Notes of Operating System Capstone Lab Assignments

Outline

- Demo Time/Location
- Rpi 3B+ Rental Rules
- Lab Assignment Submission Guidelines
- Lab Grading Criteria
- Notes for LAB0/LAB1

Demo Time/Location

• Time: 7-9 pm, Thursday

• Location: EC 222

Rpi 3B+ Rental Rules

- A student will obtain
 - one Raspberry Pi 3B+
 - one UART cable
 - one SD card
 - one Card Reader
- Please take these four utilities from the TAs at EC619
- Please return these four utilities after finishing Lab 8 or drop the course.
- You won't get your final score until the Raspberry Pi is returned

Rpi 3B+ Rental Rules

- Please note that the Raspberry Pi 3B+ is susceptible to damage due to power issues.
- Before connecting power, please review the pin layout
- Avoid using power transformers/power supplies

Lab Assignment Submission Guidelines

- You must demonstrate your work to the TAs
- Fork the repository at github.com/oscapstone/osc2024
- Commit your source code to a branch named after your student ID
- Create a Pull Request before the demonstration

Lab Grading Criteria

The lab website lists the score for each task.

100%: Excellent

Your solution functions correctly on the Raspberry Pi, and you can articulate your code well and address TA inquiries proficiently.

• 90%: Good with room for improvement

While your solution performs well in QEMU, it encounters issues on the Raspberry Pi.

Lab Grading Criteria

The lab website lists the score for each task.

70%: Requires additional effort

You haven't completed all the task requirements.

50%: Unclear

You seem unsure about your approach or what you've implemented.

Lab 0 - cross compiler

- Determine the programming language in Labs
 - You're free to choose any language to accomplish the task, whether it's C, C++, or Rust. If you're uncertain, it's recommended to use C

Lab 0 - cross compiler

- If you lack proficiency in C programming or are unfamiliar with using pointers, this course might pose challenges for you
- The simplest method for installing a cross-compiler is to download it from

https://developer.arm.com/downloads/-/gnu-a

Lab 0 - qemu

- Search for instructions on how to install qemu-system-aarch64 on your operating system
- QEMU can emulate a Raspberry Pi, eliminating the need for repetitive reboots and kernel setups
- QEMU can serve as a GDB server, aiding in debugging by providing instruction-by-instruction analysis

Lab 0 - debuger

 The debugger GDB can be sourced from the cross-compiler toolchain or gdb-multiarch

 While GDB plugins like gdb-peda and gef are recommended, they are not mandatory

Lab 1 - basic setup & mini uart

- In lab1, you can refer to the following two repositories:
 - a. https://github.com/s-matyukevich/raspberry-pi-os
 - b. https://github.com/bztsrc/raspi3-tutorial

The two repositories can be found on the external resources page of the lab website

Some small suggestions

Ensure that the UART pin is correctly configured

- Make sure your code is well-structured and readable, which will make debugging easier
- Every function should handle all possible cases to prevent crashes in future labs.

Deadline of Lab Assignment

Lab	Deadline
Lab 0/1	3/15
Lab 2	3/28
Lab 3	4/11
Lab 4	4/25
Lab 5	5/9
Lab 6	5/23
Lab 7	6/6
Lab 8	6/20

Q&A