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Superscalar Execution

● Idea of instruction-level parallelism

● Superscalar scaling issues

○ Multiple fetch and branch prediction

○ Dependence-checks & stall logic

○ Wide bypassing

○ Register file & cache bandwidth

● Superscalar vs. VLIW/EPIC
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In-order Execution

● Assumptions:

○ Single FP adder takes 2 cycles

○ Single FP multiplier takes 5 cycles

○ Can issue add & multiply together

○ Single adder
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V: add  $f2, $f4, $f10

W: mul $f10, $f6, $f10

X: add  $f10, $f8, $f12

Y: add  $f4, $f6, $f4

Z: add  $f4, $f8, $f10
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Out of Order Execution

● Can start Y as soon as adder available

● Z can be issued until $f10 is not busy and 

adder is available 
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V: add  $f2, $f4, $f10

W: mul $f10, $f6, $f10

X: add  $f10, $f8, $f12

Y: add  $f4, $f6, $f4

Z: add  $f4, $f8, $f10
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Register Renaming
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V: add  $f2, $f4, $f10

W: mul $f10, $f6, $f10

X: add  $f10, $f8, $f12

Y: add  $f4, $f6, $f4

Z: add  $f4, $f8, $f10

V: add  $f2, $f4, $f10a

W: mul $f10a, $f6, $f10a

X: add  $f10a, $f8, $f12

Y: add  $f4, $f6, $f4

Z: add  $f4, $f8, $f14
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Scalar Pipeline and the Flynn Bottleneck

● Scalar pipelines

○ One instruction per stage

○ Performance limit (aka “Flynn Bottleneck”) is CPI = IPC = 1

○ Limit is never even achieved (hazards)

○ Diminishing returns from “super-pipelining” (hazards + 

overhead)
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Multiple-Issue Pipeline

● Overcome this limit using multiple issue

○ Also sometimes called superscalar

○ Two instructions per stage at once, or three, or four, or eight…

○ “Instruction-Level Parallelism (ILP)” [Fisher]
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An Opportunity …

● Why not execute following two instructions at the same time ?

○ ADD R3, R1, R2

○ ADD R6, R4, R5

● What about ?

○ ADD R3, R1, R2

○ ADD R6, R4, R3

○ In this case, dependencies prevent the parallel execution

● Could we issue more instructions at a time ?
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Problem: Checking Dependency

● For two instructions: 2 checks

○ ADD Dest1,   Src11,  Src21

○ ADD Dest2,   Src12,  Src22

● For three instructions: 6 checks

○ ADD Dest1,   Src11,  Src21

○ ADD Dest2,   Src12,  Src22

○ ADD Dest3,   Src13,  Src23

● How many checks needed in four instructions ?

● Plus checking for load-to-use stalls for prior n loads
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Simple Dual-issue Pipeline
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• Fetch an entire 16B or 32B cache block
• 4 to 8 instructions (assuming 4-byte fixed length instructions)

• Predict a single branch per cycle

• Parallel decode
• Need to check for conflicting instructions

• Output of I1 is an input to I2
• Other stalls, too (for example, load-use delay)
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Simple Dual-issue Pipeline

12

• Multi-ported register file
• Larger area, latency, power, cost, complexity

• Multiple execution units
• Simple adders are easy, but bypass paths are expensive

• Memory unit
• Option #1: single load per cycle (stall at decode)

• Option #2: add a read port to data cache
• Larger area, latency, power, cost, complexity
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Superscalar Pipeline Diagrams -- Ideal
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Single-issue 1 2 3 4 5 6 7 8 9 10 11 12
ld [r1+0]➔r2 F D X M W
ld [r1+4]➔r3 F D X M W
ld [r1+8]➔r4 F D X M W
ld [r1+12]➔r5 F D X M W
add r12,r13➔r6 F D X M W
add r14,r16➔r7 F D X M W
add r15,r17➔r8 F D X M W
ld [r18]➔r9 F D X M W

M WXDFadd r15,r17➔r8

WMXDFld [r1+12]➔r5

WMXDFld [r1+8]➔r4

WMXDFld [r1+4]➔r3

118 9 106 7

W

5

M

4

XDFld [r1+0]➔r2

3212-way superscalar

M WXDFadd r12,r13➔r6

WX MDFadd r14,r16➔r7

WMXDFld [r18]➔r9



Superscalar Pipeline Diagrams -- Realistic
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M WXDFadd r7,r6➔r8

WMXDFld [r1+8]➔r4

WMXDFld [r1+4]➔r3

118 9 106 7

W

5

M

4

XDFld [r1+0]➔r2

3212-way superscalar

M WXDFadd r4,r5➔r6

WX MDFadd r2,r3➔r7

WMXDFld [r8]➔r9

M WXDFadd r7,r6➔r8

WMXDFld [r1+8]➔r4

WMXDFld [r1+4]➔r3

118 9 106 7

W

5

M

4

XDFld [r1+0]➔r2

321Scalar

M WXDFadd r4,r5➔r6

WX MDFadd r2,r3➔r7

WMXDFld [r8]➔r9

d*

d*

Superscalar is 

only  one cycle 

fast

d*

d*
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Test Yourself !!

● How many cycle is spent in superscalar pipelining ?
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add r5,r7➔r8

WMXDFld [r1+12]➔r5

WMXDFld [r1+8]➔r4

WMXDFld [r1+4]➔r3

118 9 106 7

W

5

M

4

XDFld [r1+0]➔r2

321Dual-issue

add r2,r3➔r6

add r4,r6➔r7

ld [r8]➔r9



Test Yourself !!

● How many cycle is spent in superscalar pipelining ?

○ 10 cycles
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M Wd* XDFadd r5,r7➔r8

WMXDFld [r1+12]➔r5

WMXDFld [r1+8]➔r4

WMXDFld [r1+4]➔r3

118 9 106 7

W

5

M

4

XDFld [r1+0]➔r2

321Dual-issue

M WXDFadd r2,r3➔r6

WX Md*DFadd r4,r6➔r7

WMXd*Ds*Fld [r8]➔r9



Superscalar Challenges - Front End

● Wide instruction fetch
○ Modest: need multiple instructions per cycle
○ Aggressive: predict multiple branches

● Wide instruction decode
○ Replicate decoders

● Wide instruction issue
○ Determine when instructions can proceed in parallel
○ More complex stall logic - order N2 for N-wide machine
○ Not all combinations possible

● Wide register read
○ One port for each register read
○ Example, 4-wide superscalar ➔ >= 8 read ports
○ Each port needs its own set of address and data wires
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Superscalar Challenges - Back End

● Wide instruction execution
○ Replicate arithmetic units
○ Multiple cache ports (slower access, higher energy)

● Wide instruction register writeback
○ One write port per instruction that writes a register
○ Example, 4-wide superscalar ➔ >= 4 write ports

● Wide bypass paths
○ More possible sources for data values
○ Order (N2 * P) for N-wide machine with execute pipeline depth P

● Fundamental challenge:
○ Amount of ILP (instruction-level parallelism) in the program
○ Compiler must schedule code and extract parallelism
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How Much ILP is There ?

● The compiler tries to schedule code to avoid stall
○ Even for scalar machines (to fill load-use delay slot)

○ Even harder to schedule multiple-issue (superscalar)

● How much ILP is common ?
○ IPC (or CPI) depends on the applications

● Even given unbounded ILP, superscalar has implementation 

limits
○ IPC (or CPI) vs clock frequency trade-off

○ Given these challenges, what is reasonable today ?

■ ~4 instruction per cycle maximum
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Superscalar Decode & Register Read

● What is involved in decoding multiple (N) insns per cycle?

● Actually doing the decoding? 
○ Easy if fixed length (multiple decoders), doable if variable length

● Reading input registers?
– 2N read + N write (2 read + 1 write per insn) (latency  #ports)

+ Actually less than 2N, most values come from bypasses

20
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Superscalar Stalls
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• Invariant: stalls propagate upstream to younger insns

• If older insn in pair stalls, younger insns must stall too

• What if younger insn stalls?
• Can older insn from younger group move up?

• Fluid: yes, but requires some muxing
± Helps CPI a little, hurts clock a little

• Rigid: no
± Hurts CPI a little, but doesn’t impact clock

Rigid 1 2 3 4 5
ld r4,0(r1) F D X M W
addi r4,1,r4 F D d* d* X
sub r3,r5,r2 F p* p* D
st r3,0(r1) F p* p* D
ld r8,4(r1) F

Fluid 1 2 3 4 5
ld r4,0(r1) F D X M W
addi r4,1,r4 F D d* d* X
sub r3,r5,r2 F D p* X
st r3,0(r1) F p* p* D
ld r8,4(r1) F p* D



N2 Dependence Cross-Check

22

• Stall logic for 1-wide pipeline with full bypassing
• Full bypassing = load/use stalls only

X/M.op==LOAD && (D/X.rs1==X/M.rd || D/X.rs2==X/M.rd)

• Two “terms”:  2N

• Now: same logic for a 2-wide pipeline
X/M1.op==LOAD && (D/X1.rs1==X/M1.rd || D/X1.rs2==X/M1.rd) ||

X/M1.op==LOAD && (D/X2.rs1==X/M1.rd || D/X2.rs2==X/M1.rd) ||

X/M2.op==LOAD && (D/X1.rs1==X/M2.rd || D/X1.rs2==X/M2.rd) ||

X/M2.op==LOAD && (D/X2.rs1==X/M2.rd || D/X2.rs2==X/M2.rd)

• Eight “terms”:  2N2

• This is the N2 dependence cross-check

• Not quite done, also need
• D/X2.rs1==D/X1.rd || D/X2.rs2==D/X1.rd



Superscalar Execute
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• What is involved in executing multiple (N) instructions per 
cycle?

• Multiple execution units … N of every kind?
• N ALUs? OK, ALUs are small

• N FP dividers? No, FP dividers are huge and fdiv is uncommon

• How many branches per cycle?

• How many loads/stores per cycle?

• Typically some mix of functional units proportional to instruction mix

• Intel Pentium: 1 any + 1 ALU



D$ Bandwidth: Multi-Porting, Replication

● How to provide additional D$ (D-cache) bandwidth ?
○ Have already seen split I$/D$, but that gives you just one D$ port
○ How to provide a second (maybe even a third) D$ port ?

● Option#1: multi-porting
○ + Most general solution, any two accesses per cycle
○ - Lots of wires; expansive in latency, area (cost), and power

● Option#2: replication
○ Read from either replica, but writes update both replicas

■ Writing both insures they have the same values

○ Multiplies read bandwidth only (writes must go to all replicas)
○ + General solution for loads, little latency penalty
○ - Not a solution for stores, area, power penalty
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D$ Bandwidth: Banking

● Option#3: banking (or interleaving)
○ Divide D$ into banks (by address), one access per bank per cycle

○ Bank conflict: two access to same bank -> one stall

○ + No latency, area, power overheads 

○ + One access per bank per cycle, assuming no conflicts

○ - Complex stall logic -> address not known until execute stage

○ - To support N accesses, need 2N+ banks to avoid frequent conflicts

● Which address bit(s) determine bank ?
○ Offset bits? Individual cache lines spread among different banks

■ + Fewer conflicts

■ - Must replicate tags across banks, complex missing handling

○ Index bits? Banks contain complete cache lines

■ - More conflicts

■ + Tags not replicated, simpler missing handling
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Superscalar Register Read/Write

● How many register ports to execute N insns per cycle ?
○ 2N read + N write (2 read + 1 write per insn)

○ In reality, fewer than that

■ Read ports: some instructions read only one register

■ Write ports: store, branches (35 % insns) don’t write registers

○ Multi-porting and replication both work for register files

○ Banking ? Not used (conflicts too hard to handle)
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Superscalar Bypass
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• N2 bypass network

– N+1 input muxes at each ALU input

– N2 point-to-point connections

– Routing lengthens wires

– Heavy capacitive load

– Expensive metal layer crossings

• One of the big problems of superscalar

• Why ? On the critical path of single-cycle 
“bypass & execute” loop



Not All N2 Created Equal

● N2 bypass vs. N2 stall logic & dependence cross-check

● N2 bypass
○ Multiple levels (MX, WX) of bypass

○ Must fit in one clock period with ALU

● Dependence cross-check not even 2nd biggest N2 problem
○ Register file is also an N2 problem (think latency where N is # ports)

○ And also more serious than cross check
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Superscalar Register Bypass

● Flow of data between instructions
○ R1 = R3 * R4

○ R7 = R1 + R2

○ RAW (Read-after-Write) dependency occurs in R1

● Register Bypassing
○ Hardware mechanism allows data to flow directly from the output of one instruction to the input 

of another

○ The result of the first instruction is written to register R1

○ At the same time, a second copy of the result is piped directly to the arithmetic unit that 

consumes the value

○ Requires a hardware interconnection network between outputs of functional units (such as 

adders, multipliers) and the inputs of other functional units
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Mitigate N2 Bypass :

Clustering
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• Clustering: mitigates N2 bypass
• Group ALUs into K clusters

• Full bypassing within a cluster

• Limited bypassing between clusters
• With a one cycle delay

• Can hurt IPC, but faster clock

• (N/K) + 1 inputs at each mux

• (N/K)2 bypass paths in each cluster

• Steering: key to performance
• Steer dependent insns to same cluster

• Statically (compiler) or dynamically

• Cluster register file, too
• Replicate a register file per cluster

• All register writes update all replicas

• Few read ports; only for cluster



Mitigating N2 RegFile: Clustering ++

● Clustering: split N-wide execution pipeline into K clusters
○ With centralized register file, 2N read ports and N write ports

● Clustered register file: extend clustering to register file
○ Replicate the register file (one replica per cluster)

○ Register file supplies register operands to just its cluster

○ All register writes go to all register files (keep them in sync)

○ Advantage: fewer read ports per register

■ K register files, each with 2N/K read ports and N write ports
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Superscalar Fetch

● What is involved in fetching multiple instructions per cycle?

● In same cache block? → no problem
○ 64-byte cache block is 16 instructions (~4 bytes per instruction)

○ Favors larger block size (independent of hit rate)

● Compilers align basic blocks to I$ lines 

(pad with nops)
– Reduces effective I$ capacity

+ Increases fetch bandwidth utilization (more important)

● In multiple blocks? → Fetch block A and A+1 in 

parallel
○ Banked I$ + combining network

– May add latency (add pipeline stages to avoid slowing down clock)

32
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Limits of Simple Superscalar Fetch

● How many instructions can be fetched on average ?
○ BTB predicts the next block of instructions to fetch

■ Support multiple branch predictions per cycle

■ Discard post-branch insns after first branch predicted as “taken”

○ Lowers effective fetch width and IPC

○ What is the average number of instructions per taken branch ?

■ Assume: 20% branches, 50% taken -> ~10 instructions

○ Consider a 5-instruction loop with 4-issue processor

■ Without smarter fetch, ILP is limited to 2.5 (not 4)

○ Compiler could “unroll” the lop (reduce taken branches)

○ What else can we increase fetch rate ?
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Increasing Superscalar Fetch Rate

● Option #1: over-fetch and buffer
○ Add a queue between fetch and decode (18 entries in Intel Core 2)

○ Compensates for cycles that fetch less than maximum instructions

○ “decouples” the “front end” (fetch) from the “back end” (execute)

● Option #2: predict next two blocks (extend BTB)
○ Transmits two PCs to fetch stage: “next PC” and “next-next PC”

○ Access I-cache twice (requires multiple ports or banks)

○ Requires extra merging logic to select and merge correct insns

○ Elongates pipeline, increase branch penalty
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Increasing Superscalar Fetch Rate

● Option #3: Loop stream detector (Intel Core i7)
○ Put entire loop body into a small cache

○ Core i7: 28 micro-ops (avoids re-decoding macro-ops !)

○ Any branch mis-prediction requires normal re-fetch

● Option #4: trace cache (Pentium 4)
○ Tracks “traces” of disjoint but dynamically consecutive instructions

○ Pack (predicted) taken branch & its target into a one “trace” entry

○ Fetch entire “trace” while predicting the “next trace”
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Impact of Branch Prediction

● Base CPI for scalar pipeline is 1

● Base CPI for N-way superscalar pipeline is 1/N
○ Amplifies stall penalties

○ Assume no data stalls (an overly optimistic assumption)

● Example: Branch penalty calculation
○ 20% branches, 75% taken, 2 cycle penalty, no branch prediction

● Scalar pipeline
○ 1 + 0.2*0.75*2 = 1.3 -> 1.3/1 = 1.3 -> 30% slowdown

● 2-way superscalar pipeline
○ 0.5 + 0.2*0.75*2 = 0.8- > 0.8/0.5 = 1.6 -> 60% slowdown

● How about 4-way superscalar pipeline slowdown?

36



Predication 

● Branch mis-predictions hurt more on superscalar
○ Replace difficult branches with something else …

○ Convert control flow into data flow (& dependencies)

○ Avoids mis-predictions by removing hard-to-predict branches

○ Can hurt performance if branch was highly predictable

● Predication: insns conditionally executed
○ Full predication (ARM, Intel Itanium)

■ Can tag every insn with predicate, but extra bits in instruction

○ Conditional moves (Alpha, x86)

■ Construct appearance of full predication from one primitive

● comoveq r1, r2, r3 // if (r1 == 0) r3 = r2

■ - Doesn’t handle conditional memory operations

■ + Only good way of adding predication to an existing ISA
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Predication 

● Full predication vs partial predication
○ “T” means always executed

○ Full predication yields true (p2) and false (p3)

predicate

○ In the partial-predication case, we use a 

“select” to implement “a = b ? c : d”

38

x = *ap;

if (x > 0)

t = *bp + 1;

else

t = x – 1;

*zp = t

T ld t1 = 0[ap]

T cmpgt p2, p3 = t1, 0

p2 ld t3 = 0[bp]

p2 add         t4 = t1, 1

p3 sub         t4 = t1, 1

T Store     0[zp] = t4

ld t1 = 0[ap]

cmpgt p2, p3 = t1, 0

ld t3 = 0[bp]

add          t4 = t1, 1

sub          t4 = t1, 1

select      t6 = p2, t4, #5

store       0[zp] = t4

Full predication

Partial predication



Predication If-Conversion Example
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A = Y[i]

If (A == 0)

A = W[i]

Else

Y[i] = 0

Z[i] = A * X[i]

Source code 0:  ldf Y(r1), f2

1:  fbne f2, 4

2:  ldf

W(r1), f2

3:  jump 5

4: stf f0, Y(r1)

5:  ldf X(r1), 

f4

6:  mulf f4, f2, f6

7:  stf f6, 

Z(r1)

NT = 50% T = 50%

A

B C

D0:  ldf Y(r1), f2

1:  fsbne f2, p1

2:  ldf.p p1, W(r1), f2

4:  stf.np p1, f0, Y(r1)

5:  ldf X(r1), f4

6:  mulf f4, f2, f6

7:  stf f6, Z(r1)

Using 

Predication



ISA Support for Predication

● Intel Itanium: change branch 1 to set-predicate insn fspne

● Change insns 2 and 4 to predicated insns
○ ldf.p performs ldf if predicate p1 is true

○ stf.np performs stf if predicate p1 is false

40

0:  ldf Y(r1), f2

1:  fsbne f2, p1

2:  ldf.p p1, W(r1), f2

4:  stf.np p1, f0, Y(r1)

5:  ldf X(r1), f4

6:  mulf f4, f2, f6

7:  stf f6, Z(r1)



Predication Performance

● Cost/benefit analysis
○ Benefit: Predication avoids branches

■ Thus avoiding mis-predication

■ Also reduces pressure on predicator table (fewer branches to track)

○ Cost: extra instructions (fetched, but not actually executed)

● As branch predictor are highly accurate …
○ Might not help:

■ 5-stage pipeline, two instruction on each path of if-then-else

■ No performance gain, likely slower if branch predictable

○ But can help

■ Deeper pipelines, hard-to-predict branches, and few added insn

● Thus, predication is useful, but not a panacea

41



Wide Memory Access

42

• How do we allow multiple loads/stores to execute?
• Option#1: Extra read ports on data cache

• Higher latency, etc.

• Option#2: “Bank” the cache
• Can support a load to an “odd” and an “even” address

• Problem: address not known to execute stage

• Complicates stall logic

• With two banks, conflicts will occur frequently

• Option #3: Replicate the cache
• Multiple read bandwidth only

• Larger area, but no conflicts, can be faster than more ports

• Independent reads to replicas, writes (stores) go to all replicas

• Option #4: Pipeline the cache (“double pump”)
• Start cache access every half cycle

• Difficult circuit techniques



Wide Writeback

43

• What is involved in multiple (N) writebacks per cycle?
– N register file write ports (latency  #ports)

• Usually less than N, stores and branches don’t do 
writeback

• But some ISAs have update or auto-incr/decr addressing 
modes

• Multiple exceptions per cycle?
• No just the oldest one

regfile



Multiple-Issue Implementations

44

• Statically-scheduled (in-order) superscalar
+ Executes unmodified sequential programs

– Hardware must figure out what can be done in parallel

• E.g., Pentium (2-wide), UltraSPARC (4-wide), Alpha 21164 (4-wide)

• Very Long Instruction Word (VLIW)
+ Hardware can be dumb and low power

– Compiler must group parallel instructions, requires new binaries

• E.g., TransMeta Crusoe (4-wide)

• Explicitly Parallel Instruction Computing (EPIC)
• A compromise: compiler does some, hardware does the rest

• E.g., Intel Itanium (6-wide)

• Dynamically-scheduled superscalar
• Pentium Pro/II/III (3-wide), Alpha 21264 (4-wide) 

• We’ve already talked about statically-scheduled superscalar



Very Long Instruction Word (VLIW)

45

• Hardware-centric multiple issue problems
– Wide fetch+branch prediction, N2 bypass, N2 dependence 

checks
– Hardware solutions have been proposed: clustering, trace 

cache

• Compiler-centric: very long insn word (VLIW)
• Effectively, a 1-wide pipeline, but unit is an N-insn group
• Compiler guarantees insns within a VLIW group are 

independent
• If no independent insns, slots filled with nops

• Group travels down pipeline as a unit
+ Simplifies pipeline control (no rigid vs. fluid business)
+ Cross-checks within a group un-necessary

• Downstream cross-checks (maybe) still necessary

• Typically “slotted”: 1st insn must be ALU, 2nd mem, etc.
+ Further simplification



Very Long Instruction Word (VLIW)

46

VLIW:  instructions that “encode” multiple operations.

The hardware executes the entire instruction “at once” on 

parallel function units in execute stage.

The “long instructions” encode the fact that the operations are 

independent.  So, the hardware does not need to dynamically 

figure this out.  This can save area and power and is now 

popular in embedded processors (e.g., Texas Instruments 

C6x series of DSPs).
Inst N: ADD.D  F1,F1,F4 NOP L.D  F7, 0(R1)    DSUBI R2,R2,#1

NOP

Inst N+1: ADD.D  F1,F1,F7 MUL.D F4,F5,F6        NOP DSUBI R2,R2,#1 

BEQZ  R2, Loop  



VLIW Advantages

● + Simpler instruction fetch
○ Fetch a bundle instructions per cycle

● + Simpler dependence check logic
○ Compiler guarantees all instructions in bundle independent

● + Simpler branch prediction
○ Restrict to one branch per bundle

● By default, doesn’t help bypasses or register file problems

● Compiler-visible clustering possible in VLIW
○ Each “lane” of VLIW has “local” registers (read/written by this lane)

○ A few “global” registers (R/W by any lane) are used to communicate between lanes
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Pure and Tainted VLIW
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• Pure VLIW: no hardware dependence checks at all
• Not even between VLIW groups

+ Very simple and low power hardware

• Compiler responsible for scheduling stall cycles

• Requires precise knowledge of pipeline depth and structure

– These must be fixed for compatibility

– Doesn’t support caches well

• Used in some cache-less micro-controllers and signal processors

• Not useful for general-purpose computation

• Tainted (more realistic) VLIW: inter-group checks
• Compiler doesn’t schedule stall cycles

+ Precise pipeline depth and latencies not needed, can be changed

+ Supports caches

• TransMeta Crusoe



VLIW Disadvantages

● - Code density
○ Lots of “no-ops” in bundles

● Not compatible across machines of different widths
○ “Not compatible” could also mean programs would execute incorrectly

○ Or, “not compatible” can mean programs would execute slowly

● VLIW doesn’t solve all problems
○ VLIW mainly targets dependence checking

■ Which isn’t the worst N2 problem in multiple-issue

○ Doesn’t magically create ILP
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EPIC
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• EPIC (Explicitly Parallel Insn Computing)

• New VLIW (Variable Length Insn Words)

• Implemented as “bundles” with explicit dependence bits

• Code is compatible with different “bundle” width machines

• Compiler discovers as much parallelism as it can, hardware 
does rest

• E.g., Intel Itanium (IA-64)

• 128-bit bundles ( three 41-bit insns + 4 dependence bits)



Multiple Issue Redux

● Multiple issue
○ Exploits insn level parallelism (ILP) beyond pipelining

○ Improve IPC, but perhaps at some clock & energy penalty

○ 4-6 way issue is about the peak issue width currently justifiable

● Problem spots
○ N2 bypass & register file -> clustering

○ Fetch + branch prediction -> buffering, loop streaming, trace 

cache

○ N2 dependency check -> VLIW/EPIC
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ILP and Static Scheduling
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• No point to having an N-wide pipeline…

• …if average number of parallel instructions per cycle (ILP) 
<< N

• How can the compiler help extract parallelism?

• These techniques applicable to regular superscalar

• These techniques critical for VLIW/EPIC

• Loop unrolling, software pipelining

• Take compilers class for more detail



Takeaway Questions

● What are pros and cons of superscalar architecture ?

● What is the biggest challenge in the superscalar 

architecture ? Why?

● How to increase the data cache bandwidth ?

● What is VLIW ? 

● What are pros and cons of VLIW ?
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