
Operating System
Design and

Implementation
Lecture 10: Segmentation

Tsung Tai Yeh
Tuesday: 3:30 – 5:20 pm

Classroom: ED-302

1

Acknowledgements and Disclaimer
• Slides was developed in the reference with

MIT 6.828 Operating system engineering class, 2018
MIT 6.004 Operating system, 2018
Remzi H. Arpaci-Dusseau etl. , Operating systems: Three easy pieces. WISC

2

Outline

• Virtual memory address
• Address space
• Static relocation
• Dynamic relocation

• Segmentation
• Base and bounds

3

Memory

• Program must be brought into memory and run
• CPU only can direct access main memory and registers

• Register access in one CPU clock (or less)
• Main memory can take hundreds of cycles
• Cache sits between main memory and CPU registers

• Protection of memory is required to ensure correct
operation
• Isolation: kernel/user space, processes
• We don’t want process to be able to read/write other one’s

memory

4

Address space

• Address space
• The running program’s view of

memory in the system
• For example, the address of a

process contains all of memory
state of the running program

• This placement of stack and heap
is just a convention

• Can be arrange in a different way

5

Program Code

Heap

Stack

free

Where
instruction live

Contains malloc()
data

Local variables,
arguments to
routines, return
values

0KB

1KB

2KB

15KB

16KB

Process address space

Address space (cont.)

• In 32-bit virtual address
• 1GB reserved for kernel-space

• Contains kernel code and core data
• Most memory can be a direct mapping of physical

memory at a fixed offset
• Complete 3GB exclusive mapping available for

each user space process
• Process code and data (program, stack, …)
• Memory-mapped files
• Page tables

6https://bootlin.com/doc/training/linux-kernel/linux-kernel-slides.pdf

A process address space

7

void func() {
int x = 3000;
x = x + 3;

}

128: movl 0x0(%ebx), %eax ; load 0+ebx into eax
132: addl $0x03, %eax ; add 3 to eax reg
135: movl %eax, 0x0(%ebx) ; store eax back to mem

Heap

stack

free

0KB

1KB

2KB

Process address space

14KB

16KB

movl 0x0(%ebx), %eax
addl 0x03, %eax
movl %eax, 0x0(%ebx)

128
132
135

Program code

15KB 3000

Uni-programming (e.g. DOS)

• One process at a time
• User code compiled to sit in

fixed range (e.g. [0, 640 KB])
• No hardware virtualization of

addresses
• OS in separate addresses

• E.g. above 640 KB
• Goals

• Safety: None
• Efficiency: Poor (I/O and compute

not overlapped, response time)
8

Reserved for
DOS kernel

stack

Heap
(Dynamic allocated)

Uninitialized data
(BSS segment)

Static data
(Data segment)

Code
(Text segment)

0xFFFFFFFF

0xA0000

0x00000000

SP

HP

PC

Multi-programming: static relocation
• Moving data or codes to absolute

locations before a program is run
• Modify addresses statically (similar to

linker)
• Processes can run anywhere in memory

(can’t predict in advance)
• Advantages

• Allows multiple processes to run
• Require no hardware support

• Problems
• Creating contiguous holes
• Process may not be able to increase

address space
9

Reserved for
DOS kernel

stack

Heap
Data
Code

0xFFFFFFFF

0xA0000

0x00000000

SP1

HP1

PC1
stack

Heap
Data
Code

SP0
HP0

PC0

Dynamic relocation

• Change address dynamically at every reference
• Program-generated address translated

to hardware address
• Program addresses are called

virtual addresses
• Hardware addresses are called

physical addresses
• Address space: view of

memory for each process

10https://pages.cs.wisc.edu/~eli/537/lectures/lecture13.2x2.pdf

Dynamic relocation
• Idea

• Programs all laid out the same
• Relocate addresses when used
• Requires hardware support

• Two views of memory
• Virtual: Process’s view
• Physical: Machine’s view

• Variants
• Base and bounds
• Segmentation
• Paging

11

stack

Heap
Data
Code

OS kernel
0x00000000

0xFFFFFFFF

SP0

HP0

PC0

stack

Heap
Data
Code

OS kernel0x00000000

0xFFFFFFFF

SP1

HP1

PC1

Data

Data

Heap

Code

Stack

Heap

Stack

code

OS Kernel

Virtual address Physical address

Dynamic relocation
• Virtual address

• Each memory reference generated by the process
• Base and bound (Dynamic relocation)

• Base register is use to transform virtual address into physical address
• Limit register ensures such addresses are within the confines of the

address space
• Efficient: only a little hardware logic is required
• Protection: no process can generate memory references outside its

own address space
• Memory translation

• Transforming a virtual address into a physical address
• Physical address = virtual address + base

12

Base and bounds
• Each process mapped to contiguous

physical region
• Each process sees a private and uniform

address space (0 … max)
• Everything belonging to a process must fit

in that region

• Two hardware registers
• Base: starting physical address
• Bounds: Size in bytes

• On each reference
• Check against bounds
• Add base to get physical address

13https://my.eng.utah.edu/~cs5460/slides/Lecture13.pdf

Base and bounds (cont.)

• Each process has private address space
• No relocation done at load time

• Operating system handled specially
• Only OS can modify base and bound registers

14

Pros and cons of base and bounds

• Advantages
• Support dynamic relocation of address spaces
• Support protection across multiple address spaces
• Cheap: few registers and little logic
• Fast: Add and compare can be done in parallel

• Disadvantages
• Each process must be allocated contiguously in real memory

• Fragmentation: Cannot allocate a new process
• Must allocate memory that may not be used
• No sharing: Cannot share limited parts of address space

(e.g. cannot share code with private data)
15https://pages.cs.wisc.edu/~eli/537/lectures/lecture13.2x2.pdf

Memory translation

• How does dynamic relocation work?
• The program counter (PC) is set to 128
• Adds the value of PC to the base register value of 32KB to get a

physical address 32896 (=32768 + 128)

• Bound register
• Help with protection
• Check the memory reference is

within bounds to make sure it’s legal
• CPU raise an exception when

a process generates a virtual address
that is great than the bounds

16

128: movl 0x0(%ebx), %eax

Virtual address Physical address
0 16KB
1KB 17KB
3000 19384
4400 Fault (out of bounds)

Fragmentation

• Problems of dynamic relocation
• Fragmentation
• E.g. internal fragmentation shown in

the relocated process
• Restrict to place an address space in

a fixed-sized slot

• How to avoid internal
fragmentation ?
• Segmentation

17

Operating
system

Not in use

code
heap

(allocated, but
not in used)

stack

Not in use

0KB

16KB

32KB

64KB

48KB Re
lo

ca
te

d
pr

oc
es

s

Wasted !

Segmentation

• Idea: Create N separate segments
• Each segment has separate base and bounds register
• Segment number is fixed portion of virtual address

18https://my.eng.utah.edu/~cs5460/slides/Lecture13.pdf

Segmentation (cont.)

• Why not have a base and bounds pair per
logical segment of the address space ?

• A segment
• A contiguous portion of the address

space of a particular length

19

Operating
system

not in use
Stack

not in use
code
heap

not in use

0KB

16KB

32KB

48KB

64KB

Physical memory
address

Segment Base Size
Code 32K 2K
Heap 34K 3K
Stack 28K 2K

Segment register value

Segmentation (cont.)

• Assume a memory reference is made
by an instruction to virtual address 100

• Desired physical: 100 + 32 KB
• Check the address is within bounds

(100 less than 2KB)

• Assume a heap virtual address 4200
• Get physical address 4200 + 34KB = 39016

that is a incorrect physical address
• The heap start at virtual address 4KB
• The offset 4200 is 104 (4200 - 4096)
• Add offset with base register physical

address (34K) to get 34920
20

Program
code

Heap

stack

0KB

2KB

4KB

7KB

14KB

16KB

Virtual address
of process A

Operating
system

not in use
Stack

not in use
code
heap

not in use

0KB

16KB

32KB

48KB

64KB

Physical memory
address

Segmentation Memory Management

Source: Operating System Concepts by Abraham Silberschatz, Greg Gagne, Peter B. Galvin

Memory management unit (MMU) or memory protection unit (MPU)
which is hardware does the check

Implemented inside CPU

Exception

Segment
table

x86 memory management

22
http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/4_Memory.pdf

Example of segmentation

23http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/4_Memory.pdf

Segmented address space

• Segment == a base and bound pair
• Each process has multiple segments

• Separate code and data segments
• 2 sets of base-and-bound register’s for instruction and data fetch
• Allowed sharing code segments

• Segment table
• Privileged data structures
• Private/unique to each

process

24

SEG # EA

Segment
table

+, <
PA &
okay?

Base &
bound

Segmented address translation

• EA: segment number (SN) and a segment offset (SO)
• SN was used to indicate specified segments
• Segment size limited by the range of SO
• Segments can have different sizes

• Segment translation
• Maps SN to corresponding

base and bound
• Separate mapping for each

process

25

SN SO

+, <
PA &
okay?

Segment
table

base bound

Pointer to descriptor table

• Global descriptor table (GDT)
• Stored in memory

• Pointed to by GDTR (GDT Register)
• lgdt (instruction used to load the GDT register)

26http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/4_Memory.pdf

Segment descriptor

27http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/4_Memory.pdf

Segmentation fault

• What if we tried to refer to an illegal
address ?
• Beyond the end of heap (a virtual address

7 KB or greater)
• The hardware detects that address is out of

bounds
• Traps into the OS and terminates the

offending process

28

Program
code

Heap

stack

0KB

2KB

4KB

7KB

14KB

16KB

Virtual address
of process A

Which segment are we referring to ?

• Which segment an address refers ?
• The following shows the heap virtual address 4200 in binary form
• The top two bits (01) tells the hardware which segment we are

referring to
• The bottom 12 bits are offset into the segment

0000 0110 1000, or hex 0x068, or 104 in decimal

29

13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 0 0 0 0 0 1 1 0 1 0 0 0

Segment Offset

To fully utilize the virtual address space

• One segment of the address space goes unused
• If we use the top two bits, and we only have three segments (code,

heap, and stack)
• Some systems put code in the same segment as the heap, and use

only one bit to select which segment to use

• Using many bits to select a segment that limits the use of the
virtual address space
• Each segment is limited to a maximum size

30

What about the stack ?

• The stack grows backwards
• The stack starts at 28 KB, grows back in physical

memory
• The hardware needs to know which way the

segment grows

31

Operating
system

not in use
Stack

not in use
code
heap

not in use

0KB

16KB

32KB

48KB

64KB

Physical memory
address

Segment Base Size (max 4K) Grows Positive ?
Code 32K 2K 1
Heap 34K 3K 1
Stack 28K 2K 0

Case study: mapping stack

• Assume we wish to access virtual
address 15 KB
• Virtual address: 11 1100 0000 0000

(hex 0x3C00)
• We are left with an offset of 3KB
• A segment is 4KB
• The correct negative offset is -1KB

(=3KB – 4KB)
• The correct physical address is

27 KB (=-1 KB + 28 KB)

32

Program
code

Heap

stack

0KB

2KB

4KB

7KB

Virtual address
of process A

Operating
system

not in use
Stack

not in use
code
heap

not in use

0KB

16KB

32KB

48KB

64KB

Physical memory
address

14KB

16KB

Support for sharing

• To save memory,
• Share certain memory segments between address space
• To support sharing, we need extra protection bits per segment
• The read-only segment can be shared across multiple processes

33

Segment Base Size (max 4K) Grows Positive ? Protection
Code 32K 2K 1 Read-execute
Heap 34K 3K 1 Read-write
Stack 28K 2K 0 Read-write

Fine-grained vs. coarse-grained segmentation

• Coarse-grained segmentation
• A system just has a few segments (i.e., code, stack , heap)

• Fine-grained segmentation
• Consists of a large number of smaller segments
• Using a segment table stored in memory to manage segments

• Why fine-grained segmentation ?
• The OS could better learn about which segments are in use
• Use the main memory more effectively

34

Context switch with base and bounds

• Context switch
• Add base and bounds registers to PCB
• Steps during context-switch

• Change to privileged mode
• Save base and bounds registers of old process
• Load base and bounds registers of new process
• Change to user mode and jump to new process

35https://pages.cs.wisc.edu/~eli/537/lectures/lecture13.2x2.pdf

Summary

• Good features of segmentation
• More flexible than base and bounds -> enable sharing (How ?)
• Reduces severity of fragmentation (How ?)

• Problems
• Still have fragmentation -> How ? What kind ?
• Non-contiguous virtual address space -> Real problem ?

• Possible solutions
• Fragmentation: Copy and compact
• Paging

36

