
Operating System
Design and

Implementation
Lecture 12: Paging

Tsung Tai Yeh
Tuesday: 3:30 – 5:20 pm

Classroom: ED-302

1

Acknowledgements and Disclaimer

• Slides was developed in the reference with
MIT 6.828 Operating system engineering class, 2018
MIT 6.004 Operating system, 2018
Remzi H. Arpaci-Dusseau etl. , Operating systems: Three easy pieces. WISC
Onur Mutlu, Computer architecture, ece 447, Carnegie Mellon University

2

Outline

• Multi-level page table

• Demand paging

• The inverted page table

• Page sharing

3

Page table (linear structure)

• Page table (linear structure) can be vary
large !
• 32-bit address (232 bytes), 4KB (212 bytes)

pages, 4B PT entry

• The number of page is (232/212 = 220),

• One page table size is 220 x 4 bytes = 4MB
per process

• Hundreds of processes -> Hundreds of MB
for PT

4https://pages.cs.wisc.edu/~remzi/OSTEP/vm-smalltables.pdf

Bigger pages

• A 32-bit address, but increase page size from 4KB to 16KB
• Each PTE is 4 bytes and now we have 218 entries in our page table

• The total size of a page table is (218 x 4 bytes = 1MB)

• The page table size (4MB in case 4 KB page size)

• What problems are shown with this approach ?
• Internal fragmentation (big pages lead to waste within each page)

5

Virtual page number (VPN) Page offset (PO)

32-bit

18-bit 14-bit

Page size

• Arguments for larger page size
• Leads to a smaller page table

• May be more efficient for disk access (block size of disk)

• Larger page size – TLB entries capture more addresses per entry,
so there are fewer misses, with the “right” locality

• x86 page sizes: 4KB, 2MB, 4MB …

• Arguments for smaller page size
• Conserve storage space – less fragmentation

6
https://people.cs.pitt.edu/~childers/CS2410/slides/lect-virtual-memory.pdf

Multi-level page tables

• Turn page table into a tree (hierarchy) structure
• Divide page table (PT) into page sized chunks

• Hold only the part of PT where PT entries are valid

• Directory points to portions of the PT

• Directory says where to find PT or that chunk is invalid

7

Multi-level page table (cont.)

• Multi-level page table
• Chop up the page table into

page-sized units

• Page directory tells where a
page of the page table is
• A number of page directory

entries (PDE)

• A page frame number (PFN),
and a valid bit

8https://pages.cs.wisc.edu/~remzi/OSTEP/vm-smalltables.pdf

Multi-level page table (cont.)

• What are advantages of
multi-level page table ?
• Only allocate “using” page-

table space

• Compact and supports
sparse address space

9

1 100

0

0

1 107

V Page

1 r 10

0

1 r 12

1 rw 13

V Flags Page

0

0

1 rw 39

1 rw 40

V Flags Page

Page table

Multi-level paging table (cont.)

10

http://people.ee.duke.edu/~sorin/prior-courses/ece152-spring2008/lectures/6.9-memory.pdf

Important formula for paging table

• Number of entries in page table
• (virtual address space size) / (page size) = number of pages

• Virtual address space size
• 2n Bytes

• Size of page table
• (Number of entries in page table) x (size of PTE)

11

Case study of multi-level paging table

• How many levels of page tables would be required ?
• A virtual memory system with physical memory of 8 GB, a page

size of 8 KB, 46 bit virtual address, and PTE size is 4 B

• Initially
• Page size = 8 KB = 213 B

• Virtual address space size = 246 B

• PTE = 4 B = 22 B

• Number of pages or number of entries in page table
= 246 B / 213 B = 233

• Size of page table = 233 x 22 B = 235 B
12

Case study of multi-level paging table (cont.)

• How many levels of page tables would be required ?
• A virtual memory system with physical memory of 8 GB, a page

size of 8 KB, 46 bit virtual address, and PTE size is 4 B

• Now, size of page table > page size (235 B > 213 B)
• Create one more level

• Number of page tables in last level
235 B / 213 B = 222

• Size of page table [second last level]

• 222 x 22 B = 224 B

13

Case study of multi-level paging table (cont.)

• How many levels of page tables would be required ?
• A virtual memory system with physical memory of 8 GB, a page

size of 8 KB, 46 bit virtual address, and PTE size is 4 B

• Now, size of page table > page size (224 B > 213 B)
• Create one more level [third last level]

• Number of page tables in second last level
= 224 B / 213 B = 211

• Size of page table [third last level]=
= 211 x 22 B = 213 B = page size

14

Virtual memory

• Do we need to load all blocks into
memory before the process starts
executing ?
• No !!

• Some code may not even be
executed

• How to reduce the loading of
unnecessary pages ?

15http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/4_Memory.pdf

Demand paging

• Demand paging
• Pages are loaded from disk to RAM, only when needed

• Why demand paging ?
• Reducing I/O

• More users and decrease the number of memory requests

• Pure demand paging
• When no pages are loaded into memory initially, pages generates

page faults. No prediction !!

• Pre-paging
• Predict which pages will be used and swap them into the RAM 16

Demand paging

• How does demand paging work ?
• Using present bit in process page table to indicate if the block is in

RAM or not

• The process issues a page fault interrupt if an accessed page is not
present in RAM

• The OS loads the page into RAM and mark the present bit to 1

• The OS removes another block from RAM if no pages on RAM are
free

17

Page fault

• Steps of page fault
• OS check page table

referenced by process
control block (PCB)
• Abort -> invalid reference

• Continue -> not in memory

• Find an empty frame

• Swap a page from disk

• Reset page table valid bit

• Restart instruction

18

https://hackmd.io/@Pl-eQT9CQaS0jhExKqL8_w/ryp5XonRZ?type=view

Timeline of a page fault

19

1. Trap to operating system 7. Schedule other processes /
2. Save state in PCB threads while waiting
3. Vector to page fault handler 8. Take disk interrupt
4. Check in page table if fault address 9. Update page table

is truly invalid 10. Add process to run queue
5. Find/create free page frame 11. Wait for process to be

possible involves disk write scheduled next
6. Issue disk read for page 12. Restore state from PCB

a. Wait until request queued at 13. Return from OS
disk controller
b. Wait for seek/latency
c. Wait for data transfer (DMA)

Initializing

Page
fault
handl
ing

Disk
proce
ssing

OS scheduling

Demand paging implementation

• Keep copy of process’s pages on disk, some are in RAM
• Extend page table to include “present” and “valid”

• Access to “page out” data by using trap

• Inside the trap handler
• Access pages that are temporarily paged out to disk

• Allocate a physical page frame to hold contents (might require
another page to be paged out)

• Copy data from disk to allocated page frame (slow!!)

• Update page table entry

• OS schedules processes
20

Effective access times (EAT)

• EAT is used to measure the performance of demand paging

• Parameter
• p: page fault rate; ma: memory access time; pft: page fault time

• EAT: (1 – p) x ma + p x pft

• Discussion
• The EAT is proportional to page fault time

21

Effective access times (EAT)

• What is average access latency ?
• L1 cache: 2 cycles
• L2 cache: 10 cycles
• Main memory: 150 cycles
• Disk: 10 ms -> 30, 000, 000 cycles on 3.0 GHz processor

• Assume access having following characteristics:
• 98% handled by L1 cache
• 1% handled by L2 cache
• 0.99% handled by DRAM
• 0.01% cause page fault
• What’s the average access latency ?

22

Effective access times (EAT)

• Assume access having following characteristics:
• 98% handled by L1 cache

• 1% handled by L2 cache

• 0.99% handled by DRAM

• 0.01% cause page fault

• What’s the average access latency ?

• Average access latency:
• (0.98 x 2) + (0.01 x 10) + (0.99 x 150) + (0.0001 x 30,000,000) =

1.96 + 0.1 + 1.485 + 3000 = about 3000 cycles / access

• Need LOW page fault rates to sustain performance !!
23

More issues

• Page selection policy
• When do we load a page ?

• Page replacement policy
• What pages do we swap to disk to make room for new pages ?

• When do we swap pages out to disk ?

24

Page selection policy

• Demand paging
• Load page in response to access (page fault)

• Pre-paging (prefetching)
• Predict what pages will be accesses in near future

• Prefetch pages in advance of access

• Problems
• Hard to predict accurately

• Mispredictions can cause useful pages to be replaced

25

Page replacement policies

• Random

• FIFO (first in, first out)
• Throw out oldest pages

• Optimal
• Throw out page used farthest in the future

• LRU (least recently used)
• Throw out page not used in the longest time

• NFU (not frequently used)
• Do not throw out recently used pages

26

Demand paging issues

• Performance
• Need lots of locality -> otherwise run at disk speeds

• If most accesses are to data already in DRAM -> great !

• Spatial locality: often access “nearby” addresses

• Temporal locality: Often re-access same addresses again and again

• How to resume a process ?
• Re-execute instruction? Only if no side effects !

• Run other processes / threads while serving the page fault

27

Belay’s Anomaly

• Belay’s anomaly
• For some replacement algorithms
• MORE pages in main memory can lead to MORE page faults !!

• Example:
• FIFO replacement policy
• Reference string: A B C D A B E A B C D E
• Three pages -> 9 faults
• Four pages -> 10 faults
• Adding more memory might not help for page faults in some

replacement algorithms

28

Thrashing

• Working set
• Collection of memory currently being used by a process

• Thrashing
• If all working sets do not fit in memory

• One “hot” page replaces another

• Percentage of accesses that generate page faults skyrockets

• Typical solutions
• “swap out” entire processes

• Invoked when page fault rate exceeds some bound

• Linux invokes the out-of-memory (OOM) killer
29

Inverted page tables

• Multi-level page table
• The number of levels is increased as the size of virtual memory

address space grows

• Given 64-bits address space, 4-KB page size, a PTE of 4 bytes, each
page table can store 1024 entries

• 6 (ceil(52/10)) levels are required

• 6 memory accesses for each address translation

• Observation of the inverted page table
• Size of physical memory is much smaller

30

Inverted page table

• Simple Inverted page table
• The number of page table entries (PTE)

= the number of physical frames

• Each PTE contain the pair <process
ID, virtual page #>

• Translate a virtual address, compare
each <process ID, virtual page #> against
each entry

• If a match is found, the inverted page table
index is used to obtain physical address

31

VA
page #

Process
ID

P
h

ysical ad
d

ress

Inverted page table

• Hashed inverted page table
• Finding a match may require to scan

through entire table – simple inverted
page table

• Using hashed function to map virtual
page # to PTE of the inverted page table

32

VA page # Offset

Virtual address

Hash
function

VA
page #

Process
ID

Frame # Offset

Inverted page table

Sharing pages

VP1

VP2

33

VP1

VP2

Process 1

Process 2

Virtual memory address

Max

0

0

Max

Physical memory address
• How to share memory ?

• Entries in different process
page tables map to same
PPN

• Each process can have its
own registers and data

• There can be only one
copy of data kept in physical
memory such as shared library

• Each process’s page table maps
onto the same PPN

Process virtual memory

34

User stack

Memory mapped
region for shared

libraries

heap

.bss

.data

.text

.text

.data

libc.so

.text

.data

a.out

Private

Shared

Private

mmap()

• mmap()
• Used to save memory

• Two processes read shared read-only data from same pages in
memory

• Bypass (expensive) read, write or ioctl calls

• Creates a more CPU-efficient mechanism for reading and writing
files

35

mmap()

• Get a virtual address that can write to or read from

36

void *mmap (
void *start, /*Often 0, preferred starting address*/
size_t length, /*Length of the mapped area*/
int prot, /*Permissions: read, write, execute*/
int flags, /*Options: shared mapping, private copy …*/
int fd, /*Open file descriptor*/
off_t offset /*Offset in the file*/

);

flag: MAP_SHARED
Share this mapping. Update to the mapping are visible to other processes
mapping the same region

vm_area_struct

• struct vm_area_struct*
• Used in Linux kernel

• Represents an
independent VM area

• One process uses
multiple vm_area_struct
to indicate different VM
areas

37
https://www.zendei.com/article/44809.html

Implement mmap in kernel space

• Initializing the mapping
• remap_pfn_range() function

• pfn: page frame number

38

int remap_pfn_range (
struct vm_area_struct *, /*VMA struct*/
unsigned long virt_addr, /*Starting user virtual address*/
unsigned long pfn, /*pfn of the starting physical address*/
unsigned long size, /*Mapping size*/
pgprot_t prot /*Page permissions*/
);

Simple mmap implementation

39

Static int *acme_mmap
(struct file *file, struct vm_area_struct *vma) {
size = vma->vm_end – vma->vm_start;
if (size > ACME_SIZE)

return –EINVAL;
if(remap_pfn_range (vma,

vma->vm_start,
ACME_PHYS >> PAGE_SHIFT,
size,
vma->vm_page_prot))

return –EAGAIN;
return 0;

}

/dev/mem

• Used to provide user space applications with direct access to
physical addresses

• Usage:
• Open /dev/mem and read or write at given offset

• What you read or write is the value at the corresponding physical
address

• Used by applications such as the X server to write directly to
device memory

40

fd = open("/dev/mem", O_RDWR|O_SYNC);
map_base = mmap(NULL, 0xff, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0x20000);

mmap summary

• A user space process calls the mmap system call

• The mmap file operation is called

• Initializes the mapping using the device physical address

• The process gets a starting address to read from and write to

• The MMU automatically converts the process virtual
addresses into physical ones

• Direct access to the hardware without expensive read or
write system calls

41

Process view in virtual memory

• During execution, each process can only view its virtual
addresses

• Process cannot
• View another processes virtual address space

• Determine the physical address mapping

• Process can use inter process communication (IPC) to
perform the memory sharing
• Message passing

• Signals

42

Shared memory in Linux

• int shmget (key, size, flags)
• Create a shared memory segment

• Return ID of segment: shmid

• Key: unique identifier of the shared memory

• Size: size of the shared memory (rounded up to the PAGE_SIZE)

• int shmat (shmid, addr, flags)
• Attach shmid shared memory to address space of the calling process

• addr: pointer to the shared memory address space

• int shmdt (shmid)
• Detach shared memory

43

Example

44

http://www.cse.iitm.ac.in/~chester/courses
/16o_os/slides/8_Synchronization.pdf

Message passing

• Shared memory created in the kernel

• System calls such as send and receive
used for communication
• Cooperating: each send must have a

receive

• Advantages
• Explicit sharing, less error prone

• Limitation
• Slow
• Each call involves marshalling/ demarshalling

of information

45http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/8_Synchronization.pdf

Signals

• Asynchronous unidirectional communication between
processes

• Signals are a small integer
• E.g. 9: kill, 11: segmentation fault

• Send a signal to a process
• kill (pid, signum)

• Process handler for a signal
• Sighandler_t signal (signum, handler);

• Default if no handler defined

46

Summary

• Multi-level page table
• Reduce the page table

• Demand paging
• Reduce I/O, load data from disk to memory when it is needed

• Effective access time (EAT)
• Measure the performance of demand paging

• Page replacement

• Inverted page table

• Page sharing
47

