
Lecture 2-1: Sign-Extension

Department of Computer Science

Tsung Tai Yeh

Thursday: 1:20 pm– 3:10 pm

Classroom: EC-022

CS10014 Computer Organization



Acknowledgements and Disclaimer

● Slides were developed in the reference with 

● CS 61C at UC Berkeley 

● https://inst.eecs.berkeley.edu/~cs61c/sp23/

● CS 252 at UC Berkeley

● https://people.eecs.berkeley.edu/~culler/courses/cs252-s05/

● CSCE 513 at University of South Carolina

● https://passlab.github.io/CSCE513/

2

https://inst.eecs.berkeley.edu/~cs61c/sp23/
https://people.eecs.berkeley.edu/~culler/courses/cs252-s05/
https://passlab.github.io/CSCE513/


Sign Magnitude Representation

● The Most Significant bit of the number if a sign bit

● The remaining bit represents the magnitude of the 

number in a binary form

● Example: 8-bit sign-magnitude form

3

0 0  1  0  0  0  1  0
MSB Magnitude

+34 = 0 0  1  0  0  0  1  0

-34 = 1 0  1  0  0  0  1  0

Using n-bits, the range of numbers is from -(2n-1) to (2n-1 - 1)



1’s Complement Representation

● The representation of the negative number is different 

from the positive number representation

● Example: The represent -34 in 1’s complement form

4

+34 = 0 0  1  0  0  0  1  0

-34 = 1 1  0  1  1  1  0  1

Invert all 1s in 

that number by 

0s and 0s by 1s



2’s Complement Representation

● The representation of the positive number as the 1’s 

complement form

● Translate negative number from 1’s complement to 2’s 

complement form
● Write the number corresponding to +34

● Find 1’s complement of +34

● Add 1 to the 1’s complement number

5



2’s Complement Representation

● Translate negative number from 1’s complement to 2’s 

complement form
● Write the number corresponding to +34

● Find 1’s complement of +34

● Add 1 to the 1’s complement number

6



Understanding of overflow

7

1   0   1   1       7(DEC)

+  0   1   1   1      11(DEC)

1  0  0   1   0      19(DEC)

Overflow -> 19 is out of the range 

of the 4-bit value representation 

(0-15)

● Carry indicates overflow



Overflow in Signed numbers (2’s Complement)

8

-23 22 21 20
The range of 4-bits signed number

-2n-1 <-> (2n-1 - 1) ==> -8 <-> 7

1   0   0   1       -7(DEC)

+  1   1   0   1       -3(DEC)

1  0  1   1   0      -10(DEC)

Overflow !

Sign



Overflow in Signed numbers (2’s Complement)

9

-23 22 21 20
The range of 4-bits signed number

-2n-1 <-> (2n-1 - 1) ==> -8 <-> 7

0   1   1   1        7(DEC)

+  0   0   0   1        1(DEC)

1   0   0   0        -8(DEC)

Overflow !

Sign



Overflow in Signed numbers (2’s Complement)

10

-23 22 21 20
The range of 4-bits signed number

-2n-1 <-> (2n-1 - 1) ==> -8 <-> 7

0   1   1   1        7(DEC)

+  0   0   0   1        1(DEC)

1   0   0   0        -8(DEC)

Overflow ! How to fix this problem?



Overflow in Signed numbers (2’s Complement)

11

-24 23 22 21 20 The range of 5-bits signed number

-2n-1 <-> (2n-1 - 1) ==> -16 <-> 15

0   0   1   1   1        7(DEC)

+ 0   0   0   0   1        1(DEC)

0   1   0   0   0        8(DEC)

Extend 4-bit value to 5 bits to hold 

the correct result

Sign



What is sign extension?

● Sign-extension
● Copying the sign bit of the un-extended value to all bits on the 

left side of the larger-size value
● SEXT instruction widens the data while maintaining its sign and value.
● e.g. widen the data while maintaining its sign and value

● Unsigned number, converts positive values, provided the sign bit 

is zero

12

01001000 <- 8-bit value of 72 

00000000 01001000 <- extended to 16-bit value 

00000000 00000000 00000000 01001000 <- extended 32-bit value 



What is sign extension?

● 8-bit encoding of decimal signed number -56 can be 

sign-extended as follows:

13

00111000 <- 8-bit value of 56

11000111 <- 8-bit value of -56 (1’s complement)

11001000 <- 8-bit value of -56 (2’s complement)

11111111 11001000 <- extended to 16-bit value 

11111111 11111111 11111111 11001000 <- extended 32-bit value

Sign



Memory and Variable Size

● So Far
● lw reg,   off(bAddr)

● sw reg,   off(bAddr)

● How to interact with memory

values smaller than a word?
● E.g. Characters (1B)

● E.g. Shorts (sometimes 2B)

14



Trading Bytes with Memory

● Method 1: Move words in and out of memory using bit-

masking and shifting
● lw s0,   0(s1)

● andi s0, s0, 0xFF  # lowest byte

● Method 2: Load/store byte instructions
● lb s1, 1(s0)

● sb   s1, 0(s0)

15



Endianess

● Big Endian
● Most significant byte at least address of word

● Word address = address of the most significant byte

● Little Endian
● Word address = address of the least significant byte

● RISC-V is Little Endian

16



Byte Instructions

● lb/sb utilize the least significant bytes of the register
● On sb, upper 24 bits are ignored

● On lb, upper 24 bits are filled by sign-extension

● For example, let *(s0) = 0x00000180

17



Byte Instructions

● lh reg,  off(bAddr)       ‘load half’

● sh reg, off(bAddr)        ‘store half’
● On sh, upper 16 bits are ignored

● On lh, upper 16 bits are filled by sign-extension

● Unsigned Instructions
● lhu reg,     off(bAddr)    ‘load half unsigned’

● lbu reg,     off(bAddr)     ‘load byte unsigned’

● On l(b/h)u, upper bits are filled zero-extension

18



Takeaway Questions

19

● What is the value in x12?
● (A) 0x8

● (B) 0xf8

● (C) 0xfffffff8

addi x11, x0, 0x8f5

sw x11, 0(x5)

lb x12. 1(x5)

The range of the 12-bit signed immediate is -212 <-> 212 - 1 

1000 0000 0000  1111 1111 1111

-2048(DEC) .      2047(DEC)

Sign



Takeaway Questions

20

● What is the value in x12?
● (A) 0x8

● (B) 0xf8

● (C) 0xfffffff8

addi x11, x0, 0x8f5

sw x11, 0(x5)

lb x12. 1(x5)

0x8f5 <=> 1000 1111 0101 (2’ complement) <=> -779(DEC)

1000 1111 0101 (2’complement) -> -779

1000 1111 0100 (1’ complement)

0111 0000 1011 (unsigned 779)

Sign



Takeaway Questions

21

● What is the value in x12?
● (A) 0x8

● (B) 0xf8

● (C) 0xfffffff8

addi x11, x0, 0x8f5

sw x11, 0(x5)

lb x12. 1(x5)

0x8f5 <=> 1000 1111 0101 (2’ complement) <=> -779(DEC)

1111 1111 1111 1111 1111 1000 1111 0101 (Signed extend 

0x8f5 to 32-bits) => 0xfffff8f5

Sign



Takeaway Questions

22

● What is the value in x12?
● (A) 0x8

● (B) 0xf8

● (C) 0xfffffff8

addi x11, x0, 0x8f5

sw x11, 0(x5)

lb x12. 1(x5)

• addi x11, x0, 0x8f5  

• The immediate got sign extended, x11 is 0xfffff8f5 because 

x11 is signed 32-bit register 

• sw x11, 0(x5) 

• the value of x11 is copied to x5 = 0xfffff8f5



Takeaway Questions

23

● What is the value in x12?
● (A) 0x8

● (B) 0xf8

● (C) 0xfffffff8

addi x11, x0, 0x8f5

sw x11, 0(x5)

lb x12, 1(x5)

• lb x12, 1(x5)

• Load byte sign extend to the register

• 0(x5) = 0xf5

• 1(x5) = 0xfffffff8


