
Operating System 
Capstone

Lecture 1: Course Overview
Tsung Tai Yeh

Monday: 10:10 am– 12:00 pm
Classroom: ED-302

1



Acknowledgements and Disclaimer

• Slides was developed in the reference with 
MIT 6.828 Operating system engineering class, 2018
MIT 6.004 Operating system, 2018
Remzi H. Arpaci-Dusseau etl. , Operating systems: Three easy pieces. 
WISC

2



Outline

• Course overview

• References and text books

• Schedule

• Rating

• Operating system basics

3



Course overview

• Instructor: Tsung Tai Yeh

• TA team+:

• Lecture: M34

• Course web site:
• https://shorturl.at/tSX14

• https://nycu-caslab.github.io/OSC2024/

• Discord Discussion

• https://discord.gg/Gba4rpvNKD
Course website QR Code

https://shorturl.at/tSX14
https://nycu-caslab.github.io/OSC2024/
https://discord.gg/Gba4rpvNKD


Course overview

• Operating system design
• Hardware + Software 

• Full stack implementation

• Building a small OS

• Lecture + laboratory
• Class lecture

• Reading presentation (10%)

• 8 labs (95%)

5

Hardware (CPU, Memory, Storage)

Instruction sets (RISC-V, X86)I/O

Device Driver

Bootloader/BIOS

System calls/Interrupts

File systems

Memory management

Process/Threads/Locking

Operating System



Intended Lecture Outcomes (ILOs)

• What is difference of OSDI class against OS course ?

• OS concepts + Implementation

• Describing details of the interaction between the 
computer hardware and OS

• Designing multiple abstractions (system calls, 
processes, memory management, file systems)

• Implementing bare-metal OS (labs) 

• Understanding the OS research on different topics

6



Lecture

• Class lecture 
• This lecture also covers each OS topics

• 1 hour lecture – summarize course materials of each topic

• 1 hour reading material presentation

• Lecture materials have shown on the class website

• Students have to preview course materials

• 10:10 am – 12:00 pm on Monday in ED 302

7



Lab

• Each student will get a Raspberry Pi 
3B+ dev. board 

• Lab 1-Lab 8 (95%)
• One lab every two weeks

• Lab 1 – 5 takes 10% each 

• 6 – 8 takes 15% each

• Lab Demo
• Every student has to demonstrate biweekly 

your lab work in EC 222 

• TA will check your lab work and ask you questions during your 
demonstration

Discord Forum QR Code



Reading Presentation

• Reading Presentation
• 12 topics, max 5 students are responsible for the presentation of one 

topics

• Summarize the reading materials

• 1 hour presentation for 1 group

• Each paper presentation takes 10 % of the total score

• Need to prepare 2 – 3 takeaway questions in every topic of the reading 
material 

9



Schedule

10



References and text books

• OSDI references
• Andrew S Tanenbaum, and Albert S Woodhull, "Operating 

Systems Design and Implementation (3rd Edition)" 

• Marshall Kirk McKusick, Keith Bostic, Michael J. Karels, and John 
S. Quarterman, "The Design and Implementation of the 4.4 BSD 
Operating System" 

• Linux Kernel 
• Robert Love, "Linux Kernel Development (3rd Edition)" 

• Michael Beck, Harald Bohme, Mirko Dziadzka, Ulrich Kunitz, 
Robert Magnus, and Dirk Verworner, "Linux Kernel Internals (2nd 
Edition)" 

• Daniel P. Bovet, and Marco Cesati, "Understanding the Linux 
Kernel, Third Edition" 



References and text books

• Network subsystem 
• Klaus Wehrle, Frank Pahlke, Hartmut Ritter, Daniel Muller, and Marc 

Bechler, "Linux Networking Architecture" 

• Christian Benvenuti, "Understanding Linux Network Internals" 

• Device Drivers 
• Sreekrishnan Venkateswaran, "Essential Linux Device Drivers" 

• Jonathan Corbet, Alessandro Rubini, and Greg Kroah-Hartman, “Linux 
Device Drivers, 3rd Edition“



References and text books

• One text book is not enough
• Usually you need to refer at least three text books on the same topic 

and then you realize you have to understand another three topics

• Even you have all text books are not enough
• Usually you have to “try, try and see”

• Even you understand the codes (or can write the codes) are not 
enough

• Usually you have to study the books again and think carefully and 
deeply



Single-User Machines

• Hardware executes a single program

• The program can access directly all hardware resources 
in the machine

• The instruction set architecture (ISA) is the interface 
between software and hardware

• However
• Most computer systems 

aren’t work like this !

14

Program

Hardware
(CPU, memory, hard drives, 

keyboards)

ISAs (RISC-V, 
X86)



Operating systems

• Multiple executing programs share the machine

• Each program cannot access hardware resource 
directly

• An operating system (OS)
• Control these programs how

they share hardware

• The application binary 
interface (ABI) is the 
interface between programs
and the OS

15

Program 1

Hardware
(CPU, memory, hard drives, 

keyboards)

ISAs (RISC-V, 
X86)

Operating system

Program N … Application 
Binary 
Interface (ABI)



Process vs. Program

• A program is a collection of instructions

• A process is an instance of a program that is being 
executed

• Include program code + other state (registers, memory, and 
other resources)

• The OS kernel is a process
with special privileges

16

Process 1

Hardware
(CPU, memory, hard drives, 

keyboards)

ISAs (RISC-V, 
X86)

OS Kernel

Process N … Application 
Binary 
Interface (ABI)



Goals of operating systems

• An operating system is to support several activities at 
once

• Many running program as processes

• Protection and privacy
• Process multiplexing

• Processes cannot access each other’s data (isolation)

• Abstraction
• OS hides details of underlying hardware

• Hardware resource manager

17



Operating systems: The big picture

• The OS kernel provides a private address space
to each process

• Each process is allocated space in physical memory
by the OS

• A process is not allowed to access the memory
of other processes

• The OS kernel schedules processes into the CPU
• Each process is given a fraction of CPU time

• A process cannot use more CPU time than allowed

• Context switch
18

OS Kernel 
memory

Process 1 
memory

Process 2 
memory

free

free

Physical memory

…



How does OS work?

19

Shell vim

Process

1. Instructions: implement the 
program’s computation

2. Data: the variables on which 
the computation acts

3. Stack: organize the program’s 
procedure calls

Each running program is called process

Kernel

User 
space

Kernel 
space

System call

The OS kernel let processes 
invoke system services 
(access files or network) via 
system calls

Device drivers

CPU Storage

Each process can access 
only its own memory



Implementing an OS

• The OS works as a virtual machine (VM) to each 
process

• Each process believes it runs on its own machine

• Virtual machines can be implemented entirely in 
software, but at a performance cost

• For instance, python programs are 10 – 100x slower than 
native Linux programs because python interpreter overheads

• We want to support operating systems with minimal 
overheads

• Need hardware support for virtual machine
20



User and kernel mode

• Two modes of execution: user and kernel (supervisor)
• OS kernel runs in supervisor mode

• All other processes run in user mode

• In the kernel mode
• Privilege instructions and register are available

• Interrupts and exceptions to safely transition from user to 
supervisor mode

• Virtual memory
• Provide private address spaces and abstract the storage 

resources of the machine
21



What services does an OS kernel provides?

• Processes

• Memory allocation

• File systems 

• Security

• Others: users, networking, terminals, etc.. 

22



Process and thread

• Each process has a thread of execution
• The state of a thread (local variables, function call return 

address) is stored on the thread’s stacks

• Each process has two stacks: a user stack and a kernel stack

23

Process Thread

Process is any in-execution program Thread is the segment of a process

Process is isolated Thread share memory

Process has its own process control 
block (PCB) and address space

Thread has parent’s PCB, its own TCB, 
stack, and address space

Process takes more time for creation Thread takes less time for creation

https://www.geeksforgeeks.org/difference-between-process-and-thread/



System call

• Using a trap that is a 
synchronous interrupt triggered 
by an exception in a user process to execute functionality. 

24

Process
Signal from 

user program

Enter the 
kernel mode

Trap Handler

Leave the 
kernel mode

Resume 
Execution

User mode

Kernel mode

Trap

1. During a trap, the execution of a process is 
set as high priority compared to user code

2. When the OS detects a trap, 
it pauses the user process

3. The OS resumes the execution
when the system call is completed

Return-from-trap
instruction



What is the interrupt in the OS ?

• An interrupt is a hardware or software signal and notifies the 
processor that a critical process needs urgent execution

• Using to interrupt present working process

25

Process
Execution

Hardware device

Enter the 
kernel mode

Interrupt 
Handler

Leave the 
kernel mode

Process
Execution

User mode

Kernel mode

interrupt

Return-from-trap
instruction



What is the interrupt in the OS ?

• interrupt service routine (ISR) 
• A specific bus control line handles interrupts in I/O devices

• A CPU contains a specific interrupt pin known as INT pin for the 
interrupt

• The INT pin connects hardware devices such as keyboards, NIC cards

• OS can invoke the keyboard interrupt handler routine to do interrupt

• Multiple hardware devices share a single INT pin using an interrupt 
controller

• To determine which device produced the interrupt, the processor 
contacts the interrupt controller. 

26



Difference between the trap and interrupt?

27

Trap Interrupt

A signal emitted by a user program A signal emitted by a hardware device

Synchronous process Asynchronous process

Can occur only from software device Can occur from a hardware or a software

Only generated by a user program ISA Generated by an OS and user program ISA

Traps are subset of interrupts Interrupts are superset of traps

Execute a specific functionality in the OS 
and gives the control to the trap handler

Force the CPU to trigger a specific 
interrupt hander routine

https://www.baeldung.com/cs/os-trap-vs-interrupt



Exceptions

• Exception: Event that needs to be processed by the OS 
kernel. The event is usually unexpected or rare

28

Ii-1

Ii

Ii+1

HI1

HI2

HIn

Exception handler 
(in OS kernel)



Causes for exceptions

• Exceptions
• Synchronous events generated by the process itself

• E.g. illegal instructions, divide-by-0, illegal memory address

• Interrupts
• Asynchronous events generated by I/O devices

• E.g. timer expired, keystroke, packet received, disk transfer 
complete

29



Handling exceptions
• When an exception happens, the processor

• Stop the current process at instruction Ii, completing all the instructions up to 
Ii-1 (precise exceptions)

• Saves the PC of instruction Ii and the reason for the exception in special 
(privileged) register

• Enable supervisor mode, disable interrupts, and transfers control to a pre-
specified exception handler PC

• After the OS kernel handles the exception, it returns control to the 
process at instruction Ii

• Exception is transparent to the process

• If the exception is due to an illegal operation by the program that 
cannot be fixed, the OS aborts the process

30



Case study 1: CPU scheduling
• The OS kernel schedules processes into the CPU

• Each process is given a fraction of CPU time

• Enabled by timer interrupts

• Kernel sets timer, which raises an interrupt after a specified time

31

0 10 30 60 80 110

kernelProcess 
running 
in the 
CPU

Set the timer to fire in 20 ms
Load states (regs, pc, addr space) of process 1
Return control to process 1

Time (milliseconds)



Case study 1: CPU scheduling
• The OS kernel schedules processes into the CPU

• Each process is given a fraction of CPU time

• Enabled by timer interrupts

• Kernel sets timer, which raises an interrupt after a specified time

32

0 10 30 60 80 110

kernelProcess 
running 
in the 
CPU

Set the timer to fire in 20 ms
Load states (regs, pc, addr space) of process 1
Return control to process 1

Time (milliseconds)

Process 1

Timer interrupt -> exception handler runs
Save state of process 1
Decide to schedule process 2
Set timer to fire in 30 ms
Load state of process 2, return control to it

Process 2 Process 1 Process 2



Kernel organization
• Monolithic kernel

• Entire operating system resides in the kernel space
• The implementations of all system calls run in kernel mode
• E.g. Unix, Linux

• Good
• Easy for subsystems to cooperate
• One cache shared by file system and virtual memory

• Bad
• Interactions are complex
• Mistake is fatal because an error in kernel model will result in the kernel 

to fail
• No isolation within kernel

33



Kernel organization

• Microkernel
• Move most OS functionality to user-space
• Kernel can be small, mostly IPC
• The hope:

• Simple kernel can be fast and reliable 

• Microkernel wins:
• Fast IPC
• separate services force kernel developers to think about modularity

• Microkernel losses:
• kernel can't be tiny: needs to know about processes and memory
• it's hard to split the kernel into lots of service processes!

34

Shell File server
User 
space

Kernel 
space

Message passing
microkernel



Kernel organization

• Exokernel (1995)
• Philosophy: eliminate all abstractions, let app do what it wants

• An exokernel would not provide address space, pipes, etc. 

• libOSes implements abstractions, each app can have its own 
costom libOS

• Why? Kernel may be faster due to streamlining, simplicity

• Apps may be faster because they can customize libOS

35https://pdos.csail.mit.edu/archive/exo/


