
Interrupt

Tsung Tai Yeh
Department of Computer Science

National Yang Ming Chiao Tung University

IOC5226 Operating System Capstone



Acknowledgements and Disclaimer

● Slides were developed in the reference with 

● MIT 6.828 Operating system engineering class, 2018

● MIT 6.004 Operating system, 2018

● Remzi H. Arpaci-Dusseau etl. , Operating systems: Three easy 

pieces. WISC

2



Outline

● Interrupt

● Hardware Interrupt

● Interrupt Workflow

● Software Interrupt -- Exception

● Interrupt Vector

● Interrupt Descriptor Table 

● Interrupt Stack Table

3



What is an interrupt? (1/6)

4

● What is an interrupt?
○ An interrupt is a hardware signal from a device to the CPU

○ Tells the CPU that the device needs attention

○ CPU should stop performing what it is doing and respond to 

the device

● Interrupt handler?
○ Service the device and stop it from interrupting

● What kinds of interrupts do we have?
○ Hardware interrupt

○ Software interrupt



What is an interrupt? (2/6)

5

● What is the job of an interrupt handler?

○ Save additional CPU context (written in assembly)

○ Process interrupt (communicate with I/O devices)

○ Invoke kernel scheduler

○ Restore CPU context and return (written in assembly)



Hardware Interrupt (3/6)

6

● Why do we need the hardware interrupt?

○ Several devices connected to the CPU

■ E.g. keyboards, mouse, network card, etc.

○ These devices occasionally need to be serviced by the CPU

■ Tell the CPU that a key has been pressed

■ Interrupts can occur at any time

■ Need a way for the CPU to determine when a device 

needs attention



What is an interrupt? (4/6)

7



What is an interrupt? (5/6)

8

● Synchronous interrupt

○ Produced by the CPU control unit while executing 

instructions

○ The control unit issues interrupt only after terminating the 

execution of an instruction

● Asynchronous interrupt

○ Generated by other hardware devices at arbitrary times with 

respect to the CPU clock signals



What is an interrupt? (6/6)

9

● When an interrupt occurs …

○ Preempt current task

■ The kernel must pause the execution of the current 

process

○ Execute interrupt handler

■ Search for the handler of the interrupt and transfer 

control

○ After the interrupt handler completes execution

■ The interrupted process can resume execution



Outline

● Interrupt

● Hardware Interrupt

● Interrupt Workflow

● Software Interrupt -- Exception

● Interrupt Vector

● Interrupt Descriptor Table 

● Interrupt Stack Table

10



Hardware Interrupt (1/5)

11

● Programmable Interrupt Controller (PIC)
○ Responsible for sequential multiple

interrupt requests from devices

○ Advanced PIC (APIC)

■ Local APIC

● Located on each CPU core

● Handle interrupts from 

APIC-timer, thermal sensor

■ I/O APIC

● Distributed external interrupts among the CPU cores



Hardware Interrupt (2/5)

12

● 8259 PIC relays up to 8 interrupts to the CPU
○ Devices raise interrupts by an ‘interrupt request’ (IRQ)
○ CPU acknowledges and queries 

the 8259 to determine which 
device interrupted

○ Priorities can be assigned to each IRQ 
line

○ 8259s can be cascaded to support 
more interrupts

■ Two PICs and cascade buffer
■ IRQ2 -> IRQ9



Hardware Interrupt (3/5)

13

● IRQ 0 to IRQ 15, 15 possible 

devices

● Interrupt types

○ Edge

○ Level

● Limitations

○ Limited IRQs

○ Multi-processor support limited

http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/6_Interrupts.pdf



Hardware Interrupt (4/5)

14

● Advanced PIC (APIC)

○ External interrupts are routed from peripherals to CPUs in 

multi-processor systems through APIC

○ APIC distributes and 

prioritizes interrupts to 

processors

○ APICs communicates 

through a special 3-wire 

APIC bus



Hardware Interrupt (5/5)

15

● LAPIC
○ Receives interrupts from I/O APIC and routes it to the local 

CPU
○ Can also receive local interrupts such as thermal sensors, 

internal timers, etc.
○ Send and receive IPIs (Interprocessor interrupts)

■ IPIs are used to distribute interrupts between processors or 
execute system-wide functions like booting, load distribution, etc.

● I/O APIC
○ Present in the chipset (northbridge)
○ Used to route external interrupts to local APIC



Outline

● Interrupt

● Hardware Interrupt

● Interrupt Workflow

● Software Interrupt -- Exception

● Interrupt Vector

● Interrupt Descriptor Table 

● Interrupt Stack Table

16



Interrupt Workflow (1/3)

17



Interrupt Workflow (2/3)

18



Interrupt Workflow (3/3)

19

● Processing Interrupt
○ Device creates IRQ
○ PIC collects IRQs
○ PIC prioritizes IRQs
○ PIC issues interrupt to CPU
○ CPU saves interrupt states
○ CPU asks PIC interrupt number
○ CPU uses an interrupt vector number as an index to find IDT entry
○ ISR saves states in registers
○ Executing ISR
○ After completing, pass the EOI (End of Interrupt) command
○ Resume registers/iret command



Outline

● Interrupt

● Hardware Interrupt

● Interrupt Workflow

● Software Interrupt -- Exception

● Interrupt Vector

● Interrupt Descriptor Table 

● Interrupt Stack Table

20



Software Interrupt

21

● Exception

○ Caused by an exceptional condition in the processor itself

○ An example of an exceptional condition is division by zero

○ Exiting a program with syscall instruction 

● Categories

○ Faults: an exception reported before the execution of a “faulty” 

instruction

○ Traps: an exception reported by the trap instruction

○ Aborts: an exception doesn’t always report the exact 

instruction which caused the exception



Outline

● Interrupt

● Hardware Interrupt

● Interrupt Workflow

● Software Interrupt -- Exception

● Interrupt Vector

● Interrupt Descriptor Table 

● Interrupt Stack Table

22



Interrupt Vector (1/3)

23

● Interrupt vector

○ The processor uses a unique number for recognizing the type 

of interruption or exception

○ Each interrupt/exception provided a number

○ Number used to index into an interrupt descriptor table (IDT)

○ IDT provides the entry point into an interrupt/exception handler

○ 0 to 255 vectors possible



Interrupt Vector (2/3)

24

● Interrupt vector
○ 0 to 31 correspond to exception and nonmaskable

interrupts (NMI, handle non-recoverable error)
○ 32 – 47 are assigned to maskable interrupts caused by IRQs
○ 48 – 255 may be used to identify software interrupts

○ For example, Linux uses a 128 (0x80) vector that is used to 
make system calls to the kernel by other programs.

○ When a process in user mode executes int 0x80 assembly 
instruction, the CPU switches into kernel mode and starts 
executing the system_call() kernel function



Interrupt Vector (3/3)

25

● Processor generates exception



Outline

● Interrupt

● Hardware Interrupt

● Interrupt Workflow

● Software Interrupt -- Exception

● Interrupt Vector

● Interrupt Descriptor Table 

● Interrupt Stack Table

26



Interrupt Descriptor Table (IDT) (1/3)

27

● Interrupt descriptor table
○ Stores entry points of the interrupts and exceptions handlers

○ The IDT entries are called gates

■ Interrupt gates

■ Task gates

■ Trap gates

○ The IDT is an array of 8-byte gates (256 entries) on x86 and 

16-byte gates on x86_64

○ Loaded the IDT with the null gates while transitioning into 

protected mode



Interrupt Descriptor Table (IDT) (2/3)

28

● Interrupt descriptor table

○ Can be located anywhere in the linear address space

○ The base address of it must be aligned on an 8-byte boundary 

on x86, a 16-byte boundary on x86_64

○ The base address of IDT is store in IDTR register

■ LIDT/SIDT instruction to read/write IDTR register

■ The IDTR register is 48-bits on the x86



Interrupt Descriptor Table (IDT) (3/3)

29

● The IDT entries (16 bytes on x86_64)

○ 0-15 bits as the base

address of entry point

of the interrupt handler

○ 16-31 bits as the base

address of the segment

selector

○ DPL (Descriptor Privilege

Level)



Outline

● Interrupt

● Hardware Interrupt

● Interrupt Workflow

● Software Interrupt -- Exception

● Interrupt Vector

● Interrupt Descriptor Table 

● Interrupt Stack Table

30



Interrupt Stack Table (IST) (1/3)

31

● Interrupt stack table

○ New mechanism in x86_64

○ An alternative to legacy stack-switch mechanism

○ Unconditionally switches stacks when it is enabled and can be 

enabled for any interrupt

○ Seven IST pointers in the task state segment (TSS)

■ TSS contains information about a process

■ TSS is used for stack switching during the execution of an 

interrupt or exception handler



Interrupt Stack Table (IST) (2/3)

32

● Stack switching

○ If the interrupt occurs when running in the user mode

■ The process switches from user stack to kernel stack

■ Then, switching to the interrupt stack

○ How to switch stack?

■ CPU should know the location of the new stack segment 

(SS) and ESP register

■ Done by task segment descriptor



Interrupt Stack Table (IST) (3/3)

33

● Task state segment (TSS)

○ TSS is used to find the new stack

○ TSS resides in the memory

■ Processor register states -> used for task switching

■ I/O port permission bitmap -> specifies individual ports to 

accessible program

■ Inner-level stack pointer -> specifies the new stack pointer 

when a privilege level change occurs

■ Previous TSS link



Summary

● Interrupt changes the sequence of instruction execution

● Exception occurs since the illegal operation

● Hardware interrupt – programmable interrupt controller

● Interrupt vector records interrupt commands

34



Takeaway Questions

35

● How does the device identify itself to the process?

○ (A) By sending its device ID

○ (B) By sending the machine code for the ISR

○ (C) By sending the starting address of the service routine

● Which table stores the address of the interrupt handling 

sub-routines?

○ (A) interrupt-vector table

○ (B) Symbol link table

○ (C) Interrupt stack table


