
Memory Allocation

Tsung Tai Yeh
Department of Computer Science

National Yang Ming Chiao Tung University

IOC5226 Operating System Capstone



Acknowledgements and Disclaimer

● Slides were developed in the reference with 

● MIT 6.828 Operating system engineering class, 2018

● MIT 6.004 Operating system, 2018

● Remzi H. Arpaci-Dusseau etl. , Operating systems: Three easy 

pieces. WISC

2



Outline

● Dynamic memory allocation

● Buddy memory allocator

● Slab memory allocator

3



Dynamic memory allocation

● How does the OS manage memory of a single process ?
○ Each process has contiguous logical address space

● Static (compile-time) allocation is not always a good choice
○ Recursive procedures

■ Data dependencies are hard to predict

○ Complex data structures
■ Link-list, tree, graph (ptr = malloc(x); free(ptr))

● Dynamic allocation
○ Stack allocation

○ Heap allocation

4



Stack organization

● Stack grows happens via
○ mremap () : remap a virtual memory address

● When is it useful ?
○ Memory allocation and freeing are partially predictable
○ Examples

■ Procedure call frames, tree traversal, recursion

● Advantages
○ Keeps all the free space contiguous
○ Simple and efficient to implement

● Disadvantages
○ Not appropriate for all data structures

5

alloc(A)

alloc(B)

alloc(C)

free(C)

free(B)

free(A)



Heap organization

● Allocate from random locations

○ Memory contains allocated areas and free areas

● When is it useful ?

○ Allocation and release are unpredictable

○ Arbitrary list structures, complex data organizations

■ E.g. new in C++, malloc() in C

● Advantage: works on arbitrary allocation and free patterns

● Disadvantage: End up with small chunks of free space

6

Free

Alloc

Free

Alloc



Stack vs heap allocation

7

Parameter Stack Heap

Basic Allocated in a contiguous 

block

Allocated in a random 

order

Allocation Automatic by compiler Manual by programmer

Main issue Storage of memory Memory fragmentation

Safety Thread safe, data only 

accessed by owner

Not thread-safe, data 

stored visible to all 

threads

Flexibility Fixed-size Resizing is possible

Access time Fast Slow



Fragmentation

● Internal fragmentation

○ Waste space when you round an allocation up

● External fragmentation

○ When you end up with small chunks of free memory that are 

too small to be useful

8



External fragmentation

● External fragmentation
○ Full of little holes of free space

○ Have a number of segments per process

○ Each segment might be a different size

○ It is difficult to allocate new segments

● Compact physical memory
○ Rearranging the existing segments

○ Compaction is expansive

○ Best-fit, worst-fit, first-fit, buddy algorithm

9

Operating 

system

Not in use

Allocated

Not in use

Allocated

Not in use

Allocated

0KB

16KB

32KB

64KB

56KB

8 KB

24KB

40KB

48KB

Not compacted



External fragmentation (cont.)

● When does external fragmentation occur ?

○ The free space consists of variable-sized units

○ This arises in a user-level memory allocation library (malloc())

○ Chops segments into little pieces of different sizes

● Problems of the external fragmentation

○ No single contiguous space that can satisfy the request

○ Even the total amount of free space exceeds the size of requests

○ E.g. A request 15 bytes will fail even though there are 20 bytes free

10

Free Used free

0 10 20 30



Memory allocation strategies

● Best fit

○ Return a block that is close to what the user asks

○ Try to reduce wasted space

○ Perform an exhaustive search for the correct free block penalty

● First fit

○ Find the first block that is big enough and returns the requested 

amount to the user

○ Has the advantage of speed – no exhaustive search

○ How the allocator manages the free list’s order becomes an issue ?

11



Case study: memory block fitting

● Envision a free list with three elements on it

○ Assume an allocation request of size 15

● Best fit

○ Search the entire list and find that 20 was the best fit

● First fit

○ Find the first free block that can satisfy the request

12

10 30head NULL20

10 30head NULL15

10 15head NULL20



Designing memory allocator issues

● How to keep track of the size of a block ?

● How to keep track of which blocks are in use and free ?

● How to align memory space if a block is smaller than the 

free block we find ?

● How to pick a block to use for allocation ?

● How do re-insert freed block ?

13



Buddy allocator

● Fast, simple allocation for blocks that are 2n bytes 

● Allocation restrictions
○ Block sizes: 2n

● Allocation strategy for k bytes
○ Raise allocation request to the nearest 2n

○ Search free list for appropriate size
■ Recursively divide large blocks until reach block of correct size

○ Free strategy
■ Recursively coalesce block with buddy if buddy free

■ May coalesce lazily to avoid overhead

14



Buddy allocator issues

15

• Memory fragmentation

• Buddy allocator still leads to few reserved pages that 
prevent the allocation of larger contiguous blocks

• Performance

• Very fast, since the simple binary shift or bit change 
arithmetic

0 31
Memory layout of the buddy allocator 



Buddy allocation

● Binary buddy allocator
○ Free memory as one big space of size 2N

○ Recursive search by dividing free space by 
two until a block that is big enough to 
accommodate the request is found

○ Internal fragmentation as only allowed 
to power-of-two-sized block

○ Check whether the “buddy” 8KB is free 
when returning the 8KB block to the free list

○ Keep coalescing when the buddy is still free
○ Making coalescing simple

16

64 KB

32 KB 32 KB

16 KB 16 KB

8 KB 8 KB



Case study: buddy allocation

17

0 1 2 3 4 5 6 7

static inline unsigned long _find_buddy_pfn

(unsigned long page_pfn, unsigned int order)

{

return page_pfn ^ (1 << order);

}

• In a memory 

• Block 0, 4, 5, 6, 7 is used

• Will buddy allocator merges block 1 and 2 if both of them are free ?

• No !! Block 1 and 2 are not buddy

Memory blocks



How to allocate memory ?

18

Code (.text) Heap stack libc.sofree

Virtual address space

0 0 x ffffffff

int main () {

struct foo *x = malloc(sizeof(struct foo));

….

}

void* malloc (ssize_t n) {

if(heap empty)

mmap(); // add pages to heap and find a free block of size n

}

n



malloc() issues

● How to implement malloc() or new ?

○ Calls sbrk() to request more contiguous memory from OS

○ Add small header to each block of memory

■ Pointer to next free block

19https://pages.cs.wisc.edu/~eli/537/lectures/lecture12.2x2.pdf



Enlarge VMA

Source: http://duartes.org/gustavo/blog/post/how-the-kernel-manages-your-memory/



Reclaiming free memory

● When can dynamically-allocated memory be freed ?
○ Explicitly call free()
○ Hard, can’t be recycled until all sharers are finished

■ Sharing is indicated by the presence of pointers to the data

● Two possible problems
○ Dangling pointers

■ Recycle storage while it’s still being used

○ Memory leaks
■ Forget to free storage even when can’t be used again
■ Not a problem for short-lived user processes
■ Issue for operating systems and long-running applications

21

https://pages.cs.wisc.edu/~eli/537/lectures/lecture12.2x2.pdf



Garbage collection

● Idea

○ No free() operation

○ Storage freed implicitly when no longer referenced

● Approach

○ When system needs storage, examine and collect free 

memory

● Advantages

○ Makes life easier on the application programmer

22
https://pages.cs.wisc.edu/~eli/537/lectures/lecture12.2x2.pdf



Mark and sweep

● Requirements
○ Must be able to find all objects
○ Must be able to find all pointers to objects
○ Compiler must cooperate by marking type of data in memory

● Two passes
○ Pass 1: Mark

■ Start with all statically-allocated and procedure-local variables (on stack)
■ Mark each object
■ Recursively mark all objects can reach with a pointer

○ Pass 2: Sweep
■ Go through all objects, free those that aren’t marked

23https://pages.cs.wisc.edu/~eli/537/lectures/lecture12.2x2.pdf



Garbage collection in practice

● Disadvantages

○ Expansive: 20% or more of CPU

○ Difficult to implement

■ Execute program during garbage collection (incremental)

● Languages with garbage collection

○ LISP

○ Java

24



Linux kernel allocators

25

https://bootlin.com/doc/training/linux-kernel/linux-kernel-slides.pdf



Page allocator

● Appropriate for medium-size allocations

● A page is usually 4KB that is dependent to the hardware

● Buddy allocator strategy
○ Only allocations of power of two numbers of pages such as 1, 2, 4, 8, 

16 pages, etc.

○ Typical maximum size is 8192 KB

○ The allocated area is contiguous in the kernel virtual address space

○ Maps to physically contiguous pages

○ The large areas may not be available due to physical memory 

fragmentation

26



Motivation of the slab allocator

● The kernel needs
○ Many different temporary objects
○ Such as the mm_struct, inode, files_struct structures

● Temporary kernel objects
○ Very small and very large size
○ They are often allocated and freed
○ Require to perform object allocation efficiently

● Drawbacks of the buddy allocator
○ Its free areas are composed of entire frames of memory (too large for 

various object size)
○ Align objects with power of two size has a negative impact on the use 

of the process cache

27



Principle of the slab allocator

● The allocation of small memory blocks

○ Eliminate internal fragmentation caused by a binary buddy allocator

○ Two caches of small memory buffers (32 – 131072 bytes)

○ kmalloc() is provided for allocate objects in these small cache buffers

● The caching of commonly used objects

○ The system doesn’t waste time allocating, initializing and destroying 

objects

● The better utilization of hardware cache

○ aligning objects to the L1 or L2 caches

28



What is slab ?

● Slab

○ a chunk of contiguous pages

○ A container of objects

○ Allocates a number of objects

to the slabs associated with 

that cache

● Cache chain

○ A variable number of caches linked on a doubly linked circular list

○ Kmem_cache_s manages objects such as mm_struct or fs_cache

29

Slab 

state

https://www.kernel.org/doc/gorman/html/understand/understand011.html

Cache 

chain
kmem_cache



What is slab ? (cont.)

● The slab allocator manages the objects in a cache

○ A slab contains one or more pages, divided into equal-sized objects

○ When cached created, allocate a slab, divided the slab into free 

objects

○ If a slab is full of used objects, next object comes from an empty/new 

slab

● Benefits

○ No fragmentation and fast memory allocation

○ Some of the object fields may be reusable; no need to initialize again

30



Alternative slab allocators

● SLOB allocator
○ Designed for small systems

○ As compact as possible

● SLAB allocator
○ As cache friendly as possible

● SLUB allocator
○ Designed for large systems

○ Minimize memory overhead

○ Execution time friendly

31



The slab allocator

● The slab allocator
○ The default cache allocator (at least as of early Linux kernel 2.6, 

Solaris)

○ A given cache allocates a specific type of object
■ E.g. a cache for file descriptors, a cache for inodes

○ Motivation
■ The kernel often spends much of its time on allocating, initializing 

and freeing the same object

■ Reduce the number of references to the buddy allocator

○ Basic idea
■ Have caches of commonly used objects kept in an initialized state for 

use by the kernel
32



The slab allocator (cont.)

● The SLAB allocator
○ Allow to create caches, which contain a set of objects of the 

same size

○ The object size can be smaller or greater than the page size

○ Takes care of growing or reducing the size of cache as needed

○ Uses the page allocator to allocate and free pages

○ SLAB caches are used for data structures that are present in 

kernel instances 
■ Directory entries, file objects, network packet descriptors etc.. 

■ See /proc/slabinfo

33



The slab allocator(cont.)

34
https://bootlin.com/doc/training/linux-kernel/linux-kernel-slides.pdf



SLAB per frame freelist management

● Multiple requests for free objects can be satisfied from the 

same cache line without touching the object contents

35
https://events.static.linuxfound.org/sites/events/files/slides/slaballocators.pdf



SLAB allocator – data structure

● Red zone
○ Used to detect writes after the object

● Poisoning
○ If the object is inactive then the bytes contain poison values

● Padding
○ An unused data to fill up the space to get the next object properly 

aligned

● Coloring
○ A scheme that attempts to have objects in different slabs use 

different lines in the cache
○ Objects use different cache lines ensure objects from the same slab 

cache will be unlikely to flush each other
36



37

https://events.static.linuxfound.org/sites/events/files/slides/slaballocators.pdf



SLOB allocator

● Small systems
○ The bookkeeping overheads become critical on tiny memory system 

such as embedded systems

● Simple list of blocks (SLOB)
○ Just keep a free list of each available chunk and its size

○ Currently uses a first-fit algorithm

○ Grab the first one big enough to work

○ Split block if leftover bytes

○ No internal fragmentation

○ External fragmentation? Yes. Trade for low overheads

38



SLUB allocator

● Large system
○ The number of SLAB queues can make allocation fast but add 

complexity and storage overhead in large systems

● The unqueue slab allocator (SLUB)
○ All objects of same size from same slab

○ Simple free list per slab – no per-slab metadata

○ Add new fields in struct page to guide the search of free objects
■ void *freelist; // points to the first free object within a slab

■ short unsigned int inuse; // the number of objects allocated from the slab

■ short unsigned int offset; // tells the allocator where to find the pointer to

the next free object

39



40

https://events.static.linuxfound.org/sites/events/files/slides/slaballocators.pdf



kmalloc allocator

● kmalloc()

○ Allocate memory for the kernel from general purpose caches

○ For small sizes, it relies on generic SLAB caches (see 

/proc/slabinfo)

○ For large sizes, it relies on the page allocator

○ The allocated area is guaranteed to be physical contiguous

○ The allocated area size is rounded up to the size of the 

smallest SLAB cache in which it can fit

41



kmalloc API 

● #include <linux/slab.h>

● void *kmaloc(size_t size, int flags);
○ Allocate size bytes and return a pointer to the area (virtual 

address)

○ Size: number of bytes to allocate

○ Flags: same flags as the page allocator (GFP_KERNEL, 

GFP_ATOMIC, GFP_DMA, etc. )

● void kfree(const void *objp);
○ Free an allocated area

42

struct ib_port_attr *tprops;

tprops = kmalloc(sizeof *tprops, 

GFP_KERNEL);

…

kfree(tprops);

drivers/infiniband/core/cache.c



vmalloc allocator

● The vmalloc() allocator
○ Used to obtain memory zones that are contiguous in the virtual 

addressing space, but not made out of physically contiguous pages

○ The allocated area is in the kernel space part of the address space

○ Allocations of fairly large areas is possible

○ Physical memory fragmentation is not an issue

○ Areas cannot be used for DMA, since DMA usually requires 

physically contiguous buffers

○ API in include/linux/vmalloc.h

○ void *vmalloc(unsigned long size); // return a virtual address

43



Conclusion

● Dynamic memory allocation

○ Fit for arbitrary complex data structure

● Buddy memory allocation

○ Simple, fast for power of two blocks

○ Fragmentation

● Slab memory allocator

○ Caching the commonly used objects

44


