X //1 National Yang Ming Chiao Tung University
T i [N
a7+ Computer Architecture & System Lab

Lecture 9: Pipelining |

CS10014 Computer Organization

Department of Computer Science
Tsung Tai Yeh
Thursday: 1:20 pm- 3:10 pm

Classroom: EC-022

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Acknowledgements and Disclaimer

e Slides were developed in the reference with

® CS61C at UC Berkeley

® hittps://inst.eecs.berkeley.edu/~cs61c/sp23/
® (CIS510 at Upenn

® hittps://www.cis.upenn.edu/~cis5710/spring2019/
® CSCE 513 at University of South Carolina

® https://passiab.qithub.io/CSCE513/

https://inst.eecs.berkeley.edu/~cs61c/sp23
https://inst.eecs.berkeley.edu/~cs61c/sp23/
https://www.cis.upenn.edu/~cis5710/spring2019/
https://passlab.github.io/CSCE513/

X2
=3¢071\
l

#Z % National Yang Ming Chiao Tung University

&t/ Computer Architecture & System Lab

Outline

e Data Hazard

e Control Hazard

e Delay Branch Slot

e Branch Prediction

e Branch Target Buffer
e Superscalar processor

X ,/1\ National Yang Ming Chiao Tung University

=X}z
",%-r Computer Architecture & System Lab

Problems for Pipelining CPUs (1/2)

o Hazards prevent next instruction from executing

during its designated clock cycle
o Structural hazard:
= Occurs when multiple instructions compete for access to
a single physical resource
o Data hazard:
= Instructions have data dependency
= Need to wait for previous instruction to complete its data
read/write
o Control hazard.:
= Flow of execution depends on previous instruction

National Yang Ming Chiao Tung University
Computer Architecture & System Lab

IF/ID ID/EX EX/FEM ME%/WB
| 1 |

add s0,t0,tl

sub t2,s0,t0

X2
=3¢071\
l

#Z % National Yang Ming Chiao Tung University

&t/ Computer Architecture & System Lab

Outline

e Data Hazard

e Control Hazard

e Delay Branch Slot

e Branch Prediction

e Branch Target Buffer
e Superscalar processor

X ,/1 National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Data Hazard (1/10)

o Data hazard
o Instructions have data dependency
o Need to wait for previous instruction to complete its data

read/write
o Occurs when an instruction reads a register before a
previous instruction has finished writing to that register

e Three cases to consider
o Register access

o ALU result
o Load data hazard

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
raT# Computer A

Data Hazard: REG (1/2) The same register is

. written and read in one
o Register Access cycle:

1. WB must write value
before ID reads new value
2. No structural hazard —
Separate ports allows
or £3,td t5 I R simultaneous R/W

add t0,tl,t2 @&

1w t0,8(t3)

sw t0,4 (t3)

sll t6,t0,t3

X f/“‘ Sztional Yang Ming Chiao Tung University S O I u ti O n : R e g F i I e H W
uter Arc ure & System

rData Hazard:REG (2/2) should write-then-read in
the same cycle
e Register Access 1. Exploit high speed of

RegFile (100 ps + 100 ps)
2. Might not always be
possible to write-then-
read in the same cycle.,
€.g. In high-frequency

add t0,tl,t2 @&

1w t0,8(t3)

or t3,t4,t5

sw t0,4 (t3)

sll t6,t0,t3

2]

ﬁ National Yang Ming Chiao Tung University
\

X
"Eg-r Computer Architecture & System Lab

Data Hazard: ALU (1/6) Problem: Instruction depends

o ALU Result on WB’s RegFile write from
previous instruction

sub, or’s ID reads old value
of sO and calculates wrong
= | result

sub t2,s0,t0

or té6 ,S_O,t3 mem |44 -!‘i. DMEM
. | e XOI' gets the right value;
xor t5,tl,s0 I II" RegFile is write-then-read

sw s0,4(t4)

sOvalue| 5 5 5 5 5/9 9 9 9 9 10

\/N lYgMgCh o Tung University
-r Cmp er Architecture & System Lab

Data Hazard: ALU(2/6)

« ALU solution 1: Stalling I?Luzl?llgc:eodegzgli\l/qeely nop-

stages do nothing during
clock cycles

2. Stall all stages by
preventing PC, IF/ID
pipeline register from

IF ID EX M
sub t2,50,t0 |ﬁ||H writing
IF ID M

or t6,s0,t3 e

sub = nop

sOvalue| 5 5 5 5 ||5/9) 9 9 9 11

\/N lYgMgCh o Tung University
-r Cmp er Architecture & System Lab

Data Hazard: ALU (3/6)
o« ALU solution 1: Stalling

Stalls reduce performance
1. Compiler could
rearrange code/insert
nops to avoid hazard (and
therefore stalls), but this
requires knowledge of the

sub t2,5_0,t0 Rey DMEM H plpellne Structure

sub = nop

or t6,s0,t3 e

sOvalue| 5 5 5 5 ||5/9) 9 9 9 12

Data Hazard ALU (4/6)

o« ALU solution 2: For ardin
ks ox bl Forwarding (bypassing)

add s0,t0, 1 .|I|I>E - uses the result when it is
_“#ﬁw computed

sub t2,s0,t0 W |I_F|]_ 1. Don’t wait for value to

be stored in RegFile

2. Grab operand from

xor t5,tl,s0 |. the pipeline stage

or t6,s0,t3

sw s0,4(t4)

sOvalue| 5 5 5 5 ||5/9 9 9 o 9 13

Data Hazard ALU (5/6)

e ALU solutlon 2 Forwardlng Forwarding (bypassing)
Implementation:

1. Make extra
connections in the
datapath
2. Also add forwarding

or t6,s0,t3

xor t5,tl,s0

sw s0,4(t4)

sOvalue| 5 5 5 5 ||5/9 9 9 9 9

14

National Yang Ming Chiao Tung University
Computer Architecture & System Lab

Data Hazard: ALU (6/6)

o Forwarding EX output

IF{ID ID{EX EX/IMEM MEM/WB
|
I
I
I

I dataw
fl FCm rsw] I Taluy,
l—’ rsR1 dataR1 4' dataR
Branch
P W o N
inst,
clk] dataR2 H ‘ DMEM
IMEM) Reg[] A
I dataW A
rs2yp, 1
|
] o
I
|
|

rI inst,, n instyg,
! J

add s0,t0,t1 v v

Bsel Asel

Forwarding Control Logic

sub t2,s0,t0

X ,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘Eg-r Computer Architecture & System Lab

Data Hazard: Load (1/8)

o« Forwarding cannot fix all data hazards

time ——»
1. Forward EX stage output

cas 50,¢1,v2 (G BONIGRURR = o i
) I .

1w s1,8(s0) i

or t3,sl1,tl

2. Forward MEM stage
output to input of EX

stage on next clock cycle.

and t4,s1,t2

sll t0,tl1,t2

16

National Yang Ming Chiao Tung University

Computer Architecture & System Lab

Data Hazard: Load (2/8)
o« Forwarding cannot fix all data hazards

1. Forward EX stage

time —»
output to input of EX

stage on next clock cycle.
I 3. MEM stage (1w)’s output
needed as EX stage (or)’s
input in the same clock cycle.

lw s1,8(s0)
2. Forward MEM stage

output to input of EX

or t3,s1,tl
stage on next clock cycle.

and t4,sl,t2

s1l t0,tl,t2

E\/ National Yang Ming Chiao Tung University
1'!’ Computer Architectur &Sytme

Data Hazard: Load (3/8)

o« Forwarding cannot fix all data hazards
- Must stall instruction dependent on load, then
forward (more hardware)

IF_{ ID/RE NEX MEI!\/I WB

lw $t0,0($t1)| -%EReg

sub $t3,$t0,$t2 |5 [[re

§Regé

X 1 National Yang Ming Chiao Tung University
_‘.‘ Computer Architecture & System Lab

Data Hazard: Load (4/8)

o Hardware stalls pipeline
o Called “interlock”

IF ID/RF \EX _MEM WB
IW $t0, 0($t1) I$] Reg _§, DS Reg
17

sub $t3,$t0,$t2 15 [|Reg It;b Z, D$ k_Reg

and $t5,$t0,$t4 15 b,”b Reg_l%/ DS r

or $t7,$t0,$t6 D ffis | Reg—%,

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Data Hazard: Load (5/8)

o The instruction slot after a load is called load delay slot

o If this instruction uses the result of load
o The hardware must stall for one cycle (plus forwarding)

o This results in performance loss!

I, MEM stage (1w)’s output
needed as EX stage (or)’s
input in the same clock cycle.

1w s1,8(s0)

Load delay slot:
or = nop

Forwarding sends data to
the next clock cycle.
Cannot go backwards in time!

or t3,sl,tl

1 National Yang Ming Chiao Tung University
FlaT4 Computer Architecture & System Lab

Data Hazard: Load (6/8)

§
_‘

« Stall is equivalent to “nop”

1$\15{Reg Y

bubribub Ybub Y bub J bub)
. ble_kPle fihle Y ble X ble)i

Iw $t0, 0($t1)

nop

~

s B

sub $t3,5t0,$2
and $t5,$t0,$t4.

or $t7,$t0,$t6

t National Yang Ming Chiao Tung University

@ Computer Architecture & System Lab
Data Hazard: Load (7/8)
o Code scheduling: Fix data hazard using the compiler
In the delay slot, put an instruction unrelated to the load result

Alternative

O
o ->No performance loss!
C Code . Simple compilation
A[3] = A[0] + A[1l]; (9 cycles for 7 instructions) (7 cycles):
A[4] = A[O0] + A[2];
1w tl, 0(tO0) 1w tl, 0 (tO0) Forward!
Stall & — 1w t2, 4(t0) lw t2, 4(toytocvcle
oerst aga €3, €1, 2 [ESNEA,MEICEO)
Flove) sw €3, 12(t0) add t3, tl, t2
1w t4, 8(tO0) SwW t3, 12(t0)
(+1cyc|e)(—
add t5, t1, t4 add t5, tl1, t4
t5, 16(t0) sSwW t5, 16(t0)

SwW

#Z % National Yang Ming Chiao Tung University
RN -
874 Computer Architecture & System Lab

Data Hazard: Load (8/8)

 Instruction slot after a load is called “load delay slot”

o If the instruction uses the result of the “LOAD”
o The hardware interlock will stall it for one cycle

« If the compiler puts an unrelated instruction in that slot
- No stall
- Letting the hardware stall the instruction in the delay
slot is equivalent to putting a NOP in the slot

23

§§% National Yang Ming Chiao Tung University

Ny
SHZ1N

=‘, 874 Computer Architecture & System Lab

Takeaway Questions

o Assume a program executed in a processor
o Branch: 20%, load: 20%, store: 10%, others: 50%
o 50% of loads are followed by dependent instruction
= Require 1 cycle stall (i.e. instruction of 1 nop)

« What is the CPI of such a program in this processor?

§§% National Yang Ming Chiao Tung University

Ny
SHZ1N

=‘, 874 Computer Architecture & System Lab

Takeaway Questions

o AsS before
- Branch: 20%, load: 20%, store: 10%, others: 50%
o Hardware interlocks: same as software interlock

o 20% of instructions require 1 cycle stall (i.e. insertion of 1 nop)
o 5% of instructions require 2 cycle stall (i.e. insertion of 2 nops)

e What is the CPI?

§§% National Yang Ming Chiao Tung University

Ny
SHZ1N

=‘, 874 Computer Architecture & System Lab

Takeaway Questions

o As before
- Branch: 20%, load: 20%, store: 10%, others: 50%

o Hardware interlocks: same as software interlock
o 20% of instructions require 1 cycle stall (i.e. insertion of 1 nop)
o 5% of instructions require 2 cycle stall (i.e. insertion of 2 nops)

o What is the CPI?
o CPI=1+0.2*1+0.05*2=1.3
o In software, # instructions would increase 30%
o In hardware, # instructions stays at 1, but CPI would increase 30%

26

X2
=3¢071\
l

#Z % National Yang Ming Chiao Tung University

&t/ Computer Architecture & System Lab

Outline

e Data Hazard

e Control Hazard

e Delay Branch Slot

e Branch Prediction

e Branch Target Buffer
e Superscalar processor

#Z % National Yang Ming Chiao Tung University
RN -
874 Computer Architecture & System Lab

Control Hazard (1/10)

« Control hazard (conditional branch) occurs when the

Instruction fetched may not be the one needed
o For example, if the “beq” branch is taken

Instruction
execution starts
before branch
outcome is
known!

0x44 sub t2,s0,t0

0x48 or t6,s0,t3

Ox4c xor t5,tl,s0

Correct instruction 28

0x70 sw s0,8(t3) # Label Bl starts executing

_\ ,1 National Yang Ming Chiao Tung University
\
a4 Computer Architecture & System Lab

 Kill instructions after branch (if taken)

0x40 beq t0,tl,Label IIH|I‘|IE|II |H

=

0x44 sub t2,s0,t0 |‘r
0x48 or t6,s0,t3

Ox4c xor t5,tl,s0

0x70 sw s0,8(t3) # Label

Flush pipeline by
converting
incorrect
instructions to
nops.

PC updated, correct
instruction

29
loaded

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
874 Computer Architecture & System Lab

Control Hazard (3/10)

IF ID EX EX/MEM MEM |, WB

B PC
FAN

'l" addr

clk

PCSel
taken/not taken

) a D |
PCyp
inst
inst,

IMEM

dataR1

rsR1
rsR2

dataR2

Reg[]

= |n MEM stage: EX/MEM pipeliné reg. feeds IF stage MUX. PCSel control is set.

= On the next clock cycle in the IF stage, PC updates, and the correct instruction
is fetched.; fetches the correct instruction.

30

X

a4 Computer Architecture & System Lab

Control Hazard (4/10)

« Branch prediction reduces penalties
o Every taken branch in the RV32I pipeline costs 3 clock cycles
o Note If branch is not taken, then pipeline is not stalled
o The correct instructions are correctly fetched sequentially after the
branch instruction

« We can improve the CPU performance on average
through branch prediction

o Early in the pipeline, guess which way branches will go
o Flush pipeline if branch prediction was incorrect

X iﬁ\ National Yang Ming Chiao Tung University

31

#Z % National Yang Ming Chiao Tung University
=Y 1Y -
a4 Computer Architecture & System Lab

Control Hazard (5/10)

o Naive predictor: Don’t take branch

“Guess” next PC to be PC + 4 “Evaluate” guess The simple RV32I

pipeline effectively
always “predicts”
that branches are
not taken.

0x40 beq t0,tl,Label

0x44 sub t2,s0,t0

If branch not taken, correct
instructions are already
executed.

0x48 or t6,s0,t3

Ox4c xor t5,tl,s0

0x50 add t2,s0,s0

time —»

32

X$7 & National Yang Ming Chiao Tung University

=E3471N
‘ég-r Computer Architecture & System Lab

Control Hazard (6/10)

o We put branch decision-making hardware in ALU stage
- Therefore, two more instructions after the branch will
always be fetched, whether or not the branch is taken
o Desired functionality of a branch
- If we do not take the branch, don’t waste any time and
continue executing normally
- If we take the branch, don’t execute any instructions
after the branch, just go to the desired label

33

X$7 & National Yang Ming Chiao Tung University

=E3471N
‘ég-r Computer Architecture & System Lab

Control Hazard (7/10)

o Initial Solution: Stall until decision is made
- Insert “no-op” instructions (those that accomplish
nothing, just take time) or hold up the fetch of the next
Instruction (for 2 cycles)
- Drawback
« Seems wasteful, particularly when the branch is not
taken
« Branches take 3 clock cycles each (assuming
comparator is put in ALU stage) 3

X

,ﬁ\ National Yang Ming Chiao Tung University

E\ d
‘Eg-r Computer Architecture & System Lab

Control Hazard (8/10)

o User inserting no-op instruction

n
S
t
r.

= 0 Q=0

Time (clock cycles)
add IS : ? DS Ir Regé :
beqg : :
nop
1w

Impact: 2 clock cycles per branch instruction

35

1 National Yang Ming Chiao Tung University
Computer Architecture & System Lab

Control Hazard (9/10)

o Optimization #1

- Insert special branch comparator in Stage 2

- As soon as instruction is decoded (Opcode identifies it as a
branch), immediately make a decision and set the new
value of the PC

- Benefit

= Since branch is complete in Stage 2, only one
unnecessary instruction is fetched, so only one no-op is

need

§§
.
)

36

X ,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘Eg-r Computer Architecture & System Lab

Control Hazard (10/10)

Time (clock cycles)

IS

beq

Instr 1

T,) D e

Instr 2

Instr 3

YInstr 4

= 0O Q=0

Branch combarat'or moved to Decode stége. |

X2
=3¢071\
l

#Z % National Yang Ming Chiao Tung University

&t/ Computer Architecture & System Lab

Outline

e Data Hazard

e Control Hazard

e Delay Branch Slot

e Branch Prediction

e Branch Target Buffer
e Superscalar processor

X$7 & National Yang Ming Chiao Tung University

=371
‘,%-r Computer Architecture & System Lab

Delayed Branch Slot (1/3)

o Optimization #2: Delayed Branch Slot
- Old definition:
« If we take the branch, none of the instructions after
the branch get execute by accident
- New definition:
= Whether or not we take the branch, the single
Instruction immediately following the branch gets
executed (called the branch-delay slot)

39

1 National Yang Ming Chiao Tung University
Computer Architecture & System Lab

Delayed Branch Slot (2/3)

o Optimization #2: Delayed Branch Slot
- We always execution instruction after branch
- Worst-case:
= Can always put a no-op in the branch-delay slot

- Better case:
= Can find an instruction before the branch which can be placed
In the branch-delay slot without affecting flow of the program
= The compiler must be smart to find instructions to do this

§§
.
)

40

X

a4 Computer Architecture & System Lab

Delayed Branch Slot (3/3)

X iﬁ\ National Yang Ming Chiao Tung University

Nondelayed Branch Delayed Branch

or $8, $9 ,8$10 add $1 ,$2,$3

add $1 ,$2,8$3 sub $4, $5,$6

sub $4, $5,$6 beg $1, $4, Exit

beq $1, $4, Exit~ |or 88, $9 810 Sgiayed

xor $10, $1,$11 xor $10, $1,811

Exit: Exit:

41

X2
=3¢071\
l

#Z % National Yang Ming Chiao Tung University

&t/ Computer Architecture & System Lab

Outline

e Data Hazard

e Control Hazard

e Delay Branch Slot

e Branch Prediction

e Branch Target Buffer
e Superscalar processor

#Z % National Yang Ming Chiao Tung University

21

a4 Computer Architecture & System Lab

Branch Prediction (1/4)

« When to perform branch prediction?

- Option #1: During decode
= Look at instruction opcode to determine branch instructions
= Can calculate next PC from instruction (for PC-relative

branches)
= One cycle “mis-fetch” penalty even if branch predictor is

correct
- Option #2: During fetch?
= How do we do that?
« Branch predictor

43

#Z % National Yang Ming Chiao Tung University
NP2 -
874 Computer Architecture & System Lab

Branch Prediction (2/4)

o Speculative execution
- Execute before all parameters known with certainty
- Correct speculation
= Avoid stall, improve performance
- Incorrect speculation (mis-speculation)
= Must abort/flush/squash incorrect instructions
« Must undo incorrect changes
- Control speculation
= Are these the correct instructions to execute next? ..

X ,ﬁ\ National Yang Ming Chiao Tung University

=337
‘Eg-r Computer Architecture & System Lab

Branch Prediction (3/4)

« Branch recovery

- What to do when branch is actually taken
= Instruction that are in F and D are wrong
= Flush them, I.e., replace them with nops
= [hey haven’t written permanent state yet (regfile, DMem)
= Two cycle penalty for taken branches

1 2 3 4 5 6 7 8 9
Correct: addi r3¢rl,1 F D X M W
bnez r3,targ F D X M W
st r6—[r7+4] F D X M W
mul rlQ«—r8,r9 F D X M W

speculative

a4 Computer Architecture & System Lab

Branch Prediction (4/4)

i%ﬁ\ National Yang Ming Chiao Tung University

« Mis-speculation recovery

- What to do on wrong guess
= Branch resolves in X (EXEC.) stage

= Younger insts (in F, D) haven’t changed permanent state
= Flushinsts currently in D and X

1 2 3 4 5 6 7 8 9
Recovery: addi r3erl,1| F D X M W
bnez r3,targ F D X M W
e o e T = D - - -
e e 2) F -- -- -- -
targ:add rd4er4,r5 F D X M W 46

§\§,ﬁ National Yang Ming Chiao Tung University
AT d 1N
=t

T4 Computer Architecture & System Lab

Takeaway Questions

o Assume that
- Branch: 20%, load: 20%, store: 10%, other: 50%
- Say, 75% of branches are taken
- What is the CPI?

X$7 & National Yang Ming Chiao Tung University

=E3471N
‘Eg-r Computer Architecture & System Lab

Takeaway Questions

o Assume that
- Branch: 20%, load: 20%, store: 10%, other: 50%
- Say, 75% of branches are taken
- What is the CPI?
« CPI=1+20%*75%*2=1.3
« Branches cause 30% slowdown
. Worse with deeper pipelines, why?
. Can we do better than assuming branch is not
taken?

48

X$7 & National Yang Ming Chiao Tung University

=E3471N
‘,%-r Computer Architecture & System Lab

Takeaway Questions

o Assume that
- Branch: 20%, load: 20%, store: 10%, other: 50%
- Say, 75% of branches are taken
- Dynamic branch prediction
= Branches predicted with 95% accuracy
« What is the CPI?

49

Ntz National Yang Ming Chiao Tung University

=221
874 Computer Architecture & System Lab

Takeaway Questions

o Assume that
- Branch: 20%, load: 20%, store: 10%, other: 50%
- Say, 75% of branches are taken
- Dynamic branch prediction
= Branches predicted with 95% accuracy
« What is the CPI?
« CPI=1+20%*5% *2=1.02

50

X2
=3¢071\
l

#Z % National Yang Ming Chiao Tung University

&t/ Computer Architecture & System Lab

Outline

e Data Hazard

e Control Hazard

e Delay Branch Slot

e Branch Prediction

e Branch Target Buffer
e Superscalar processor

1 National Yang Ming Chiao Tung University
Computer Architecture & System Lab

Branch Target Buffer (1/6)

o Learn from past, predict the future
o Record the past in a hardware structure

« Branch target buffer (BTB)

o “guess” the future PC based on past behavior

o Last time the branch X was taken, it went to address “Y”

o S0, In the future, if address X is fetched, fetch address Y next
o PC indexes table of bits target addresses

o Essentially: branch will go to the same place it went last time

§§
.
)

#Z % National Yang Ming Chiao Tung University
SP2| -
874 Computer Architecture & System Lab

Branch Target Buffer (2/6)

PC| [31:10] | 21 |0

e What about aliasing? \—>|:
e Two PCs with the same lower bits?

e No problem, just a prediction!

! predicted target

53

1 National Yang Ming Chiao Tung University
Computer Architecture & System Lab

Branch Target Buffer (3/6)

o At fetch, how does inst know it’'s a branch & should read

BTB?
o All insts access BTB in parallel with instruction fetch

« Key idea: use BTB to predict which insts are branches
o Implement by “tagging” each entry with its corresponding PC
o Update BTB on every taken branch inst, record target PC
= BTB[PC].tag = PC, BTB[PC].target = target of branch

)
gl

BTB _' .

target

predicted target
’ g 54

§§
.
)

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Branch Target Buffer (4/6)

o All insts access at Fetch stage in parallel with Imem

o Check for tag match, signifies inst at that PC is a branch
o Predicted PC = (BTB[PC].tag == PC) ? BTB[PC].target: PC + 4

predicted target

55

X ,ﬁ\ National Yang Ming Chiao Tung University

=X}z
",%-r Computer Architecture & System Lab

Branch Target Buffer (5/6)

« Why does a BTB work?

o Because most control instructions use direct targets
o Target encoded in inst itself -> same “taken” target every time

o What about indirect targets?

o Target held in a register -> can be different each time

o Two indirect calls
= Dynamically linked functions (DLLS): target always the same
= Dynamically dispatched (virtual) functions: hard but

uncommon

o Two indirect unconditional jumps

= Switches, function returns

56

N

a4 Computer Architecture & System Lab

Branch Target Buffer (6/6) jpo-e—feTe

o Return Address Stack (RAS) s
o Call instructions?
= RAS[TopOfStack++]=PC +4
o Return instructions? Predicted-target = RAS[--TopOfStack]
o Q:How can you tell if an inst is a call/return before decoding it?
= Ans: another predictor (or put them in BTB marked as
“return”)
= Or pre-decoded bits in inst memory, written when first
executed

X iﬁ\ National Yang Ming Chiao Tung University

— predicted target

57

X2
=3¢071\
l

#Z % National Yang Ming Chiao Tung University

&t/ Computer Architecture & System Lab

Outline

e Data Hazard

e Control Hazard

e Delay Branch Slot

e Branch Prediction

e Branch Target Buffer
e Superscalar processor

N

a4 Computer Architecture & System Lab

Superscalar Processors (1/2)

X %ﬁ\ National Yang Ming Chiao Tung University

« How to further increase processor performance?
o Increase clock rate
= Limited by technology and power dissipation
o Increase pipeline depth
= ‘Overlap” instruction execution through deeper pipeline, e.g.
10 or 15 stages
» Less work per stage -> shorter clock cycle/lower power
« But more potential for all three types of hazards! (more
stalling -> CPI > 1)
- Design a “superscalar” processor

59

é%ﬁ\ National Yang Ming Chiao Tung University

_‘, 874 Computer Architecture & System Lab

Superscalar Processors (2/2)

o Superscalar processor
Multiple-issue: start multiple instructions

O

O

per clock cycle
= Multiple execution units execute
Instructions in parallel
= Each execution unit has its own
pipeline
= CPI < 1: multiple instructions
completed per clock cycle

Dynamic “out-of-order” execution

Instruction fetch and

decode unit
Reservation Reservation Reservation Reservation
station station station station
Floating Load/
Integer Integer .
& g Point store
Commit unit

= Reorder instructions dynamically in

HW to reduce impact of hazards

60

X ,/1\ National Yang Ming Chiao Tung University

=X}z
‘,%-r Computer Architecture & System Lab

Conclusion

« Pipeline challenge is hazards
o Forwarding helps with many data hazards
o Delayed branch helps with control hazard in 5 stage pipeline
o Load delay slot / interlock necessary
« More aggressive performance
o Superscalar
o Out-of-order execution

61

