approaches to communicate with |/O devices
 Direct I/O instructions
* Memory-mapped I/0

* Polling in programming 1/0O

* Interrupt-driven 1/O

* Direct memory access(DMA)

* Copy the data between devices and RAM without going through
the CPU

38

