
Bootloader

Tsung Tai Yeh
Department of Computer Science

National Yang Ming Chiao Tung University

IOC5226 Operating System Capstone

Acknowledgements and Disclaimer

● Slides were developed in the reference with

● MIT 6.828 Operating system engineering class, 2018

● MIT 6.004 Operating system, 2018

● Remzi H. Arpaci-Dusseau etl. , Operating systems: Three easy

pieces. WISC

2

Outline

● Booting on the X86 Processor

● BIOS

● MBR

● Bootloader

● Booting on rpi

● Linux Bootstraping

3

Booting on x86 processor

4

BIOS -> MBR -> boot loader -> kernel

PC Booting

RAM

x386

CPU

0x00000

0xA0000

0xFFFFF
0xFFFF0

1. Power supply sends POWER GOOD to CPU

2. CPU resets

3. Run FFFF:0000 @ BIOS ROM

4. Jump to a real BIOS start address

5. Power On Self Test (POST)

6. Beep if there is an error

7. Read CMOS data/settings

8. Run 2nd-stage boot

Powering up: Reset

6

0x100000
0xFFFF0

0xF0000

0

Inaccessible

memory

First functions

(jump to ROM BIOS)

BIOS

Power on

Reset

Every register initialized to 0 except

CS = 0xf000, IP = 0xfff0

1. Physical address = (CS << 4) + IP = 0xffff0

2. First instruction fetch from location 0xffff0

3. Processor in real mode (20-bits)

a. Limited to 1MB addresses (0x00000 ~ 0xFFFFF)

b. No protection; no privilege levels

c. Direct access to all memory

d. No multi-tasking

4. First instruction is on the top of accessible memory

http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/3_Hardware.pdf

8086 CPU

Powering up: BIOS

● BIOS presents in a small chip connected
to processor

○ Flash/EPROM/EEPROM
● BIOS work

○ Power on self test
○ Initialize video card and other devices
○ Display BIOS screen
○ Perform brief memory test
○ Set DRAM memory parameters
○ Configure plug & play devices
○ Assign DMA channels and IRQs
○ The reset vector (0x7c00) contains a jump

(jmp) instruction that usually points to
the BIOS entry point

7
https://www.twblogs.net/a/5b7f367e2b717767c6ae576c

Powering up: BIOS

● 0x00000 ~ 0x9FFFF (Base Memory) 640 KB

● 0xA0000 ~ 0xBFFFF (for VGA) 128 KB

● 0xC0000 ~ 0xFFFFF (BIOS)

8
https://www.twblogs.net/a/5b7f367e2b717767c6ae576c

PC Booting (Cont)

RAM

x386

CPU

0x00000

0xA0000

0xFFFFF
INT 13

MBR

512 bytes
0x07C00

1. Call INT 13 service
2. Load boot sector (in sequential)

C:H:S (0:0:1)

0x0000 Program to load active partition

0x01BE Partition table 1

0x01CE Partition table 2

0x01DE Partition table 3

0x01EE Partition table 4

0x01FE BIOS magic number:0xAA55

0x0200

INT 13h is

shorthand

for BIOS interrupt

call

https://en.wikipedia.org/wiki/BIOS_interrupt_call

MBR (Master Boot Record)

LILO or Grub

(stage 1)

1. Partition table: describes the

partitions of a storage device

2. Bootstrap code: instructions to

identify the configured bootable

partition

1st stage bootloader

Powering up: MBR

● Sector 0 in the disk called Master

Boot Record (MBR)
○ Includes code that boots the OS or bootloader

○ Copied from disk to RAM (@0x7c00) by BIOS

○ Size: 512 bytes

○ 446 bytes bootable code

○ 64 bytes disk partition information (16 bytes per partition)

○ MBR looks through partition table and loads the bootloader such as

Linux or Windows

○ Or MBR may directly load the OS

11

Power on

Reset

Every register initialized to 0 except

CS = 0xf000, IP = 0xfff0

BIOS

MBR

Linux Boot Example

RAM
CPU

Disk

2nd bootloader

BIOS

1. Execute from fixed address

3. Select boot device

2. POST

5. Pass control to bootloader (LILO)

0xc700

512 bytes

MBR

4. Load MBR 512 bytes to 0xc700

Powering up: bootloader

● Objective of the bootloader
○ After BIOS
○ INIT hardware devices
○ Build sound hardware/software setting for

the OS kernel

● Other jobs done
○ Setup GDT (global descriptor table)
○ Switch from real mode to protected mode
○ Read operating system from disk
○ The 1st bootloader may be presented in the MBR (sector 0)
○ The 2nd bootloader -> GRUB/LILO

13

Power on

Reset

Every register initialized to 0 except

CS = 0xf000, IP = 0xfff0

BIOS

MBR

Bootloader

Grand Unified Bootloader (GRUB)

● 2nd stage bootloader

● Allow the user to select which OS

to load

● Can read many filesystem formats

● Load kernel image and the

configuration

● Can load kernel images over the

network

14

Powering up: OS

● The operating system
○ Set up virtual memory

○ Initialize interrupt vectors

○ Initialize
■ Timers

■ Monitors

■ Hard disks

■ Consoles

■ File systems

○ Initialized other processor (if any)

○ Startup user process

15

Power on

Reset

Every register initialized to 0 except

CS = 0xf000, IP = 0xfff0

BIOS

MBR

Bootloader

OS

Multiprocessor booting

● One processor designated as “Boot Processor” (BSP)

○ Designation done either by hardware or BIOS

○ All other processors are designated AP (Application Processors)

● BIOS boots the BSP

● BSP learns system configuration

● BSP triggers boot of other AP

○ Done by sending an startup IPI

(inter processor interrupt) signal

to the AP

16

http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/3_Hardware.pdf

Takeaway Questions

● Where could we find BIOS?
● (A) Hard drive

● (B) CPU

● (C) ROM

● How does BIOS find its entry point?
● (A) Interrupt

● (B) Reset vector

● (C) Using system call

17

Takeaway Questions

● How does bootloader load the OS kernel?
● (A) System call

● (B) BIOS interrupt

● (C) Reset vector

● Who take charge of the transition of real mode to protect

mode?
● (A) Bootloader

● (B) BIOS

● (C) OS kernel

18

Outline

● Booting on the X86 Processor

● BIOS

● MBR

● Bootloader

● Booting on rpi

● Linux Bootstraping

19

A Entire Linux System Includes

20

Booting on rpi board

● When power on
○ First-stage bootloader on

ROM

■ CPU/RAM are not

initialized

■ GPU handles this first

stage bootloader

○ Second-stage bootloader

■ Mount bootcode.bin on FAT32 of SD card

■ GPU places bootcode.bin on its L2 cache, activates RAM and

read start.elf 21

Booting on rpi board

● GPU firmware
○ Start.elf (third-stage

bootloader)
■ VideoCore OS
■ Read config.txt that

represents BIOS setting
■ GPU and CPU RAM use different memory region

○ Run fixup.dat
■ Organize SDRAM partition between GPU/CPU
■ Reset CPU

○ Read zImage to RAM and kernel takes over -> /sbin/init -> login
shell

22

Boot sequence of Raspberry Pi

● Boot from the GPU

● Stage 1:

○ GPU activates bootstrap code in the ROM to check filesystem on SD card

● Stage 2:

○ GPU loads bootcode.bin in /boot from the SD card to L2 cache (first-stage

bootloader)

● Stage 3:

○ Bootcode.bin activates SDRAM and loads loader.bin to RAM and executes

loader.bin

● Stage 4:

○ Loader.bin (second-stage bootloader) loads start.elf that is the firmware of

the GPU 23

Boot sequence of Raspberry Pi

● Stage 5:

○ Start.elf reads config.txt and cmdline.txt and loads kernel.img that is Linux

kernel

● Stage 6:

○ Activating the CPU after the start.elf loads kernel.img

24

Outline

● Booting on the X86 Processor

● BIOS

● MBR

● Bootloader

● Booting on rpi

● Linux Bootstraping

25

Overall Linux boot sequence

26

https://bootlin.com/doc/training/buildroot/buildroot-slides.pdf

Bootstrap Loader

● The second-stage loader (bootstrap loader)
○ Load the Linux kernel image into memory

○ Act as the glue between a board-level

bootloader and the Linux kernel

○ Low-level assembly processor initialization

○ Decompression and relocation of the kernel

image

● The first-stage loader
○ Controls the board upon power-up

○ Does not reply on the Linux kernel in any way

27

piggy.o

misc.o

head.o

head-

cpu.o

decompress

.o

Binary

kernel

image

Bootstrap

loader

Kernel entry point: head.o

● The un-compression code jumps into the main kernel entry point

○ Located in arch/<arch>/kernel/head.S

○ Check the architecture, processor and machine type

○ Configure the MMU, create page table entries and enable

virtual memory

○ Same code for all architectures

○ Calls the start_kernel function in init/main.c

28

RedBoot head.o head.o main.o

Bootloader Bootstrap loader Kernel vmlinux Kernel main.o

Power

on

Loading kernel

29

Kernel bootstrap

30

https://bootlin.com/doc/legacy/kernel-init/kernel-init.pdf

Bootstrap code for compressed kernels

● vmlinux.lds

○ Kernel proper, in ELF format, including symbols, comments, debug

info

● System.map

○ Text-based kernel symbol table for vmlinux module

● Image

○ Binary kernel module, stripped of symbols, notes and comments

○ objcopy –O binary –R .note –R .comment –S vmlinux.lds

arch/arm/boot/Image

● head.o

○ Architecture-specific startup code

○ Passed control by the bootloader
31

Located in

arch/<arch>/boot/compressed

Bootstrap code for compressed kernels

● piggy.gz

○ The file image compressed with gzip (gzip –f -9 < Image > piggy.gz)

● piggy.o

○ The file piggy.gz in assembly language format from piggy.S

○ It can be linked with a subsequent object, misc.o

● misc.o, decompress.o

○ Routines used for decompressing the kernel image (piggy.gz)

● vmlinux

○ Composite kernel image and is the result when the kernel proper is

linked with the objects

● zImage

○ Final composite kernel image loaded by bootloader
32

vmlinux

● head.o
○ Kernel architecture-specific startup

code
● arch/arm/kernel/init-task.o

○ Initial thread and task structs required
by kernel

● init
○ Main kernel-initialization code

● usr/built-in.o
○ Built-in initramfs image

● arch/arm/nwfpe
○ Architecture-specific floating point –

emulation code
33

Using the initial RAM disk (initrd)

● After Linux kernel finds the ”init” and aims:

○ Used to prepare the work before mounting the root file system

○ The init process is in the root file system

○ However, the root filesystem can be mounted in SATA/SCSI

storage devices

○ Don’t want to load so many drivers to the kernels

○ The boot loader informs the kernel that an initrd exists and where

it is located in memory

34

rest_init: Starting the init process

35

Root file system

● Initial RAM Disk (initrd)
○ A small self-contained root file system
○ Contains directives to load specific device drivers before the

completion of the boot cycle
○ When the kernel boots, it copies the compressed binary file from

the specified physical location in RAM into a proper kernel ramdisk
and mount it as the root file system

○ Use linuxrc file to execute commands
● The root file system

○ Refer to the file system mounted at the base of the file system
hierarchy, designated simply as /

○ Contains programs and utilities to boot a system and initialize
services

36

/

/bin

/dev

/etc

/lib

/sbin

/usr

/var

/tmp

Final stage of the boot

● After kernel thread calls init during the final stages of boot

○ run_init_process()

○ /sbin/init is spawned by the kernel on boot

■ Mount the root file system

■ Spawn the first user space program, init

● inittab

○ When init is started, it reads the system configuration file

/etc/inittab

○ Contains directive for each runlevel

○ e.g. runlevel 0 instructs init to halt the system

○ Runlevel directories are typically rooted at /etc/rc.d
37

Summary

38
https://www.thegeekstuff.com/2011/02/linux-boot-process

BIOS -> MBR -> boot loader ->
kernel -> init process -> login

● OS booting

Takeaway Questions

● Where is the entry point of the Linux Kernel?
● (A) BIOS

● (B) head.S

● (C) MBR

● What is the name of the first process after booting?
● (A) init

● (B) root

● (C) initrd

39

