
File System-II

Tsung Tai Yeh
Department of Computer Science

National Yang Ming Chiao Tung University

IOC5226 Operating System Capstone



Acknowledgements and Disclaimer

● Slides were developed in the reference with 

● MIT 6.828 Operating system engineering class, 2018

● MIT 6.004 Operating system, 2018

● Remzi H. Arpaci-Dusseau etl. , Operating systems: Three easy 

pieces. WISC

2



Outline

● Block devices vs. raw flash devices

● Journaled file system

● Flash file systems

3



Block vs. raw flash device

● Storage devices: block devices and raw flash devices
○ They are handled by different subsystems and different filesystems

● Block devices
○ Can be read and written to on a per-block basis, in random order, 

without erasing
○ Hard disks, RAM disks
○ SSD, SD cards, eMMC: flash-based storage, but have an integrated 

controller that emulates a block device, managing the flash in a 
transparent way

● Raw flash devices (driven by a controller on the SoC)
○ They can read, but writing requires prior erasing
○ NOR flash, NAND flash

4



Block device list

● The list of all block devices available can be found in 

‘/proc/partitions’

● /sys/block

○ Stores information about

each block device

5



Partitioning

● Block devices can be partitioned to store different parts of a 
system

○ The partition table is stored inside the device itself, and is read and 
analyzed automatically by the Linux kernel

■ mmcblk0 is the entire device
■ mmcblk0p2 is the second partition of mmcblk0 

○ Two partition table formats
■ MBR (Master Boot Record)
■ GPT (GUID Partition Table) supports disk bigger than 2TB

○ Numerous tools to create and modify partitions on a block device
■ fdisk, cfdisk, sfdisk, parted, etc.

6



Transfer data to a block device

● Transfer data to or from a block device in a raw way
○ This directly writes to the block device itself, bypassing any 

filesystem layer

○ The block devices in ‘/dev/’ allow such raw access

○ dd (disk duplicate) is the tool of choice for such transfers
■ dd if=/dev/mmcblk0p1 of=testfile bs=1M count=16

Transfer 16 blocks of 1 MB from /dev/mmcblk0p1 to testfile

■ dd if=testfile of=/dev/sda2 bs=1M seek=4

Transfer the complete contents of testfile to /dev/sda2, by blocks of 1 

MB, but starting at offset 4 MB in /dev/sda2

7



File system in-consistency

● A single inode is allocated (inode number 2) marked in the inode bitmap, and 

a single allocated data block (data block 4)

● The inode is denoted I[v1], as it is the first version of this inode

8

• When appending to the file, we add a new block (Db) to it

• Update the inode, new data block, and a new version of the data bitmap B[V2]
https://pages.cs.wisc.edu/~remzi/OSTEP/file-journaling.pdf



File system in-consistency

● The writes of appending data don’t happen immediately 

when the user issues a write() system call

○ The dirty inode, bitmap, and new data will sit in main 

memory (in the buffer cache) for some time first

○ Then, the file system will issue the requisite write requests to 

disk

○ A crash happens after one or two of these writes -> cause 

file-system in-consistency

9



Journaled filesystems

● Write-ahead logging
○ When updating the disk

○ Before overwriting the structures in 

place

○ First write down a little note on the disk

○ The note describes what you are about 

to do

○ By writing the note to disk -> 

guarantee that if a crash takes place 

during the update

10
https://bootlin.com/doc/training/embedded-linux/embedded-linux-slides.pdf



Data journaling 

● In ext2 file system
○ The disk is divided into block groups

○ Each block group contains an inode bitmap, data bitmap, inodes, and 

data blocks

● In ext 3 file system
○ The journal occupies some small amount of space within the partition 

or on another device

○ Before writing each block group to its final disk location, we are now 

first going to write

them to the log

11
https://pages.cs.wisc.edu/~remzi/OSTEP/file-journaling.pdf



Data journaling

● The transaction begin (TxB)
○ Tells us about the update, including information about the pending 

update (I[V2], B[V2], and Db) to the file system and transaction 
identifier (TID)

● The transaction end (TxE)
○ TxE is a marker of the end of the transaction, also include TID

● Checkpoint
○ Once the transaction is safely on disk, we are ready to overwrite the 

old structures in the file system
○ We issue the writes I[V2], B[V2], and Db to their disk locations
○ If these write complete successfully, we have done checkpointed

12
https://pages.cs.wisc.edu/~remzi/OSTEP/file-journaling.pdf



Data journaling

● Journal write
○ Write a transaction-begin block to the log

○ Write all pending data and metadata updates to the log

○ Write a transaction-end block to the log

○ Wait for these writes to complete

● Checkpoint
○ Write the pending metadata and data updates to their final 

locations in the file system

● How about a crash occurs during the writes to the journal ?

13



Data journaling

● How about a crash occurs during the writes to the journal ?
○ One simple way to do is to issue each one item (TxB, I[V2], B[V2], 

Db, TxE) at a time, waiting for each to complete -> too slow

○ How about issue all five block writes at once ? (unsafe, why ?)

○ Given such a big write, the disk may perform scheduling and 

complete small pieces of the big write in any order
■ (1) write TxB, I[v2], B[v2], and TxE

■ (2) write Db

■ How about the disk loses power 

between (1) and (2) ?

14
https://pages.cs.wisc.edu/~remzi/OSTEP/file-journaling.pdf



Data journaling

● How about a crash occurs during the writes to the journal ?
○ The file system issues the transactional write in two steps
○ First, write all blocks except the TxE block to the journal
○ Second, issue the write of the TxE block
○ Why does this two-step method work ?

■ The disk guarantees that any 512-byte
write (one block )will either happen or not

● Three phases on the current protocol to update file system
○ Journal write: write TxB, metdata, and data to the log
○ Journal commit: write TxE to the log, wait for write to complete
○ Checkpoint: write the contents of the update to their final on-disk 

location

15
https://pages.cs.wisc.edu/~remzi/OSTEP/file-journaling.pdf



File system recovery after crashes

● The crash happens before the transaction is written safely 

to the log
○ The pending update is simply skipped

● The crash happens after the transaction has committed to 

the log and before the checkpoint is complete
○ The file system can recover the update when the system boots

○ The file system recovery process will scan the log and look for 

transactions that have committed to the disk

○ These transactions are replayed to write blocks to their final on-disk 

locations (redo-logging)

16



Batch log updates

● How to reduce excessive write traffic during the update of 
log back to the disk ?

○ To create one file, one has to update several on-disk structures
■ Inode bitmap (to allocate a new inode)
■ The newly-created inode of the file
■ The data block of the parent directory
■ The parent directory inode

○ The Linux ext3 don’t commit each update to disk one at a time
■ Buffer all updates into a global transaction
■ Only marks the in-memory structures as dirty
■ The signal global transaction is committed when it is finally time to write 

blocks to disk

17



Finite size journaling

● The log is of a finite size. What happens if the log is full ?
○ The larger the log, the longer recovery will take

○ No further transactions can be committed to the disk

● Circular log
○ Journaling file systems treat the log as a circular data structure, 

re-using it over and over

○ Once a transaction has been checkpointed, the file system should 

free the space it was occupied, allow the log space to be reused

○ E.g. The journal superblock records enough information to know 

which transactions have not yet been checkpointed

18



Metadata journaling 

● In journaling file system, we are writing to the journal first for 

each write to disk -> double write traffic
○ One write to the journal, the other writes to the main file system

● Data journaling (ordered journaling in Linux ext3)
○ The data block (Db) is not written to the journal

○ The I[v2], B[v2] are both metadata and will be logged and then 

check-pointed

○ The Db will only be written once to the file system

○ Linux ext3 write data blocks to the disk first before related metadata. 

Why ?

19



Block reuse

● In some form of metadata journaling
○ Data blocks for files are not journaled

○ A directory called foo, which contents are written to the log

● When a user deletes everything in the directory
○ Freeing up block 1000 for reuse

○ A new file (bar) is created

○ The inode of bar is committed to disk

○ Only the inode of bar is committed to the journal because metadata 

journaling is in use

○ The newly-written data in block 1000 in the file bar is not journaled

20
https://pages.cs.wisc.edu/~remzi/OSTEP/file-journaling.pdf



Block reuse

● Assume a crash occurs
○ The newly-written data in block 1000 in the file bar is not journaled

○ The recovery simply replays everything in the log

○ Write the directory data in block 1000, which overwrites the ‘bar’ data 

with old directory contents !

● In Linux ext3
○ Add a new type of record to the journal, known as a revoke record

○ Deletes the directory would cause a revoke record to be written to 

the journal

○ Any such revoked data is never replayed

21



Other approach

● How to keep file system metadata consistent ?

● Copy-on-write (COW) file system

○ Sun’s ZFS

○ Never overwrites files or directories in place

○ Places new updates to previously unused locations on disk

○ After a number of updates are completed, COW file systems 

flip the root structure of the file system to include pointers to 

the newly updated structures

22



Other journaled Linux/UNIX file systems

● btrfs

○ Integrates data checksuming, volume management, snapshots, etc.

● XFS

○ High-performance file system inherited form SGI IRIX

● ZFS

○ Provide standard and advanced file system and volume 

management (CoW, snapshot, etc.)

● All those file system provide the necessary functionalities 

○ Symbolic links, permissions, ownership, device files, etc.

23



tmpfs: file system in RAM

● Not a block file system

● Store temporary data in RAM

○ System log files, connection data, temporary files …

○ More space-efficient than ramdisks: files are directly in the file 

cache, grows and shrinks to accommodate stored files

● How to use ?

○ mount –t tmpfs run /var/run

○ mount –t tmpfs shm /dev/shm

24



Recap: block device vs. raw flash devices

● Block devices
○ Allow for random data access using fixed size blocks

○ Block size is small (minimum 512 bytes, can be increased)

○ Considered as reliable (rely on the hardware and software support)

● Raw flash devices
○ Allow for random data access, too

○ Require special care before writing on the media (erasing the region 

that is about to write on)

○ Erase, write and read operations might not use the same block size

○ Reliability depends on the flash technology

25



NAND flash chips: how they work ?

● Encode bits with voltage levels
○ SLC (single level cell) – 1 bit per memory cell
○ MLC (multi level cell) – multiple bits per cell

● Start with all bits set to 1
○ Writing implies changing some bits from 1 to 0 (assuming 1 bit per 

cell)
○ Restore bits to 1 is done via the ERASE operation
○ Writing and erasing are not done on a per bit or per byte basis

● Organization
○ Page: minimum unit for PROGRAM (write), example size: 4K
○ Block: minimum unit for ERASE, example size: 128 K

26



NAND flash storage: organization

● Microchip SAMA5D3 Xplained

○ Page size

■ 2048 bytes

○ OOB size

■ 64 bytes

○ Erase block size

■ 131072 bytes

27

https://bootlin.com/doc/training/embedded-linux/embedded-linux-slides.pdf



NAND flash storage: constraints

● Reliability
○ Require mechanisms to recover from bit flips: ECC (Error 

Correcting Code)

○ ECC information stored in the OOB (Out-of-band area)

● Lifetime
○ Short lifetime compared to other storage media (between 

1,000,000 and 1,000 erase cycles per block)

○ Wear leveling mechanisms are required to erase blocks evenly

○ Bad block detection/handling required, too

28



NAND flash: ECC

● Error Correcting Code (ECC)

○ Operates on chunks of usually 512 or 1024 bytes

○ ECC data are stored in the OOB area

● Three algorithms

○ Hamming: can fix up a single bit per chunk

○ Reed-Solomon: can fix up several bits per chunk

○ BCH: can fix up several bits per chunk

29



Memory Technology Devices (MTDs)

● Generic subsystem in Linux 
○ Dealing with all types of storage media that are not fitting in the 

block subsystem
○ Support media: RAM, ROM, NOR flash, NAND flash, Dataflash
○ Abstract storage media characteristics and provide a simple API to 

access MTD devices
○ MTD device characteristics exposed to users

■ erasesize: minimum erase size unit
■ writesize: minimum write size unit
■ obbsize: extra size to store metadata or ECC data
■ size: device size
■ flag: information about device type and capabilities

30



The MTD subsystem

31

https://bootlin.com/doc/training/embedded-linux/embedded-linux-slides.pdf



Flash wear leveling

● Wear leveling

○ Distributing erases over the whole flash device to avoid quickly 

reaching the maximum number of erase cycles on blocks

○ The wear leveling implementation affects the life time of the 

flash memory

● Can be done in

○ The file system (JFFS2, YAFFS2)

○ An intermediate layer dedicated to wear leveling (UBI)

32



Flash file system: JFFS2

● Flash file systems
○ Rely on the MTD layer to access flash chips

○ Legacy flash file system: JFFS2, YAFFS2

● Journaling flash file system version 2 (JFFS2)
○ Supports on-the-fly compression

○ Wear leveling, power failure resistant

○ Available in the official Linux kernel

○ The large partitions affects the boot time
○ http://www.linux-mtd.infradead.org/doc/jffs2.html

33

https://bootlin.com/doc/training/embedded-linux/embedded-linux-slides.pdf



Flash file system: YAFFS2

● Yet another flash file system version 2 

(YAFFS2)

○ Mainly supports NAND flash

○ No compression

○ Wear leveling, power failure resistant

○ Fast boot time

○ Not part of the official Linux kernel

○ https://yaffs.net/

34
https://bootlin.com/doc/training/embedded-linux/embedded-linux-slides.pdf



UBI/UBIFS

● Unsorted block images (UBI)
○ Aimed at replacing JFFS2 by addressing

its limitations
○ Volume management system on top

of MTD devices
○ Allows to create multiple logical volumes

and spread writes across all physical blocks
○ Managing the erase blocks and wear

leveling

● Drawback
○ Noticeable space overhead

35

https://bootlin.com/doc/training/embedded-linux/embedded-linux-slides.pdf



UBI layout

36
https://bootlin.com/doc/training/embedded-linux/embedded-linux-slides.pdf



Conclusion

● Journaling reduces recovery time 
○ From O(size-of-the-disk-volume) to O(size-of-the-log)

○ Speeding recovery substantially after a crash and restart

● The ordered metadata journaling
○ Reduce the amount of traffic to the journal while still preserving 

reasonable consistency guarantees for both file system 

metadata and user data

● Flash file systems
○ JAFFS2, YAFFS2, UBI/UBIFS

37


