X //1 National Yang Ming Chiao Tung University
T i [N
a7+ Computer Architecture & System Lab

File System-I|

|OC5226 Operating System Capstone

Tsung Tai Yeh
Department of Computer Science
National Yang Ming Chiao Tung University

%% National Yang Ming Chiao Tung University

;\ iy
14 Computer Architecture & System Lab

Acknowledgements and Disclaimer

e Slides were developed in the reference with
e MIT 6.828 Operating system engineering class, 2018
® MIT 6.004 Operating system, 2018
® Remzi H. Arpaci-Dusseau etl. , Operating systems: Three easy
pieces. WISC

X ,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘Eg-r Computer Architecture & System Lab

Outline

» Block devices vs. raw flash devices
« Journaled file system
o Flash file systems

X ,/1\ National Yang Ming Chiao Tung University

=X}z
‘,%-r Computer Architecture & System Lab

Block vs. raw flash device

e Storage devices: block devices and raw flash devices
o They are handled by different subsystems and different filesystems
e Block devices
o Can be read and written to on a per-block basis, in random order,
without erasing
o Hard disks, RAM disks
o SSD, SD cards, eMMC: flash-based storage, but have an integrated
controller that emulates a block device, managing the flash in a
transparent way
e Raw flash devices (driven by a controller on the SoC)
o They can read, but writing requires prior erasing
o NOR flash, NAND flash

X f National Yang Ming Chiao Tung University
=‘;§“'IP Computer Architecture & System Lab
Block device list

o The list of all block devices available can be found in

‘/proc/partitions’ major minor #blocks name
o /sys/block 41943040 sda
: , 512000 sdal
- Stores mformat_lon about e R
each block device 40916992 sda3

759172 sr@
36720640 dm-0
4194304 dm-1

X ,/1 National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

o Block devices can be partitioned to store different parts of a

system
o The partition table is stored inside the device itself, and is read and
analyzed automatically by the Linux kernel

= mmcblkO is the entire device
= mmcblkOp2 is the second partition of mmcblkO

o Two partition table formats
= MBR (Master Boot Record)
s GPT (GUID Partition Table) supports disk bigger than 2TB

o Numerous tools to create and modify partitions on a block device
s fdisk, cfdisk, sfdisk, parted, etc.

X ,/1\ National Yang Ming Chiao Tung University

=X}z
",%-r Computer Architecture & System Lab

Transfer data to a block device

o Transfer data to or from a block device in a raw way
o This directly writes to the block device itself, bypassing any
filesystem layer
o The block devices in ‘/dev/’ allow such raw access

- dd (disk duplicate) is the tool of choice for such transfers
= dd if=/dev/immcblkOp1l of=testfile bs=1M count=16
Transfer 16 blocks of 1 MB from /dev/mmcblkOp1 to testfile
= dd if=testfile of=/dev/sda2 bs=1M seek=4
Transfer the complete contents of testfile to /dev/sda2, by blocks of 1
MB, but starting at offset 4 MB in /dev/sda2

iy
874 Computer Architecture & System Lab

File system in-consistency

ﬁi% National Yang Ming Chiao Tung University
~

ia

e A single inode is allocated (inode number 2) marked in the inode bitmap, and

a single allocated data block (data block 4)
e The inode is denoted I[v1], as it is the first version of this inode

Bitmaps

Inode Data Inodes Data Blocks
LS Da
012345467 0 1 2 3 4 5 6 7
Bitmaps
Inode Data Inodes Data Blocks
S Da | Db
01234567 0 1 2 3 4 5 6 7

* When appending to the file, we add a new block (Db) to it

« Update the inode, new data block, and a new version of the data bitmap B[V2]
https://pages.cs.wisc.edu/~remzi/OSTEP/file-journaling.pdf

X

14 Computer Architecture & System Lab

File system in-consistency

X %ﬁ\ National Yang Ming Chiao Tung University

« The writes of appending data don’t happen immediately

when the user issues a write() system call
o The dirty inode, bitmap, and new data will sit in main
memory (in the buffer cache) for some time first
o Then, the file system will issue the requisite write requests to
disk
o A crash happens after one or two of these writes -> cause
file-system in-consistency

X$7 & National Yang Ming Chiao Tung University

z
=x%5
‘Eg-r Computer Architecture & System Lab

Journaled filesystems

e Write-ahead logging

o When updating the disk

o Before overwriting the structures in
place

o First write down a little note on the disk

o The note describes what you are about
to do

o By writing the note to disk ->
guarantee that if a crash takes place
during the update

User space

Application

Meodify the filesystem

Kernel-space
(filesystem)

\4

Writes an entry in the journal,
describing the modification

l

Perform the modification
in the filesystem

l

Clear journal entry

https://bootlin.com/doc/training/embedded-linux/embedded-linux-slides.pdf

10

X ,/1 National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Data journaling

Super Group 0 Group 1 . Group N

e In ext2 file system
o The disk is divided into block groups
o Each block group contains an inode bitmap, data bitmap, inodes, and
data blocks
e In ext 3 file system
o The journal occupies some small amount of space within the partition
or on another device
o Before writing each block group to its final disk location, we are now
first going to write
them to the log

Super |Journal Group 0 Group 1 . Group N

11
https://pages.cs.wisc.edu/~remzi/OSTEP/file-journaling.pdf

X

=\§{1\ National Yang Ming Chiao Tung University

_‘, 874 Computer Architecture & System Lab

Data journaling

o The transaction begin (TxB) 3

O

rnal

TxB Iv2] | Bv2] | Db [TxE >

Tells us about the update, including information about the pending

update (I[V2], B[V2], and DDb) to the file system and transaction
identifier (TID)

e The transaction end (TXE)

O

TXE is a marker of the end of the transaction, also include TID

e Checkpoint

O

O

O

Once the transaction is safely on disk, we are ready to overwrite the
old structures in the file system

We issue the writes I[V2], B[V2], and Db to their disk locations
If these write complete successfully, we have done checkpointed

https://pages.cs.wisc.edu/~remzi/OSTEP/file-journaling.pdf

12

N

a4 Computer Architecture & System Lab

Data journaling

X %ﬁ\ National Yang Ming Chiao Tung University

o Journal write
o Write a transaction-begin block to the log
o Write all pending data and metadata updates to the log
- Write a transaction-end block to the log
- Wait for these writes to complete
o« Checkpoint
- Write the pending metadata and data updates to their final
locations in the file system

« How about a crash occurs during the writes to the journal ?

13

X ,/1 National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Data journaling

e How about a crash occurs during the writes to the journal ?

o One simple way to do is to issue each one item (TxB, I[V2], B[V2],
Db, TXE) at a time, waiting for each to complete -> too slow

How about issue all five block writes at once ? (unsafe, why ?)
Given such a big write, the disk may perform scheduling and
complete small pieces of the big write in any order
= (1) write TxB, I[v2], B[v2], and TxE
= (2) write Db
= How about the disk loses power
between (1) and (2) ?

TxB I[v2] | Bv2] | ?? [TxE
id=1 id=1

Journal

14
https://pages.cs.wisc.edu/~remzi/OSTEP/file-journaling.pdf

X

,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘,%-r Computer Architecture & System Lab

Data journaling

xB Iv2] | Bv2]| Do | ———»
id=1

Journal
_|
(o]

e How about a crash occurs during the writes to the journal ?
The file system issues the transactional write in two steps

First, write all blocks except the TxE block to the journal

Second, issue the write of the TxE block

Why does this two-step method work ?

o O O

©)

m The disk guarantees that any 512-byte

write (one block)will either happen or not o S

Journal

TxB| I[v2] | B[v2] | Db [ix ——»

e Three phases on the current protocol to update file system
o Journal write: write TxB, metdata, and data to the log
o Journal commit: write TXE to the log, wait for write to complete

o Checkpoint: write the contents of the update to their final on-disk
location

https://pages.cs.wisc.edu/~remzi/OSTEP/file-journaling.pdf

15

§§% National Yang Ming Chiao Tung University

Ny
SHZ1N

=‘, 874 Computer Architecture & System Lab

File system recovery after crashes

e The crash happens before the transaction is written safely
to the log
o The pending update is simply skipped
e The crash happens after the transaction has committed to
the log and before the checkpoint is complete
o The file system can recover the update when the system boots
o The file system recovery process will scan the log and look for
transactions that have committed to the disk

o These transactions are replayed to write blocks to their final on-disk
locations (redo-logging)

16

X ,/1 National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Batch log updates

e How to reduce excessive write traffic during the update of

log back to the disk ?
o To create one file, one has to update several on-disk structures
= Inode bitmap (to allocate a new inode)
= The newly-created inode of the file
= The data block of the parent directory
= The parent directory inode
o The Linux ext3 don’t commit each update to disk one at a time
= Buffer all updates into a global transaction
= Only marks the in-memory structures as dirty
The signal global transaction is committed when it is finally time to write

blocks to disk

17

X ,/1 National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Finite size journaling

e Thelog is of afinite size. What happens if the log is full ?

o The larger the log, the longer recovery will take
o No further transactions can be committed to the disk

e Circular log
o Journaling file systems treat the log as a circular data structure,
re-using it over and over
o Once a transaction has been checkpointed, the file system should
free the space it was occupied, allow the log space to be reused
o E.g. The journal superblock records enough information to know
which transactions have not yet been checkpointed

18

N

X %ﬁ\ National Yang Ming Chiao Tung University

a4 Computer Architecture & System Lab

Metadata journaling

e Injournaling file system, we are writing to the journal first for
each write to disk -> double write traffic

O

One write to the journal, the other writes to the main file system

o Data journaling (ordered journaling in Linux ext3)

O

O

O

O

The data block (Db) is not written to the journal

The 1[v2], B[v2] are both metadata and will be logged and then
check-pointed

The Db will only be written once to the file system

Linux ext3 write data blocks to the disk first before related metadata.
Why ?

19

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Block reuse

I[foo] DI[foo] TxE >
id=1|ptr:1000| [final addr:1000] d=1

e In some form of metadata journaling
o Data blocks for files are not journaled
o A directory called foo, which contents are written to the log

e When a user deletes everything in the directory

Journal
_|
>
o

o Freeing up block 1000 for reuse &
o A new file (bar) is created

Journa
_|
>
(03]

I[foo] D[foo] TXE[TxB I[bar] TXE ——»
id=1(ptr:1000| [final addr:1000] |id=1|id=2|ptr:1000|id=2

o The inode of bar is committed to disk

o Only the inode of bar is committed to the journal because metadata
journaling is in use

o The newly-written data in block 1000 in the file bar is not journaled

20
https://pages.cs.wisc.edu/~remzi/OSTEP/file-journaling.pdf

X ,/1 National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Block reuse

e Assume acrash occurs
o The newly-written data in block 1000 in the file bar is not journaled
o The recovery simply replays everything in the log
o Write the directory data in block 1000, which overwrites the ‘bar’ data
with old directory contents !

e In Linux ext3
o Add a new type of record to the journal, known as a revoke record
o Deletes the directory would cause a revoke record to be written to
the journal
o Any such revoked data is never replayed

21

X

a4 Computer Architecture & System Lab

Other approach

X %ﬁ\ National Yang Ming Chiao Tung University

o How to keep file system metadata consistent ?
o« Copy-on-write (COW) file system
o Sun’s ZFS
- Never overwrites files or directories in place
- Places new updates to previously unused locations on disk
o After a number of updates are completed, COW file systems
flip the root structure of the file system to include pointers to
the newly updated structures

22

{1\ National Yang Ming Chiao Tung University

a4 Computer Architecture & System Lab

Other journaled Linux/UNIX file systems

e Dbitrfs
o Integrates data checksuming, volume management, snapshots, etc.

e XFS
o High-performance file system inherited form SGI IRIX

o ZFS
o Provide standard and advanced file system and volume
management (CoW, snapshot, etc.)
o All those file system provide the necessary functionalities
o Symbolic links, permissions, ownership, device files, etc.

23

1 National Yang Ming Chiao Tung University
Computer Architecture & System Lab

§§
.
)

tmpfs: file system in RAM

o Not a block file system

o Store temporary datain RAM
- System log files, connection data, temporary files ...
o More space-efficient than ramdisks: files are directly in the file
cache, grows and shrinks to accommodate stored files
e HOw to use ?
o mount —t tmpfs run /var/run
o mount —t tmpfs shm /dev/shm

X ,/1 National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Recap: block device vs. raw flash devices

e Block devices

O

O

O

Allow for random data access using fixed size blocks
Block size is small (minimum 512 bytes, can be increased)
Considered as reliable (rely on the hardware and software support)

e Raw flash devices

O

O

O

O

Allow for random data access, too

Require special care before writing on the media (erasing the region
that is about to write on)

Erase, write and read operations might not use the same block size
Reliability depends on the flash technology

25

X ,/1\ National Yang Ming Chiao Tung University

=X}z
‘,%-r Computer Architecture & System Lab

NAND flash chips: how they work ?

e Encode bits with voltage levels
o SLC (single level cell) — 1 bit per memory cell
o MLC (multi level cell) — multiple bits per cell

e Start with all bits setto 1
o Writing implies changing some bits from 1 to 0 (assuming 1 bit per
cell)
o Restore bits to 1 is done via the ERASE operation
o WIriting and erasing are not done on a per bit or per byte basis

o Organization

o Page: minimum unit for PROGRAM (write), example size: 4K
o Block: minimum unit for ERASE, example size: 128 K

26

X

,/1\ National Yang Ming Chiao Tung University

=337
",%-r Computer Architecture & System Lab

NAND flash storage: organization

e Microchip SAMA5D3 Xplained
- Page size

O

O

= 2048 bytes
OOB size
= 64 bytes

Erase block size

131072 bytes

Chip

Y

https://bootlin.com/doc/training/embedded-linux/embedded-linux-slides.pdf

Page 00B
Out-Of-Band data In-band data

Erase
block

27

#Z % National Yang Ming Chiao Tung University
NP2 -
874 Computer Architecture & System Lab

NAND flash storage: constraints

o Reliability
o Require mechanisms to recover from bit flips: ECC (Error
Correcting Code)
- ECC information stored in the OOB (Out-of-band area)
o Lifetime
o Short lifetime compared to other storage media (between
1,000,000 and 1,000 erase cycles per block)

- Wear leveling mechanisms are required to erase blocks evenly
- Bad block detection/handling required, too

28

1 National Yang Ming Chiao Tung University
Computer Architecture & System Lab

NAND flash: ECC

§§
.
)

o Error Correcting Code (ECC)
o Operates on chunks of usually 512 or 1024 bytes
- ECC data are stored in the OOB area

o« Three algorithms
- Hamming: can fix up a single bit per chunk
- Reed-Solomon: can fix up several bits per chunk
- BCH: can fix up several bits per chunk

X ,/1 National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Memory Technology Devices (MTDs)

e Generic subsystem in Linux

O

Dealing with all types of storage media that are not fitting in the
block subsystem

Support media: RAM, ROM, NOR flash, NAND flash, Dataflash
Abstract storage media characteristics and provide a simple API to
access MTD devices

MTD device characteristics exposed to users

erasesize: minimum erase size unit

writesize: minimum write size unit

obbsize: extra size to store metadata or ECC data

size: device size

flag: information about device type and capabilities

30

National Yang Ming Chiao Tung University
\
a4 Computer Architecture & System Lab

The MTD subsystem

Linux filesystem interface

Flash Translation Layers

UBI JFFS2 Char device for block device emulation
MTD "User" Caution: patented
modules cleerthms
_ FTL NFTL INFTL
Block device YAFFS2 Read-only Lere | [vere | fwem
block device
NOR flash RAM chips ROM chips
MTD Chip Block Virtual
drivers device memory
DISkOﬂChlp Virtual devices appearing
NAND Flash flash as MTD devices
Hardware
devices

31

https://bootlin.com/doc/training/embedded-linux/embedded-linux-slides. pdf

1 National Yang Ming Chiao Tung University
Computer Architecture & System Lab

Flash wear Ievellng

« Wear leveling
- Distributing erases over the whole flash device to avoid quickly

reaching the maximum number of erase cycles on blocks
o The wear leveling implementation affects the life time of the
flash memory
o Can be done in

o The file system (JFFS2, YAFFS2)
o An intermediate layer dedicated to wear leveling (UBI)

32

X ,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘,%-r Computer Architecture & System Lab

Flash file system: JFFS2

o Flash file systems
> Rely on the MTD layer to access flash chips Standard fil

API

- Legacy flash file system: JFFS2, YAFFS2 _ _ _ _
o Journaling flash file system version 2 (JFFS2)

filesystem

> Supports on-the-fly compression - — - -

- Wear leveling, power failure resistant o
- Avallable in the official Linux kernel - — — -
o The large partitions affects the boot time m

o http://www.linux-mtd.infradead.org/doc/jffs2.html

https://bootlin.com/doc/training/embedded-linux/embedded-linux-slides.pdf

X ,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘Eg-r Computer Architecture & System Lab

Flash file system: YAFFS2

» Yet another flash file system version 2 Standord flle

(YAFFS2) .
o Mainly supports NAND flash YAFFS2
- No compression | Mestem
- Wear leveling, power failure resistant MTD
- Fast boot time driver
o Not part of the official Linux kernel - T
o https:/lyaffs.net/ m

https://bootlin.com/doc/training/embedded-linux/embedded-linux-slides.pdf

34

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

UBI/UBIFS
Standard file
e Unsorted block images (UBI) AP
o Aimed at replacing JFFS2 by addressing —
its limitations UBIES
o Volume management system on top filesystem

of MTD devices

o Allows to create multiple logical volumes

and spread writes across all physical blocks VBl

o Managing the erase blocks and wear —
leveling MTD
o Drawback driver

o Noticeable space overhead —

https://bootlin.com/doc/training/embedded-linux/embedded-linux-slides.pdf

35

X fﬁ\ National Yang Ming Chiao Tung University
_‘r 4°r# Computer Architecture & System Lab
UBIFS UBIFS UBIFS UBIFS
mounted mounted mounted mounted
on / on /myapp on flog on [otherapp
Bootloader (from (from (from (from
ubi0:rootfs) ubi0:data) ubil:log) ubi:otherdata)
UBI volume: UBI volume: UBI volume: UBI volume: UBI volume:
rootfs raw data log otherdata
UBI device ubi0
MTD partition 0 MTD partition 1
Flash device
https://bootlin.com/doc/training/embedded-linux/embedded-linux-slides.pdf

36

1 National Yang Ming Chiao Tung University
Computer Architecture & System Lab

§§
.
)

Conclusion

« Journaling reduces recovery time
o From O(size-of-the-disk-volume) to O(size-of-the-log)
o Speeding recovery substantially after a crash and restart
o The ordered metadata journaling
o Reduce the amount of traffic to the journal while still preserving
reasonable consistency guarantees for both file system
metadata and user data
o Flash file systems
o JAFFS2, YAFFS2, UBI/UBIFS

