
Operating System 
Design and 

Implementation
Lecture 13: Memory allocation

Tsung Tai Yeh
Tuesday: 3:30 – 5:20 pm

Classroom: ED-302

1



Acknowledgements and Disclaimer
• Slides was developed in the reference with 

MIT 6.828 Operating system engineering class, 2018
MIT 6.004 Operating system, 2018
Remzi H. Arpaci-Dusseau etl. , Operating systems: Three easy pieces. WISC
Onur Mutlu, Computer architecture, ece 447, Carnegie Mellon University

2



Outline

• Dynamic memory allocation
• Buddy memory allocator
• Slab memory allocator

3



Dynamic memory allocation

• How does the OS manage memory of a single process ?
• Each process has contiguous logical address space

• Static (compile-time) allocation is not always a good choice
• Recursive procedures

• Data dependencies are hard to predict
• Complex data structures

• Link-list, tree, graph (ptr = malloc(x); free(ptr))

• Dynamic allocation
• Stack allocation
• Heap allocation

4



Stack organization

• Stack grows happens via
• mremap () : remap a virtual memory address

• When is it useful ?
• Memory allocation and freeing are partially predictable
• Examples

• Procedure call frames, tree traversal, recursion

• Advantages
• Keeps all the free space contiguous
• Simple and efficient to implement

• Disadvantages
• Not appropriate for all data structures 5

alloc(A)
alloc(B)
alloc(C)
free(C)
free(B)
free(A)



Heap organization

• Allocate from random locations
• Memory contains allocated areas and free areas

• When is it useful ?
• Allocation and release are unpredictable
• Arbitrary list structures, complex data organizations

• E.g. new in C++, malloc() in C

• Advantage: works on arbitrary allocation and free patterns
• Disadvantage: End up with small chunks of free space

6

Free

Alloc

Free

Alloc



Stack vs heap allocation

7

Parameter Stack Heap
Basic Allocated in a contiguous 

block
Allocated in a random order

Allocation Automatic by compiler Manual by programmer
Main issue Storage of memory Memory fragmentation

Safety Thread safe, data only 
accessed by owner

Not thread-safe, data stored 
visible to all threads

Flexibility Fixed-size Resizing is possible
Access time Fast Slow



Fragmentation

• Internal fragmentation
• Waste space when you round an allocation up

• External fragmentation
• When you end up with small chunks of free memory that are too 

small to be useful

8



External fragmentation

• External fragmentation
• Full of little holes of free space
• Have a number of segments per process
• Each segment might be a different size
• It is difficult to allocate new segments

• Compact physical memory
• Rearranging the existing segments
• Compaction is expansive
• Best-fit, worst-fit, first-fit, buddy algorithm

9

Operating 
system

Not in use

Allocated

Not in use

Allocated

Not in use

Allocated

0KB

16KB

32KB

64KB

56KB

8 KB

24KB

40KB

48KB

Not compacted



External fragmentation (cont.)

• When does external fragmentation occur ?
• The free space consists of variable-sized units
• This arises in a user-level memory allocation library (malloc())
• Chops segments into little pieces of different sizes

• Problems of the external fragmentation
• No single contiguous space that can satisfy the request
• Even the total amount of free space exceeds the size of requests
• E.g. A request 15 bytes will fail even though there are 20 bytes free

10

Free Used free
0 10 20 30



Splitting and Coalescing

• Free list
• Contains reference to all of the free chunks of space

• Splitting in the memory allocator
• Find a free chunk of memory that can satisfy the request and split 

it into two
• E.g. the allocator assigns 1 bytes 

from the second region to satisfy
the request

• Coalescing in the memory allocator
• Merge free space in a large one when

a chunk of memory is free, free(10) 11

Free Used free
0 10 20 30

addr: 0
len: 10

addr: 20
len: 10

head NULL

addr: 0
len: 10

addr: 21
len: 9

head NULL

addr: 0
len: 30head NULL

Splitting

Coalescing



Memory allocation strategies

• Best fit
• Return a block that is close to what the user asks
• Try to reduce wasted space
• Perform an exhaustive search for the correct free block penalty

• First fit
• Find the first block that is big enough and returns the requested 

amount to the user
• Has the advantage of speed – no exhaustive search
• How the allocator manages the free list’s order becomes an issue ?

12



Case study: memory block fitting

• Envision a free list with three elements on it
• Assume an allocation request of size 15

• Best fit
• Search the entire list and find that 20 was the best fit

• First fit
• Find the first free block that can satisfy the request

13

10 30head NULL20

10 30head NULL5

10 15head NULL20



Designing memory allocator issues

• How to keep track of the size of a block ?
• How to keep track of which blocks are in use and free ?
• How to align memory space if a block is smaller than the free 

block we find ?
• How to pick a block to use for allocation ?
• How do re-insert freed block ?

14



Segregated lists

• Segregated lists
• A particular application has one or a few popular-sized request
• Keep a separate list to manage objects of that size
• All other requests are forwarded to a more general MEM allocator
• Dedicated for one particular size of requests, fragmentation is 

much less of a concern
• Allocation and free requests can be served quite quickly, no 

complicated search of a list is required

15



Buddy allocator

• Fast, simple allocation for blocks that are 2n bytes 
• Allocation restrictions

• Block sizes: 2n

• Allocation strategy for k bytes
• Raise allocation request to nearest 2n

• Search free list for appropriate size
• Recursively divide large blocks until reach block of correct size

• Free strategy
• Recursively coalesce block with buddy if buddy free
• May coalesce lazily to avoid overhead

16



Buddy allocator issues

17

• Memory fragmentation
• Buddy allocator still leads to few reserved pages that prevent the 

allocation of larger contiguous blocks

• Performance
• Very fast, since the simple binary shift or bit change arithmetic

0 31
Memory layout of the buddy allocator 



Buddy allocation

• Binary buddy allocator
• Free memory as one big space of size 2N

• Recursive search by dividing free space by 
two until a block that is big enough to 
accommodate the request is found

• Internal fragmentation as only allowed 
to power-of-two-sized block

• Check whether the “buddy” 8KB is free 
when returning the 8KB block to the free list

• Keep coalescing when the buddy is still free
• Making coalescing simple

18

64 KB

32 KB 32 KB

16 KB 16 KB

8 KB 8 KB



Case study: buddy allocation

0 1 2 3 4 5 6 7

19

static inline unsigned long _find_buddy_pfn
(unsigned long page_pfn, unsigned int order)

{
return page_pfn ^ (1 << order);

}

• In a memory 
• Block 0, 4, 5, 6, 7 is used
• Will buddy allocator merges block 1 and 2 if both of them are free ?

• No !! Block 1 and 2 are not buddy

Memory blocks



How to allocate memory ?

20

Code (.text) Heap stack libc.sofree
Virtual address apce

0 0 x ffffffff

int main () {
struct foo *x = malloc(sizeof(struct foo));
….

}

void* malloc (ssize_t n) {
if(heap empty)

mmap(); // add pages to heap and find a free block of size n
}

n



malloc() issues

• How to implement malloc() or new ?
• Calls sbrk() to request more contiguous memory from OS
• Add small header to each block of memory

• Pointer to next free block
• Separate free list for each popular size

• Allocation is fast
• Inefficient if some are empty while others have lots of free blocks

• First in on list of irregular free blocks
• Combine blocks and shuffle blocks between lists

21https://pages.cs.wisc.edu/~eli/537/lectures/lecture12.2x2.pdf



Enlarge VMA

Source: http://duartes.org/gustavo/blog/post/how-the-kernel-manages-your-memory/



Reclaiming free memory

• When can dynamically-allocated memory be freed ?
• Explicitly call free()
• Hard, can’t be recycled until all sharers are finished

• Sharing is indicated by the presence of pointers to the data

• Two possible problems
• Dangling pointers

• Recycle storage while it’s still being used
• Memory leaks

• Forget to free storage even when can’t be used again
• Not a problem for short-lived user processes
• Issue for operating systems and long-running applications 23

https://pages.cs.wisc.edu/~eli/537/lectures/lecture12.2x2.pdf



Garbage collection

• Idea
• No free() operation
• Storage freed implicitly when no longer referenced

• Approach
• When system needs storage, examine and collect free memory

• Advantages
• Makes life easier on the application programmer

24
https://pages.cs.wisc.edu/~eli/537/lectures/lecture12.2x2.pdf



Mark and sweep

• Requirements
• Must be able to find all objects
• Must be able to find all pointers to objects
• Compiler must cooperate by marking type of data in memory

• Two passes
• Pass 1: Mark

• Start with all statically-allocated and procedure-local variables (on stack)
• Mark each object
• Recursively mark all objects can reach with a pointer

• Pass 2: Sweep
• Go through all objects, free those that aren’t marked

25https://pages.cs.wisc.edu/~eli/537/lectures/lecture12.2x2.pdf



Garbage collection in practice

• Disadvantages
• Expansive: 20% or more of CPU
• Difficult to implement

• Execute program during garbage collection (incremental)

• Languages with garbage collection
• LISP
• Java

26



Linux kernel allocators

27

https://bootlin.com/doc/training/linux-kernel/linux-kernel-slides.pdf



Page allocator

• Appropriate for medium-size allocations
• A page is usually 4KB that is dependent to the hardware
• Buddy allocator strategy

• Only allocations of power of two numbers of pages such as 1, 2, 4, 
8, 16 pages, etc.

• Typical maximum size is 8192 KB
• The allocated area is contiguous in the kernel virtual address space
• Maps to physically contiguous pages
• The large areas may not be available due to physical memory 

fragmentation
28



Motivation of the slab allocator
• The kernel needs

• Many different temporary objects
• Such as the mm_struct, inode, files_struct structures

• Temporary kernel objects
• Very small and very large size
• They are often allocated and freed
• Require to perform object allocation efficiently

• Drawbacks of the buddy allocator
• Its free areas are composed of entire frames of memory (too large 

for various object size)
• Align objects with power of two size has a negative impact on the 

use of the process cache 29



Principle of the slab allocator

• The allocation of small memory blocks
• Eliminate internal fragmentation caused by a binary buddy allocator
• Two caches of small memory buffers (32 – 131072 bytes)
• kmalloc() is provided for allocate objects in these small cache buffers

• The caching of commonly used objects
• The system doesn’t waste time allocating, initializing and destroying 

objects

• The better utilization of hardware cache
• aligning objects to the L1 or L2 caches

30



What is slab ?

• Slab
• a chunk of contiguous pages
• A container of objects
• Allocates a number of objects

to the slabs associated with 
that cache

• Cache chain
• A variable number of caches linked on a doubly linked circular list
• Kmem_cache_s manages objects such as mm_struct or fs_cache

31

Slab state

https://www.kernel.org/doc/gorman/html/understand/understand011.html

Cache chain kmem_cache



What is slab ? (cont.)

• The slab allocator manages the objects in a cache
• A slab contains one or more pages, divided into equal-sized 

objects
• When cached created, allocate a slab, divided the slab into free 

objects
• If a slab is full of used objects, next object comes from an 

empty/new slab

• Benefits
• No fragmentation and fast memory allocation
• Some of the object fields may be reusable; no need to initialize 

again 32



Alternative slab allocators

• SLOB allocator
• Designed for small systems
• As compact as possible

• SLAB allocator
• As cache friendly as possible

• SLUB allocator
• Designed for large systems
• Minimize memory overhead
• Execution time friendly

33



The slab allocator

• The slab allocator
• The default cache allocator (at least as of early Linux kernel 2.6, 

Solaris)
• A given cache allocates a specific type of object

• E.g. a cache for file descriptors, a cache for inodes
• Motivation

• The kernel often spends much of its time on allocating, initializing and 
freeing the same object

• Reduce the number of references to the buddy allocator
• Basic idea

• Have caches of commonly used objects kept in an initialized state for use 
by the kernel 34



The slab allocator (cont.)

• The SLAB allocator
• Allow to create caches, which contain a set of objects of the same 

size
• The object size can be smaller or greater than the page size
• Takes care of growing or reducing the size of cache as needed
• Uses the page allocator to allocate and free pages
• SLAB caches are used for data structures that are present in kernel 

instances 
• Directory entries, file objects, network packet descriptors etc.. 
• See /proc/slabinfo

35



The slab allocator(cont.)

36https://bootlin.com/doc/training/linux-kernel/linux-kernel-slides.pdf



SLAB per frame freelist management

• Multiple requests for free objects can be satisfied from the same 
cache line without touching the object contents

37

https://events.static.linuxfound.org/sites/events/files/slides/slaballocators.pdf



SLAB allocator – data structure

• Red zone
• Used to detect writes after the object

• Poisoning
• If the object is inactive then the bytes contain poison values

• Padding
• An unused data to fill up the space to get the next object properly 

aligned
• Coloring

• A scheme that attempts to have objects in different slabs use different 
lines in the cache

• Objects use different cache lines ensure objects from the same slab 
cache will be unlikely to flush each other

38



39
https://events.static.linuxfound.org/sites/events/files/slides/slaballocators.pdf



SLOB allocator

• Small systems
• The bookkeeping overheads become critical on tiny memory 

system such as embedded systems
• Simple list of blocks (SLOB)

• Just keep a free list of each available chunk and its size
• Currently uses a first-fit algorithm
• Grab the first one big enough to work
• Split block if leftover bytes
• No internal fragmentation
• External fragmentation? Yes. Trade for low overheads

40



SLUB allocator

• Large system
• The number of SLAB queues can make allocation fast but add 

complexity and storage overhead in large systems

• The unqueue slab allocator (SLUB)
• All objects of same size from same slab
• Simple free list per slab – no per-slab metadata
• Add new fields in struct page to guide the search of free objects

• void *freelist; // points to the first free object within a slab
• short unsigned int inuse; // the number of objects allocated from the slab
• short unsigned int offset; // tells the allocator where to find the pointer to

the next free object
41



42
https://events.static.linuxfound.org/sites/events/files/slides/slaballocators.pdf



kmalloc allocator

• kmalloc()
• Allocate memory for the kernel from general purpose caches
• For small sizes, it relies on generic SLAB caches (see /proc/slabinfo)
• For large sizes, it relies on the page allocator
• The allocated area is guaranteed to be physical contiguous
• The allocated area size is rounded up to the size of the smallest 

SLAB cache in which it can fit

43



kmalloc API 

• #include <linux/slab.h>
• void *kmaloc(size_t size, int flags);

• Allocate size bytes and return a pointer to the area (virtual address)
• Size: number of bytes to allocate
• Flags: same flags as the page allocator (GFP_KERNEL, GFP_ATOMIC, 

GFP_DMA, etc. )

• void kfree(const void *objp);
• Free an allocated area

44

struct ib_port_attr *tprops;
tprops = kmalloc(sizeof *tprops, GFP_KERNEL);
…
kfree(tprops);

drivers/infiniband/core/cache.c



vmalloc allocator

• The vmalloc() allocator
• Used to obtain memory zones that are contiguous in the virtual 

addressing space, but not made out of physically contiguous 
pages

• The allocated area is in the kernel space part of the address space
• Allocations of fairly large areas is possible
• Physical memory fragmentation is not an issue
• Areas cannot be used for DMA, since DMA usually requires 

physically contiguous buffers
• API in include/linux/vmalloc.h
• void *vmalloc(unsigned long size); // return a virtual address 45



Summary

• Dynamic memory allocation
• Fit for arbitrary complex data structure

• Buddy memory allocation
• Simple, fast for power of two blocks
• Fragmentation

• Slab memory allocator
• Caching the commonly used objects

46


