
Concurrency

Tsung Tai Yeh
Department of Computer Science

National Yang Ming Chiao Tung University

IOC5226 Operating System Capstone

Acknowledgements and Disclaimer

● Slides were developed in the reference with

● MIT 6.828 Operating system engineering class, 2018

● MIT 6.004 Operating system, 2018

● Remzi H. Arpaci-Dusseau etl. , Operating systems: Three easy

pieces. WISC

2

Outline

● Threads

● Race condition

● Peterson’s algorithm

● Bakery algorithm

● Memory consistency models

3

Introducing threads

● Processes are “heavyweight”
○ Memory mappings may be expensive to swap

○ Cache/TLB state: flushing expensive

○ Lots of kernel state

○ Context switching between process is expensive

● Threads are “lightweight”
○ Multiple threads share process state

■ Same address space

■ Same open file/socket tables

○ Making context switching between threads cheap

4

Recap: threads

● Address space shared by threads
○ Code

○ Data and heap

● Thread private state
○ Registers (pc, sp, psw)

○ Stack

● Key issue
○ How to safely access “shared” state ?

■ Read-only (e.g. code)-> easy , writable-> hard

■ Shared memory mapping, mmap(), shmget()

5

Program

code

Heap

Stack(2)

Stack(1)

PC1

PC2

SP1

SP2

Why use threads ?

● Multi-threading can provide benefits
○ Improved performance by overlapping activities

● Problems arise
○ New failure modes introduced -> concurrency control

○ Errors often are hard to debug, or even to reproduce

● Multiprogramming
○ Higher overheads but great isolation

● Multithreading
○ Cooperation via shared memory

○ Faster context switches (why?)

6

Shared memory synchronization

● Threads share memory

● Preemptive thread scheduling is a major problem

○ Context switch can happen at any time, even in the middle of a

line of code

■ Unit of atomicity -> machine instruction

○ Individual processes have little control over the order in which

processes run

○ Preemptive scheduling introduces non-determinism

7

Sequential Scenario

● What is the expected value of counter in single core CPU ?

8

{

*

counter ++

*

*

}

Program 0

{

*

counter --

*

*

}

Program 1

int counter=5

Shared variable

1 2 1 2 1 2 1

Time

Execution order of program 1 and 2 in a single core CPU

Indeterministic Scheduling

9

{

counter ++

}

Program 0 Program 1

int counter=5

Shared variable

R1 <- counter

R1 <- R1 + 1

counter <- R1

R2 <- counter

R2 <- R2 – 1

counter <- R2

{

counter --

}

R1 <- counter

R2 <- counter

R2 <- R2 - 1

counter <- R2

R1 <- R1 + 1

counter <- R1

R2 <- counter

R1 <- counter

R1 <- R1 + 1

counter <- R1

R2 <- R2 – 1

counter <- R2

Context

switch

counter = 5 counter = 4counter = 6

Race condition

● The results depend on the timing execution of the code

● Critical section

○ A piece of code that accesses a shared resource that is a variable or

data structure

○ No more than one process should execute in critical section at a time

● Race condition

○ Multiple threads enter the critical section at roughly the same time

○ Both attempt to update the shared data structure

○ Leading to a undesired outcome

10

{

counter ++

}

Critical section

Critical section

● To avoid race condition, requirements on the critical section
○ Mutual exclusion

■ Guarantees that only a single thread ever enters a critical

section

○ Progress

■ Any process that requires entry into the critical section must be

permitted without any delay

○ No starvation

■ An upper bound on the number of times a process enters the

critical section, while another is waiting

11

Synchronization

● The race condition happened because

○ There were conflicting accesses to a resource

● Basic idea behind most synchronization

○ When threads and processes have conflicting accesses

○ Force one of them to wait until it is safe to proceed

● Difficult in practice (why?)

○ The problem is that we need to protect all possible locations

where two (or more) threads or processes might conflict

12

Atomic operations

● Atomic: series of operations that cannot be

interrupted
○ This context means “as a unit” and we take as “all or none”

○ It could not be interrupt mid-instruction, no in-between state

○ Single instructions by themselves are atomic
■ e.g. add %eax, %ebx

○ Multiple instructions can be explicitly made atomic

○ Each piece of code in the OS must be checked if they need to

be atomic

13

Busy waiting : Attempt 1

● Achieve mutual exclusion

● Busy waiting– waste power and time

● Static execution order in the critical section (How to resolve?)

○ Process 1 -> process 2 -> process 1 -> process 2

14

while(1){

while(turn == 2); //

lock

critical section

turn = 2; // unlock

}

Process 1

while(1){

while(turn == 1); //

lock

critical section

turn = 1; // unlock

}

Process 2

int turn = 1;

Shared variable

Using two turn flags: Attempt 2

● Break the static execution in the critical section

● Don’t guarantee mutual exclusion

○ The flag (p1_inside, p2_inside) is set after breaking from the

while loop

15

while(1){

while(p2_inside == True); //

lock

p1_inside = True;

critical section

p1_inside = False; // unlock

}

Process 1

P2_inside = False

P1_inside = False

Shared variable

while(1){

while(p1_inside == True); //

lock

p2_inside = True;

critical section

p2_inside = False; // unlock

}

Process 2

Why attempt2 no mutual exclusion

16

Attempt 3: switching while and flag

● Achieve mutual exclusion

● What’s problem of the implementation below ?

17

while(1){

p1_wants_to_enter = True;

while (p1_wants_to_enter =

True);

critical section

p1_wants_to_enter = False;

}

Process 1 Process 2

P2_wants_to_enter, P1_wants_to_enter Globally defined

while(1){

p2_wants_to_enter = True;

while (p2_wants_to_enter =

True);

critical section

p2_wants_to_enter = False;

}

Attempt 3: No progress (Deadlock)

18

CPU p1_inside p2_inside

p1_wants_to_enter = True False False

Context switch

P2_wants_to_enter = True False False

while(1){

p2_wants_to_enter = True;

while (p2_wants_to_enter =

True);

critical section

p2_wants_to_enter = False;

}

Deadlock

19

CPU p1_inside p2_inside

p1_wants_to_enter = True False False

Context switch

P2_wants_to_enter = True False False

Deadlock

● Deadlock
○ Two or more threads are waiting on

events that only those threads can
generate

○ Both processes are holding
one resource and waiting for
other resource held by the
other process

○ Thus, both processes cannot
make progress until one of
them gives up its resource

20
https://www.baeldung.com/cs/deadlock-livelock-starvation

Livelock

● Livelock
○ Thread blocked indefinitely by other

thread(s) using a resource

○ Livelock naturally goes away when

system load decreases

○ Both processes need a shared resource

○ Each one checks whether the other one

is an active state

○ If so, it hands over the resource to the

other process

○ Both kept on handing over the resource to each other indefinitely

21https://www.baeldung.com/cs/deadlock-livelock-starvation

Conditions for deadlock

● Mutual exclusion

○ Resource cannot be shared

● Hold and wait

○ A thread is both holding a resource and waiting on another

resource to become free

● No preemption

○ A cycle in the graph

22

Deadlock free condition

● Given a system has

○ R identical resources, P processes compete for them, and N is

the maximum need of each process

○ What is the minimum number of resources R require to reach

deadlock free condition ?

● Example

○ Input: P = 7, N = 2

○ Output: R >= 8

23

R >= P * (N – 1) + 1

Breaking Deadlock – Peterson’s solution

24

while(1){

p1_wants_to_enter = True;

favored = 2;

while (p2_wants_to_enter =

True && favored = 2);

critical section

p1_wants_to_enter = False;

}

Process 1

P2_wants_to_enter, P1_wants_to_enter, favored

Globally defined

If the second process wants to enter, favor it.

favored is used to break the tie when both

p1 and p2 want to enter the critical section

favored can take only two values: 1 or 2

Break the deadlock with a ‘favored’

flag

Peterson’s solution

● Deadlock broken because favored can only be 1 or 2

○ Only one process will enter the critical section

25

while(1){

p1_wants_to_enter = True;

favored = 2;

while (p2_wants_to_enter =

True && favored = 2);

critical section

p1_wants_to_enter = False;

}

Process 1

while(1){

p2_wants_to_enter = True;

favored = 1;

while (p1_wants_to_enter =

True && favored = 1);

critical section

p2_wants_to_enter = False;

}

Process 2

2 process solution: Peterson’s algorithm

● Ensure two threads never enter a critical section at the

same time

○ Using ‘flag’ and ‘turn’ variables

26

void init() {

// indicate intend to hold the lock with ‘flag’

flag[0] = flag[1] = 0;

// whose turn is it ? (thread 0 or 1)

turn = 0;

}

2 process solution: Peterson’s algorithm

27

void lock () {

// ‘self’ is the thread ID of caller

flag[self] = 1;

// make it other thread’s turn

turn = 1 - self;

while ((flag [1 - self]) == 1 && (turn == 1 - self));

// spin-wait while it’s not your own

}

void unlock () {

flag[self] = 0;

}

Bakery algorithm

● Synchronization between N > 2 processes

○ Processes numbered 0 to N – 1

○ num is an array N integers (initially 0)

○ Each entry corresponds to a process

28

lock (i) {

num[i] = MAX(num[0], num[1], …, num[N - 1] + 1);

for(p = 0; p < N; ++p)

while(num[p] != 0 && num[p] < num[i])

}

Critical section

unlock (i) {num[i] = 0; }

Should be

atomic to ensure

two processes

don’t get the

same token.

1. num[i] = 0

means

inactive

2. P means the

priority

Bakery algorithm

● How does Bakery algorithm work?

29

lock (i) {

num[i] = MAX(num[0], num[1], …, num[N - 1] + 1);

for(p = 0; p < N; ++p)

while(num[p] != 0 && num[p] < num[i]) }

Critical section

unlock (i) {num[i] = 0; }

1. num[i] = 0

means

inactive

2. P means the

priority

P0 P1 P2 P3 P4

0 0 0 0 0num

T = 0

P0 P1 P2 P3 P4

0 1 2 3 4num

T = 1

Bakery algorithm

● What is the problem of the bellow

implementation ?

● What about this situation ?

○ When P1 and P2 get the same number

30

lock (i) {

num[i] = MAX(num[0], num[1], …, num[N - 1] + 1);

for(p = 0; p < N; ++p)

while(num[p] != 0 && num[p] < num[i])}

Critical section

unlock (i) {num[i] = 0; }

1. num[i] = 0

means

inactive

2. P means the

priority

P0 P1 P2 P3 P4

0 0 0 0 0num

T = 0

P0 P1 P2 P3 P4

0 1 1 3 4num

T = 1

Bakery algorithm

● P1 and P2 will get into the critical section

at the same time

○ That breaks the rule or mutual execution

31

lock (i) {

num[i] = MAX(num[0], num[1], …, num[N - 1] + 1);

for(p = 0; p < N; ++p)

while(num[p] != 0 && num[p] < num[i])}

Critical section

unlock (i) {num[i] = 0; }

P0 P1 P2 P3 P4

0 0 0 0 0num

T = 0

P0 P1 P2 P3 P4

0 1 1 3 4num

T = 1

1. num[i] = 0

means

inactive

2. P means the

priority

How to fix this problem ?

Bakery algorithm

● Adding choosing[i] to make MAX atomic

○ Initially all values of choosing[i] are false

32

lock (i) {

choosing[i] = True;

num[i] = MAX(num[0], num[1], …, num[N - 1] + 1);

choosing[i] = False;

for(p = 0; p < N; ++p) {

// wait until process p receives its number

while(choosing[p]);

while(num[p] != 0 && (num[p],p) < (num[i],i)) }

Critical section

unlock (i) {num[i] = 0; }

If there are two

processes with the

same num value,

favor the process

with the smaller id

(i)

(a, b) < (c, d) is equivalent to (a<c) or ((a == c) and

(b < d))

Bakery algorithm

● How does Bakery algorithm work ?

33

lock (i) {

choosing[i] = True;

num[i] = MAX(num[0], num[1], …, num[N - 1] + 1);

choosing[i] = False;

for(p = 0; p < N; ++p) {

// wait until process p receives its number

while(choosing[p]);

while(num[p] != 0 && (num[p],p) < (num[i],i)) }

Critical section

unlock (i) {num[i] = 0; }

(a, b) < (c, d) is equivalent to (a<c) or ((a == c) and

(b < d))

P0 P1 P2 P3 P4

0 0 0 0 0num

T = 0

P0 P1 P2 P3 P4

0 1 2 3 4num

T = 1

Multiprocessor memory models

● Uniprocessor memory is simple

○ Every load from a location retrieves the last value stored to

that location

○ All processes / threads see the same view of memory

● The straightforward multiprocessor memory model –

sequential consistency

○ All operations executed in some sequential order

○ Each thread’s operations happen in program order

34

Memory consistency models

● Why memory consistency models matter ?

○ Multiprocessors reorder memory operations in unintuitive ways

○ This behavior affects the performance of programs

○ These models are hidden by programmers – hard to debug

○ But kernel developers see it all the time

● What is consistency model ?

○ Consistency models deal with how multiple threads see the world

○ Define the allowed orderings of multiple threads on a multiprocessor

35

Multithread programs

● What is the value of A and B ?
○ The order the events decides outputs

○ (1) -> (2) -> (3) -> (4):
■ The first thread runs event (1) (2) before the second thread -> print B = 0, A = 1

○ (3) -> (4) -> (1) -> (2):
■ The second thread runs event (3) (4) before the first thread -> print B = 1, A = 0

○ (1) -> (3) -> (2) -> (4)
■ The first instruction in each thread runs before the second inst. -> print B = 1, A =

1

○ (1) -> (3) -> (4) -> (2)
■ The second threads runs the second instructions before the first thread -> print B

= 1, A = 1

36

(1) A = 1

(2) print (B)

Thread 1
(3) B = 1

(4) print (A)

Thread 2

Initially, A = 0, B = 0

What is our expected

output print ?

Multithread programs

● This program should print ’11’
○ Each thread’s events should

happen in order

○ (1) before (2), (3) before (4)

● The “happens-before” graph
○ Shows the order where events

must execute to get a desired

outcome

○ If there’s a cycle in the graph, an outcome is impossible – an event

must happen before itself

37

An edge from operation x to

operation y says that x must

happen before y

Sequential consistency

● The scenario
○ Multiple threads running in parallel are manipulating a single

main memory, so everything must happen in order

● Two invariants
○ All operations executed in some sequential order

○ Each thread’s operations happen in program order

● Says nothing about which order all operations happen in
○ Any interleaving of threads is allowed

● From Leslie Lamport in 1979

38

Sequential consistency

39

Core 1

A = 1

R0 = B

Core 2

B = 1

R1 = A

Memory

A = 0

B = 0

Executed

Sequential consistency

40

Core 1

A = 1

R0 = B

Core 2

B = 1

R1 = A

Memory

A = 0

B = 0

Executed

Sequential consistency

41

Core 1

A = 1

R0 = B

Core 2

B = 1

R1 = A

Memory

A = 1

B = 0

Executed

A = 1

Sequential consistency

42

Core 1

A = 1

R0 = B

Core 2

B = 1

R1 = A

Memory

A = 1

B = 0

Executed

A = 1

Sequential consistency

43

Core 1

A = 1

R0 = B

Core 2

B = 1

R1 = A

Memory

A = 1

B = 1

Executed

A = 1

B = 1

Sequential consistency

44

Core 1

A = 1

R0 = B

Core 2

B = 1

R1 = A

Memory

A = 1

B = 1

Executed

A = 1

B = 1

Sequential consistency

45

Core 1

A = 1

R0 = B

Core 2

B = 1

R1 = A

Memory

A = 1

B = 1

Executed

A = 1

B = 1

R1 = A (= 1)

Sequential consistency

46

Core 1

A = 1

R0 = B

Core 2

B = 1

R1 = A

Memory

A = 1

B = 1

Executed

A = 1

B = 1

R1 = A (= 1)

Sequential consistency

47

Core 1

A = 1

R0 = B

Core 2

B = 1

R1 = A

Memory

A = 1

B = 1

Executed

A = 1

B = 1

R1 = A (= 1)

R0 = B (= 1)

Sequential consistency

● Why sequential consistency (SC) ?

○ Agrees with programmer intuition

● Why not sequential consistency ?

○ Horribly slow to guarantee in hardware

○ The “switch” model is overly conservative

48

The problem of sequential consistency

49

Core 1

A = 1

R0 = B

Core 2

B = 1

R1 = A

Memory

Executed

A = 1

These two instructions

don’t conflict

No need to wait for the

first one finish !!

Write to memory (A =

1) takes long time

(about 100 cycles)

Relaxed memory models – Total store ordering

● Total store ordering (TSO)
○ Store writes in a local buffer and

then proceed to next instruction
immediately

○ The cache will pull writes out of
the write buffer when it’s ready

○ The (2) starts immediately after
putting (1) into the store buffer,
rather than waiting for it to reach
the L2 cache

○ The store buffer hides the write
latency

50https://www.cs.utexas.edu/~bornholt/post/memory-models.html

Total store ordering (TSO)

● Store buffering is nice because it preserves

single-threaded behavior

○ Read (2) inspect the store buffer directly

○ If the store buffer contains a write to the location

it’s reading, and use that value instead

○ Otherwise, check the memory

51https://www.cs.utexas.edu/~bornholt/post/memory-models.html

More total store ordering

● First, executing (1) then (3)
○ Both of them place their data in the store

buffer rather than sending back to memory

● Next, executing (2) on core 1
○ no value of B in the store buffer

○ So, it reads B from memory and get value 0

● Finally, executing (4) on core 2
○ No value in core 2’s store buffer, it reads from memory and gets the

value 0

● Under TSO, this program print 00 -> No !

52

https://www.cs.utexas.edu/~bornholt/post/memory-models.html

Memory fences

● The x86 “mfence” instruction
○ Used to against programs broken by TSO

○ Loads and stores cannot be moved before

or after the mfence instruction

○ It is like to flush the store buffer and prevent

the pipeline from reordering around the fence

● mfence is not cheap
○ See “sfence” and “lfence” which are weaker

(and faster) than mfence

53

(1) A = 1

(2) mfence

(3) print (B)

Thread 1

(1) B = 1

(2) mfence

(3) print (A)

Thread 2

Conclusion

● Threads
○ Share the process’s states such as address space

● Race condition
○ Multiple threads attempt to change the shared data concurrently

● Peterson’s algorithm
○ Ensure two processes not enter the critical section at the same time

● Bakery algorithm
○ Synchronization over N > 2 processes

● Memory consistency

54

