Operatmg Syste
Design anad
Implementation

Lecture 13: Memory allocation
Tsung Tai Yeh

Tuesday: 3:30 —5:20 pm
Classroom ED-302

Acknowledgements and Disclaimer

* Slides was developed in the reference with
MIT 6.828 Operating system engineering class, 2018
MIT 6.004 Operating system, 2018
Remzi H. Arpaci-Dusseau etl. , Operating systems: Three easy pieces. WISC
Onur Mutlu, Computer architecture, ece 447, Carnegie Mellon University

Outline

* Dynamic memory allocation
* Buddy memory allocator
 Slab memory allocator

Dynamic memory allocation

* How does the OS manage memory of a single process ?
* Each process has contiguous logical address space

e Static (compile-time) allocation is not always a good choice

* Recursive procedures
* Data dependencies are hard to predict
 Complex data structures
* Link-list, tree, graph (ptr = malloc(x); free(ptr))
* Dynamic allocation
e Stack allocation
* Heap allocation

: : alloc(A
Stack organization a”OCEB;
alloc(C)
* Stack grows happens via free(C)
* mremap () : remap a virtual memory address free(B)
* When is it useful ? free(A)
 Memory allocation and freeing are partially predictable
* Examples

* Procedure call frames, tree traversal, recursion

* Advantages
» Keeps all the free space contiguous
» Simple and efficient to implement

* Disadvantages
* Not appropriate for all data structures

Heap organization Free
Alloc

* Allocate from random locations Free
* Memory contains allocated areas and free areas Alloc

* When is it useful ?
 Allocation and release are unpredictable

 Arbitrary list structures, complex data organizations
* E.g. new in C++, malloc() in C

* Advantage: works on arbitrary allocation and free patterns
e Disadvantage: End up with small chunks of free space

Stack vs heap allocation

Parameter | Stack | Heap

Basic Allocated in a contiguous Allocated in a random order
block
Allocation Automatic by compiler Manual by programmer
Main issue Storage of memory Memory fragmentation
Safety Thread safe, data only Not thread-safe, data stored
accessed by owner visible to all threads
Flexibility Fixed-size Resizing is possible

Access time Fast Slow

Fragmentation

* Internal fragmentation
* Waste space when you round an allocation up

* External fragmentation

* When you end up with small chunks of free memory that are too
small to be useful

External fragmentation Not compacted

OKB
Operating
. 8 KB
 External fragmentation system
. : 16KB
Full of little holes of free space Not in use

* Have a number of segments per process 24KB

- Each segment might be a different size 3¢g| Allocated

* It is difficult to allocate new segments Not in use

* Compact physical memory 40kB| Allocated
* Rearranging the existing segments 48kB| Not in use
* Compaction is expansive 56KB

* Best-fit, worst-fit, first-fit, buddy algorithm Allocated

64KB

External fragmentation (cont.)

 When does external fragmentation occur ?
* The free space consists of variable-sized units
* This arises in a user-level memory allocation library (malloc())
* Chops segments into little pieces of different sizes

* Problems of the external fragmentation
* No single contiguous space that can satisfy the request
* Even the total amount of free space exceeds the size of requests
* E.g. Arequest 15 bytes will fail even though there are 20 bytes free

Free Used free

Free Used free

Splitting and Coalescing

head

* Free list
* Contains reference to all of the free chunks of space

* Splitting in the memory allocator
* Find a free chunk of memory that can satisfy the request and split
it into two Splitting

* E.g. the allocator assigns 1 bytes
from the second region to satisfy
the request

* Coalescing in the memory allocator

* Merge free space in a large one when
a chunk of memory is free, free(10)

head

head

11

Memory allocation strategies

* Best fit
* Return a block that is close to what the user asks
* Try to reduce wasted space
* Perform an exhaustive search for the correct free block penalty

* First fit
* Find the first block that is big enough and returns the requested
amount to the user
* Has the advantage of speed — no exhaustive search

* How the allocator manages the free list’s order becomes an issue ?

12

Case study: memory block fitting

* Envision a free list with three elements on it
* Assume an allocation request of size 15

e Best fit
e Search the entire list and find that 20 was the best fit

* First fit
* Find the first free block that can satisfy the request

13

Designhing memory allocator issues

* How to keep track of the size of a block ?
* How to keep track of which blocks are in use and free ?

* How to align memory space if a block is smaller than the free
block we find ?

* How to pick a block to use for allocation ?
* How do re-insert freed block ?

14

Segregated lists

* Segregated lists
* A particular application has one or a few popular-sized request
» Keep a separate list to manage objects of that size
 All other requests are forwarded to a more general MEM allocator

* Dedicated for one particular size of requests, fragmentation is
much less of a concern

* Allocation and free requests can be served quite quickly, no
complicated search of a list is required

15

Buddy allocator

* Fast, simple allocation for blocks that are 2" bytes

e Allocation restrictions
* Block sizes: 2"

* Allocation strategy for k bytes
* Raise allocation request to nearest 2"

* Search free list for appropriate size
* Recursively divide large blocks until reach block of correct size

* Free strategy
* Recursively coalesce block with buddy if buddy free

* May coalesce lazily to avoid overhead

16

Buddy allocator issues

* Memory fragmentation

* Buddy allocator still leads to few reserved pages that prevent the
allocation of larger contiguous blocks

* Performance
* Very fast, since the simple binary shift or bit change arithmetic

0 31
Memory layout of the buddy allocator

17

Buddy allocation

| 64KB
* Binary buddy allocator /
* Free memory as one big space of size 2N 32 KB 32KB |
* Recursive search by dividing free space by /\
two until a block that is big enough to (16kB) [16KB |

accommodate the request is found A

* Internal fragmentation as only allowed
. 8KB | 8KB
to power-of-two-sized block

* Check whether the “buddy” 8KB is free
when returning the 8KB block to the free list

» Keep coalescing when the buddy is still free
* Making coalescing simple

18

Case study: buddy allocation

Memory blocks
0 1 2 3 4 5 6 7

* |n a memory
* Block 0, 4, 5, 6, 7 is used
» Will buddy allocator merges block 1 and 2 if both of them are free ?
* No ! Block 1 and 2 are not buddy

static inline unsigned long _find_buddy_pfn
(unsigned long page_pfn, unsigned int order)

return page_pfn * (1 << order);

How to allocate memory ?

Virtual address apce

Code (.text) N Heap —free <= stack libc.so
0 0 x ffffffff
int main () { i
struct foo *X = malloc(sizeof(struct foo)); E
} |

void* malloc (ssize_t n) {
if(heap empty)
mmap(); // add pages to heap and find a free block of size n

malloc() issues

* How to implement malloc() or new ?
e Calls sbrk() to request more contiguous memory from OS
* Add small header to each block of memory
* Pointer to next free block

 Separate free list for each popular size
* Allocation is fast
* Inefficient if some are empty while others have lots of free blocks

* First in on list of irregular free blocks
 Combine blocks and shuffle blocks between lists

https://pages.cs.wisc.edu/~eli/537/lectures/lecture12.2x2.pdf 21

Enlarge VMA

1. Program calls brk() to grow its heap 2. brk() enlarges haap A,

Mew pages are not mapped onto physical memory.

free free
 anonymous anonymous
Free Free
: EnonyNous =) Heap anonymous
Hea — . '
: {] free W /, Free
Size: BKB, Size: 16KEB,
Rss: BKB Rss: BKB
3. Program tries to access new memory. 4. Kernel assigns page frame to process,
Processor page faults. creates PTE, resumes execution. Program is

unaware anything happened.

free free
- ananymous ‘anonymous
- / e - 74 anonyNous
- anonymaus anonymous
7 free 2= free
Size: 16KB, Size: 16KB,
Rss: BKB Rss: 1ZKB

Source: http://duartes.org/qustavo/blog/post/how-the-kernel-manages-your-memory/

https://pages.cs.wisc.edu/~eli/537/lectures/lecturel2.2x2.pdf

Reclaiming free memory

* When can dynamically-allocated memory be freed ?
 Explicitly call free()

* Hard, can’t be recycled until all sharers are finished
* Sharing is indicated by the presence of pointers to the data

* Two possible problems
* Dangling pointers
* Recycle storage while it’s still being used
* Memory leaks
* Forget to free storage even when can’t be used again

* Not a problem for short-lived user processes
* |ssue for operating systems and long-running applications 2

Garbage collection

* ldea
* No free() operation
 Storage freed implicitly when no longer referenced

* Approach
* When system needs storage, examine and collect free memory

* Advantages
* Makes life easier on the application programmer

https://pages.cs.wisc.edu/~eli/537/lectures/lecture12.2x2.pdf "

Mark and sweep

* Requirements
* Must be able to find all objects
* Must be able to find all pointers to objects
* Compiler must cooperate by marking type of data in memory

* Two passes
* Pass 1: Mark

 Start with all statically-allocated and procedure-local variables (on stack)
* Mark each object
* Recursively mark all objects can reach with a pointer
* Pass 2: Sweep
* Go through all objects, free those that aren’t marked

https://pages.cs.wisc.edu/~eli/537/lectures/lecture12.2x2.pdf

25

Garbage collection in practice

* Disadvantages
* Expansive: 20% or more of CPU
* Difficult to implement
» Execute program during garbage collection (incremental)
* Languages with garbage collection
 LISP
* Java

26

https://bootlin.com/doc/training/linux-kernel/linux-kernel-slides.pdf

Linux kernel allocators

Some Kernel Code

kmalloc allocator

Uses a set of anonymous vmalloc Allocator
SLAB caches Non-physically contiguous

l memory
Y

SLAB Allocator

Allows to create caches, each cache storing
objects of the same size. Size can be lower or
greater than a page size.

l Y \ 4

Page Allocator
Allows to allocate contiguous areas of physical pages (4k, 8k, 16k, 32k, etc) 27

Page allocator

* Appropriate for medium-size allocations
* A page is usually 4KB that is dependent to the hardware

* Buddy allocator strategy

* Only allocations of power of two numbers of pages such as 1, 2, 4,
8, 16 pages, etc.

* Typical maximum size is 8192 KB

* The allocated area is contiguous in the kernel virtual address space

* Maps to physically contiguous pages

* The large areas may not be available due to physical memory
fragmentation

28

Motivation of the slab allocator

* The kernel needs
* Many different temporary objects
e Such as the mm_struct, inode, files_struct structures

* Temporary kernel objects
* Very small and very large size
* They are often allocated and freed
* Require to perform object allocation efficiently

* Drawbacks of the buddy allocator
* Its free areas are composed of entire frames of memory (too large
for various object size)

 Align objects with power of two size has a negative impact on the
use of the process cache 29

Principle of the slab allocator

* The allocation of small memory blocks
* Eliminate internal fragmentation caused by a binary buddy allocator
e Two caches of small memory buffers (32 — 131072 bytes)
* kmalloc() is provided for allocate objects in these small cache buffers

* The caching of commonly used objects

* The system doesn’t waste time allocating, initializing and destroying
objects

* The better utilization of hardware cache
 aligning objects to the L1 or L2 caches

30

ol cacte }

Cache chain @ cache =@
}@ﬁc e

 Slab
* a chunk of contiguous pages @

* A container of objects
* Allocates a number of objects pages pages

pages
to the slabs associated with
hat cache EED EED @D

¢ CaChe Chaln https://www.kernel.org/doc/gorman/html/understand/understand011.html

* A variable number of caches linked on a doubly linked circular list
* Kmem_cache_s manages objects such as mm_struct or fs_cache

What is slab ?

31

What is slab ? (cont.)

* The slab allocator manages the objects in a cache

* A slab contains one or more pages, divided into equal-sized
objects

* When cached created, allocate a slab, divided the slab into free
objects

* If a slab is full of used objects, next object comes from an
empty/new slab

* Benefits

* No fragmentation and fast memory allocation

* Some of the object fields may be reusable; no need to initialize
again

32

Alternative slab allocators

* SLOB allocator
* Designed for small systems
* As compact as possible

* SLAB allocator
* As cache friendly as possible

* SLUB allocator
* Designed for large systems
* Minimize memory overhead
* Execution time friendly

33

The slab allocator

 The slab allocator

* The default cache allocator (at least as of early Linux kernel 2.6,
Solaris)
* A given cache allocates a specific type of object
* E.g. a cache for file descriptors, a cache for inodes
* Motivation

* The kernel often spends much of its time on allocating, initializing and
freeing the same object

* Reduce the number of references to the buddy allocator
* Basicidea

* Have caches of commonly used objects kept in an initialized state for use
by the kernel 34

The slab allocator (cont.)

* The SLAB allocator

* Allow to create caches, which contain a set of objects of the same
size

* The object size can be smaller or greater than the page size

» Takes care of growing or reducing the size of cache as needed

» Uses the page allocator to allocate and free pages

* SLAB caches are used for data structures that are present in kernel
instances
* Directory entries, file objects, network packet descriptors etc..
* See /proc/slabinfo

35

The slab allocator(cont.)

Allocated 512 bytes object
4KiB page

Free 1024 bytes object

https://bootlin.com/doc/training/linux-kernel/linux-kernel-slides.pdf 36

SLAB per frame freelist management

* Multiple requests for free objects can be satisfied from the same
cache line without touching the object contents

Page Frame Content:

Object Object

FI = Index of free object in frame
Two types: short or char

Page->active
- >

https://events.static.linuxfound.org/sites/events/files/slides/slaballocators.pdf

For each object in the frame 37

A

SLAB allocator — data structure

* Red zone
* Used to detect writes after the object
* Poisoning
* |f the object is inactive then the bytes contain poison values
* Padding
* An unused data to fill up the space to get the next object properly
aligned
* Coloring

* A scheme that attempts to have objects in different slabs use different
lines in the cache

e Objects use different cache lines ensure objects from the same slab
cache will be unlikely to flush each other

38

Cache Descriptor LAB r r Per Node data

kmem_cache: V kmem_cache_node:
node partial list —
colour_off array_cache: full list
Sz 2] empty list
. ... Page Frame Descriptor | Shared
struct page: alien
e touched »Object in [list_lock
entry[0] another Iru reaping
entry[1] [— hage active
entry[2] slab_cache
freelist

Object

size

Y

object size

A A
\J

Redzone |NE

= T 39
Poisoning https://events.static.linuxfound.org/sites/events/files/slides/slaballocators.pdf

SLOB allocator

* Small systems

* The bookkeeping overheads become critical on tiny memory
system such as embedded systems

 Simple list of blocks (SLOB)

* Just keep a free list of each available chunk and its size
* Currently uses a first-fit algorithm

* Grab the first one big enough to work

* Split block if leftover bytes

* No internal fragmentation

* External fragmentation? Yes. Trade for low overheads

40

SLUB allocator

* Large system

* The number of SLAB queues can make allocation fast but add
complexity and storage overhead in large systems

* The unqueue slab allocator (SLUB)
* All objects of same size from same slab
* Simple free list per slab — no per-slab metadata

* Add new fields in struct page to guide the search of free objects
* void *freelist; // points to the first free object within a slab
 short unsigned int inuse; // the number of objects allocated from the slab

 short unsigned int offset; // tells the allocator where to find the pointer to

the next free object
41

Cache Descriptor LUB r r Per Node data

kmem_cache: e N S B e kmem_caghe_node: |
fags partial list
offset list_lock
size
object_size
node Page Frame Descriptor
cpu_slab struct page: m
kmem_cache_cpu: age -
freelis =
_t | objects
P Fram nent: NULL‘ NULLA‘ // -
< freelist

Object Padding
B Page frame .
Object Format:
- size .
- object_size . "
Redzone Padding I
Poisoning Paddin

42
offset https://events.static.linuxfound.org/sites/events/files/slides/slaballocators.pdf

A
|

kmalloc allocator

* kmalloc()
* Allocate memory for the kernel from general purpose caches
* For small sizes, it relies on generic SLAB caches (see /proc/slabinfo)
* For large sizes, it relies on the page allocator
* The allocated area is guaranteed to be physical contiguous

* The allocated area size is rounded up to the size of the smallest
SLAB cache in which it can fit

43

kmalloc AP

e #finclude <linux/slab.h>

* void *kmaloc(size t size, int flags);
* Allocate size bytes and return a pointer to the area (virtual address)

* Size: number of bytes to allocate

* Flags: same flags as the page allocator (GFP_KERNEL, GFP_ATOMIC,
GFP_DMA, etc.)

» void kfree(const void *objp);
* Free an allocated area i

truct ib_port_attr *tprops;
props = kmalloc(sizeof *tprops, GFP_KERNEL);

~ O

drivers/infiniband/core/cache.c

vmalloc allocator

* The vmalloc() allocator

e Used to obtain memory zones that are contiguous in the virtual
addressing space, but not made out of physically contiguous

pages
* The allocated area is in the kernel space part of the address space
* Allocations of fairly large areas is possible
* Physical memory fragmentation is not an issue

* Areas cannot be used for DMA, since DMA usually requires
physically contiguous buffers

* APl in include/linux/vmalloc.h
* void *vmalloc(unsigned long size); // return a virtual address

45

summary

* Dynamic memory allocation
* Fit for arbitrary complex data structure

* Buddy memory allocation
» Simple, fast for power of two blocks
* Fragmentation

 Slab memory allocator
* Caching the commonly used objects

46

