
File System-I

Tsung Tai Yeh
Department of Computer Science

National Yang Ming Chiao Tung University

IOC5226 Operating System Capstone

Acknowledgements and Disclaimer

● Slides were developed in the reference with

● MIT 6.828 Operating system engineering class, 2018

● MIT 6.004 Operating system, 2018

● Remzi H. Arpaci-Dusseau etl. , Operating systems: Three easy

pieces. WISC

2

Outline
● File system structures

○ Inode
○ Superblock …

● Allocating data blocks
○ Link file allocation
○ Index file allocation
○ Multi-level indexed file allocation

● Soft vs. hard link
● File I/O operations

3

File system layers

● User’s viewpoint
○ Objects: files, directories, bytes
○ Operations: create, read, write

delete, rename, move, seek

● Physical viewpoint
○ Objects: sectors, tracks, disks
○ Operations: seek, R/W block

● User <-> OS layer
○ User library hides many details
○ OS can directly R/W user data

● OS <-> Hardware
○ I/O registers, interrupts, DMA

4

User

Apps
User

Libs

Open() | Close() | Read() |

Write()

Seek() | ReadBlk() | WriteBlk()

Disk Hardware

Trap

I/O Register

DMA

Interrupt

DMA

What do file system users need ?

● Persistence
○ Disk provides basic non-volatile storage
○ OS can enhance persistence via redundancy

● Speed: Fast access to data
○ Handle random access efficiently
○ OS can enhance performance via file caching

● Size: can store lots of data
● Sharing/protection (access control)
● Ease of use

○ Basic file abstraction (names, offsets, byte streams, …)
○ Directories simplify naming and lookup

5

File system abstractions

● File
○ Basic container of persistent data

● Directory system
○ Hierarchical naming relationships
○ Directories are special “files” that index other files

● Common file access patterns
○ Sequential: data processed in order, byte/record at a time

■ Example: compiler reads a source file

○ Random access: address blocks of data based on file offset
■ Example: database searches

○ Keyed access: address blocks based on “key” values
■ Example: accessing hash table implemented by key-value

6

Common file system operations

● Data operations

○ Create()

○ Delete()

○ Open()

○ Close()

○ Read()

○ Write()

○ Seek()

7

● Naming operations

○ HardLink()

○ SoftLink()

○ Rename()

● Attribute operations

○ SetAttribute()

○ GetAttribute()

Attributes include

owner, protection,

last accessed

File system organization

● Blocks
○ Divide the disk into

data blocks with commonly-used size of 4KB

● Inode
○ The metadata of a file such as the size, access rights, modify time

etc.
○ Inode tables – holds an array of on-disk inodes
○ E.g. we use 5 out of 64

blocks for inodes
○ An inode is commonly

128 or 256 bytes

8
https://pages.cs.wisc.edu/~remzi/OSTEP/file-implementation.pdf

File system organization

● Inode
○ Assuming 256 bytes per

inode, a 4-KB block can hold 16 inodes, and 80 inodes in this diagram

○ The number of inode denotes the maximum number of files we can

have in a file system

● Allocation structures (bitmap)
○ Tracking whether inodes or data blocks are free or allocated

○ Data bitmap (for the data region)

○ Inode bitmap (one for the inode table)

○ Each bit of a bitmap is used to indicate whether the data block is free (0)

or in-use (1)

9https://pages.cs.wisc.edu/~remzi/OSTEP/file-implementation.pdf

File system organization

● Superblock
○ Contains information

about a file system

○ E.g. the number of inodes and data blocks in the file system

● When mounting a file system, the OS reads
○ The superblock first

○ Initialize various parameters

○ Attach the volume to the file-system tree

○ When files within the volume are accessed, the system will know

exactly where to look for the needed on-disk structures

10
https://pages.cs.wisc.edu/~remzi/OSTEP/file-implementation.pdf

File organization: Inode

● Inode (index node)

○ Holds the metadata for

a given file

○ Contains all of the information that is needed about a file

○ The length, permissions of a file, and the location of a file’s block

● I-number

○ Used to calculate where on the disk the corresponding inode is

located

○ E.g. the inode table as above takes 20 KB (five 4KB block)

11
https://pages.cs.wisc.edu/~remzi/OSTEP/file-implementation.pdf

A file’s metadata (inodes)

● Name
○ The only information kept in human readable form

● Identifier (inode number)
○ A number that uniquely identifies the file within the file system

● Type
○ File type (inode based file, pipe, etc.)

● Location
○ Pointer to location of file on device

● Size
● Protection

○ Access control info. Owner, group (r, w, x) permissions, etc.

● Monitoring
○ Creation time, access time, etc.

12

File organization: inode

● Read inode number 32
○ Calculate the offset

into the inode region

○ (32 * sizeof(inode)) = 8192

sizeof(inode) = 256

○ Inode start at 12 KB (inodeStartAddr) in above case

○ Assuming a disk sector is 512 bytes, to fetch the block of inode 32
■ The file system issues a read to sector 20 x 1024 / 512 = 40

■ Blk = (inumber * sizeof (inode_t)) / blockSize;

■ Sector = ((blk * blockSize) + inodeStartAddr) / sectorSize;

13
https://pages.cs.wisc.edu/~remzi/OSTEP/file-implementation.pdf

File system data structures

● Kernel (in-mem) structures
○ Global open file table
○ Per-process open file table
○ Free (disk) block list
○ Free inode list
○ File buffer cache
○ Inode cache
○ Name cache

● On-disk structures
○ Superblock: file system format info
○ File: collection of blocks/bytes
○ File descriptor (inode): File metadata
○ Directory: Special kind of file
○ Free block/inode maps

14

https://my.eng.utah.edu/~cs5460/slides/Lecture17.pdf

Key in-memory data structures

● Open file table: shared by all processes with open file
○ Open count and “deleted” flag

○ Copy of (or pointer to) file’s inode

● Per-process file table: private for each process
○ Pointer to entry in global open file table

○ Current position in the file (“seek” pointer)

○ Access mode (read, write, read-write)

● File buffer cache: cache of file data blocks
○ Indexed by file-blocknum pairs (hash structure)

○ Used to reduce effective access time of disk operations

15

Key in-memory data structures

● Name cache: cache of recent name lookup results

○ Indexed by full filename (hash structure)

○ Used to decrease directory traversals for name lookups

16

Key on-disk data structures

● File descriptor (inode)
○ Link count
○ Security attributes: UID, GID
○ Size
○ Access/modified times
○ “Pointers” to blocks
○ …

● Directory file:
○ File name (fixed/variable size)
○ Inode number
○ Length of directory entry

● Free block/inode bitmap
● Superblock

17
https://my.eng.utah.edu/~cs5460/slides/Lecture17.pdf

Buffer/page cache

● Idea
○ Keep recently used disk blocks in kernel memory

● Process reads from a file
○ If blocks are not in page cache

■ Allocate space in page cache
■ Initiate a disk read
■ Block the process until disk operations complete

○ Copy data from page cache to process memory
○ Finally, system call returns
○ Usually, a process does not see the page cache directly
○ mmap() maps page cache pages into process RAM

18

Buffer/page cache

● Process writes to a file
○ If blocks are not in the page cache

■ Allocate pages

■ Initiate disk read

■ Block process until disk operations complete

○ Copy written data from process RAM to page cache

● Default: writes create dirty pages in the cache, then the

system call returns
○ Data gets written to device in the background

19

Finding a file’s inode on disk

● Locate inode for /foo/bar
○ 1. Find inode for “/”

■ Always in known location

○ 2. Read “/” directory into memory
○ 3. Find “foo” entry

■ If no match, fail lookup

○ 4. Load “foo” inode from disk
○ 5. Check permissions

■ If no permission, fail lookup

○ 6. Load “foo” directory blocks
○ 7. Find “bar” entry
○ 8. Load “bar” inode from disk
○ 9. Check permissions

20

1

2

3

4

https://my.eng.utah.edu/~cs5460/slides/Lecture17.pdf

Finding a file’s blocks on disk

● Inode consists of a table
○ One entry per block in file

○ Entry contains physical block address (e.g., platter 3, cylinder 1,

sector 26)

○ To locate data at offset X, read block (X / block_size)

● Wants for inode table ?
○ Most files are small

○ Most of disk is contained few large files

○ Need to efficiently support both sequential and random access

○ Want simple inode lookup and management mechanisms

21

Allocating blocks to files

● Contiguous allocation
○ Files allocated (only) in contiguous blocks on disk

○ Analogous to base-and-bounds memory management

● Linked file allocation
○ Maintain a linked list of blocks used to contain file

○ At end of each block, add a (hidden) pointer to the next block

● Indexed file allocation
○ Maintain array of block numbers in inode

● Multi-level indexed file allocation
○ Maintain pointers to blocks full of more block numbers in inode

22

Contiguous allocation

● Files allocated in contiguous blocks on disk

● Maintain ordered list of free blocks
○ At create time, find large enough contiguous region to hold file

● Inode contains START and SIZE

● Advantages
○ Simple implementation

○ Easy offset ->block computation for sequential or random access

○ Few seeks

● Disadvantages
○ Fragmentation -> analogous to base and bounds

○ How do we handle file growth/shrinkage ?
23

Linked file allocation

● Linked list of free blocks
○ Allocate any free blocks

● At end of each block, reserve
space for block #

● Inode contains START
● Good points

○ Can extend/shrink files easily -> no fragmentation
○ Handles sequential accesses somewhat efficiently

● Bad points
○ Random access of large files is really inefficient
○ Lots of seeks -> non-contiguous blocks

24
https://my.eng.utah.edu/~cs5460/slides/Lecture18.pdf

Indexed file allocation

● Inode contains array of block
addresses

○ Allocate table at file creation time
○ File entries as blocks allocated

● Separate free block bitmap
● Good points

○ Can extend/shrink files to a point
○ Simple offset->block computation for sequential or random access

● Bad points
○ Variable sized inode structures
○ Lots of seeks-> non-contiguous blocks

25

https://my.eng.utah.edu/~cs5460/slides/Lecture17.pdf

Multi-level indexed file allocation

● Inode includes
○ Fixed-size array of direct blocks

○ Small array of indirect blocks

○ Double/triple indirect (optional)

● Indirection
○ Indirect pointer: points to a block that contains more pointers

○ Indirect block: block full of block addresses

○ Double indirect block: block full of indirect block addresses

● Use case: ext3

26

https://my.eng.utah.edu/~cs5460/slides/Lecture17.pdf

Multi-level indexed file allocation

● Good points
○ Simple offset->block computation

for sequential or random access

○ Allow incremental growth/shrinkage

○ Fixed size (small) inodes

○ Very fast access to (common) small files

● Bad points
○ Indirection adds overhead to random access to large files

○ Blocks can be spread all over disk -> more seeks

27

https://my.eng.utah.edu/~cs5460/slides/Lecture17.pdf

Multi-level indexed file allocation

● Example: 4.3 BSD file system

○ Inode contains 12 direct block addresses

○ Inode contains 1 indirect block address

○ Inode contains 1 double-indirect block address

● How to support ever larger files ?

○ Adds another pointer to the inode (double/triple indirect blocks)

● If block addresses are 4-bytes and blocks are 2048-

bytes, what is maximum file size in this file system ?

28

Multi-level indexed file allocation

● If block addresses are 4-bytes and blocks are 2048-bytes,

what is maximum file size in this file system ?

○ Number of block address per block = 2048 / 4 = 512

○ Number of blocks mapped by direct blocks = 12 (4.3 BSD file

system)

○ Number of blocks mapped by indirect block = 512

○ Number of blocks mapped by double-indirect block = 5122 = 262144

○ Max file size = (12 + 512 + 262144) * 2048 = ~ 513 MB (537,944,064

bytes)

29

Extents

● An extent is simply a disk pointer plus a length (in blocks)
○ (starting block, length)

○ A length to specify the on-disk location of a file

● Each file is represented by a list of extents

● Pointer-based vs. extent-based
○ Pointer-based is flexible but uses a large amount of metadata per file

○ Extent-based is less flexible but more compact

○ Extent-based work well when there is enough free space on the

disk and files can be laid out contiguously

● Use case: ext4

30

Linking

● Links let us have multiple names to the same file

● An inode uniquely identifies a file for its lifespan

○ Does not change when renamed

● Model: inode tracks “links” or references on disk

○ Count “1” for every reference on disk

○ Created by file names in a directory that point to the inode

● When link count is zero, inode (and contents) deleted

○ There is no ‘delete’ system call, only ‘unlink’

31

Hard links

● Hard links
○ Two entries point to the

same inode

○ Link count tracks

connection

○ Decrement link count on delete

○ Only delete file when last connection

is deleted

○ Problem: cannot cross file systems, unreachable directories

32

bar inode #

“/foo”

directory

bar inode #

“/tmp”

directory

ln /foo/bar

/tmp/moo

2

inode

Soft links

● Soft links

○ Adds symbolic “pointer” to

file

○ Special flag in directory entry

○ Created with symlink () system call

○ Only one “real” link to file

■ File goes away when its deleted

33

bar inode #

“/foo”

directory

bar “/foo/bar”

“/tmp”

directory

ln –s /foo/bar /tmp/moo

1

inode

File allocation table (FAT) file system

● FAT file system

○ There are no inodes

○ Directory entries which store metadata about a file

○ Refer directly to the first block of said file

○ Impossible to create hard links

34

Mounting a file system

● Locate superblock(s)

● Read file system format information

● Initialize inode cache

● Initialize buffer cache

● Initialize name cache

● Optional: perform sanity checks

○ UNIX/ Linux / Mac OS X: fsck

35

Open (‘/foo/bar’) Operation

● Open (“/foo/bar”, O_RDONLY)
○ The file system first needs to find the inode for the file bar

○ Obtain the full pathname, than traverse the pathname

○ All traversals begin at the root of the file system (root directory ‘/’)

○ The FS reads the inode of the root directory based on i-number

○ The root has no parent, and its inode number is 2 in UNIX

○ The FS finds an entry for ‘foo’ from root’s inode

○ The FS reads the block including the inode of foo and its dir data

○ Finds the inode number of bar

○ Read bar’s inode into memory

36

Open (‘/foo/bar’) Operation

● Open (“/foo/bar”, O_RDONLY)
○ Once open, the problem can issue a read () to read from the file
○ The first read will read the first block of the file
○ Consulting the inode to find the location of such a block
○ Update the inode with a new last-access time
○ Update and in-memory open file table for this file descriptor

● In a open()
○ Reading each block requires the file system to

■ first consult the inode
■ Read the block
■ Update the inode’s last-accessed-time

37

Write a file to disk

● Write ()
○ Writing to the file may also allocate a block unless the block is being

overwritten

○ Need to write data to disk and decide which block to allocate to the

file

● Each write to a file logically generates 5 I/Os
○ 1. read the data bitmap (mark the newly-allocated block as used)

○ 2. write the bitmap (reflect its new state to disk)

○ 3. read and write the inode (update with the new block’s location)

○ 4. write the actual block itself

38

File creation

● To create a file
○ Allocate an inode

○ Allocate space within the directory containing the new file

○ One read to the inode bitmap (find a free inode)

○ One write to the inode bitmap (make it allocated)

○ One write to the new inode itself (initialize it)

○ One write to the data of directory (link high-level name of file to its

inode number)

○ One read and write to the directory inode to update it

○ Additional I/Os if the directory needs to grow to accommodate the

new entry (to the data bitmap and the new directory block)

39

Conclusion

● File system organization

○ Blocks, inode, bitmap, superblocks

● File system data structures

○ Open file table, file buffer cache, file descriptor etc.

● Allocating blocks to the file

○ Contiguous, linked, index, multi-level indexed file allocation,

extent

● Soft vs. hard link

40

