
Lecture 9: Pipelining II

Department of Computer Science

Tsung Tai Yeh

Thursday: 1:20 pm– 3:10 pm

Classroom: EC-022

CS10014 Computer Organization

Acknowledgements and Disclaimer

● Slides were developed in the reference with

● CS 61C at UC Berkeley

● https://inst.eecs.berkeley.edu/~cs61c/sp23/

● CIS510 at Upenn

● https://www.cis.upenn.edu/~cis5710/spring2019/

● CSCE 513 at University of South Carolina

● https://passlab.github.io/CSCE513/

2

https://inst.eecs.berkeley.edu/~cs61c/sp23
https://inst.eecs.berkeley.edu/~cs61c/sp23/
https://www.cis.upenn.edu/~cis5710/spring2019/
https://passlab.github.io/CSCE513/

Outline

● Data Hazard

● Control Hazard

● Delay Branch Slot

● Branch Prediction

● Branch Target Buffer

● Superscalar processor

3

Problems for Pipelining CPUs (1/2)

4

● Hazards prevent next instruction from executing

during its designated clock cycle
○ Structural hazard:

■ Occurs when multiple instructions compete for access to

a single physical resource

○ Data hazard:

■ Instructions have data dependency

■ Need to wait for previous instruction to complete its data

read/write

○ Control hazard:

■ Flow of execution depends on previous instruction

Problems for Pipelining CPUs (2/2)

5

Outline

● Data Hazard

● Control Hazard

● Delay Branch Slot

● Branch Prediction

● Branch Target Buffer

● Superscalar processor

6

Data Hazard (1/10)

7

● Data hazard

○ Instructions have data dependency

○ Need to wait for previous instruction to complete its data

read/write

○ Occurs when an instruction reads a register before a

previous instruction has finished writing to that register

● Three cases to consider

○ Register access

○ ALU result

○ Load data hazard

Data Hazard: REG (1/2)

8

● Register Access

The same register is

written and read in one

cycle:

1. WB must write value

before ID reads new value

2. No structural hazard –

Separate ports allows

simultaneous R/W

Data Hazard:REG (2/2)

9

● Register Access

Solution: RegFile HW

should write-then-read in

the same cycle

1. Exploit high speed of

RegFile (100 ps + 100 ps)

2. Might not always be

possible to write-then-

read in the same cycle.,

e.g. in high-frequency

designs

Data Hazard: ALU (1/6)

10

● ALU Result

Problem: Instruction depends

on WB’s RegFile write from

previous instruction

sub, or’s ID reads old value

of s0 and calculates wrong

result

xor gets the right value;

RegFile is write-then-read

Data Hazard: ALU(2/6)

11

● ALU solution 1: Stalling
“Bubble” to effectively nop:

1. Affected pipeline

stages do nothing during

clock cycles

2. Stall all stages by

preventing PC, IF/ID

pipeline register from

writing

Data Hazard: ALU (3/6)

12

● ALU solution 1: Stalling
Stalls reduce performance

1. Compiler could

rearrange code/insert

nops to avoid hazard (and

therefore stalls), but this

requires knowledge of the

pipeline structure

Data Hazard: ALU (4/6)

13

● ALU solution 2: Forwarding
Forwarding (bypassing)

uses the result when it is

computed

1. Don’t wait for value to

be stored in RegFile

2. Grab operand from

the pipeline stage

Data Hazard: ALU (5/6)

14

● ALU solution 2: Forwarding Forwarding (bypassing)

Implementation:

1. Make extra

connections in the

datapath

2. Also add forwarding

control logic

Data Hazard: ALU (6/6)

● Forwarding EX output

15

Data Hazard: Load (1/8)

16

● Forwarding cannot fix all data hazards

Data Hazard: Load (2/8)

17

● Forwarding cannot fix all data hazards

Data Hazard: Load (3/8)

18

● Forwarding cannot fix all data hazards

○ Must stall instruction dependent on load, then

forward (more hardware)

sub $t3,$t0,$t2
A
L
UI$ Reg D$ Reg

lw $t0,0($t1)

IF ID/RF EX MEM WBA
L
UI$ Reg D$ Reg

Data Hazard: Load (4/8)

19

● Hardware stalls pipeline

○ Called “interlock”

Data Hazard: Load (5/8)

20

● The instruction slot after a load is called load delay slot

● If this instruction uses the result of load

○ The hardware must stall for one cycle (plus forwarding)

○ This results in performance loss!

Data Hazard: Load (6/8)

21

● Stall is equivalent to “nop”

Data Hazard: Load (7/8)

22

● Code scheduling: Fix data hazard using the compiler

○ In the delay slot, put an instruction unrelated to the load result

○ -> No performance loss!

Data Hazard: Load (8/8)

23

● Instruction slot after a load is called “load delay slot”

● If the instruction uses the result of the “LOAD”

○ The hardware interlock will stall it for one cycle

● If the compiler puts an unrelated instruction in that slot

○ No stall

○ Letting the hardware stall the instruction in the delay

slot is equivalent to putting a NOP in the slot

Takeaway Questions

● Assume a program executed in a processor

○ Branch: 20%, load: 20%, store: 10%, others: 50%

○ 50% of loads are followed by dependent instruction

■ Require 1 cycle stall (i.e. instruction of 1 nop)

● What is the CPI of such a program in this processor?

24

Takeaway Questions

● As before

○ Branch: 20%, load: 20%, store: 10%, others: 50%

● Hardware interlocks: same as software interlock

○ 20% of instructions require 1 cycle stall (i.e. insertion of 1 nop)

○ 5% of instructions require 2 cycle stall (i.e. insertion of 2 nops)

● What is the CPI?

25

Takeaway Questions

● As before

○ Branch: 20%, load: 20%, store: 10%, others: 50%

● Hardware interlocks: same as software interlock

○ 20% of instructions require 1 cycle stall (i.e. insertion of 1 nop)

○ 5% of instructions require 2 cycle stall (i.e. insertion of 2 nops)

● What is the CPI?

○ CPI = 1 + 0.2 * 1 + 0.05 * 2 = 1.3

○ In software, # instructions would increase 30%

○ In hardware, # instructions stays at 1, but CPI would increase 30%
26

Outline

● Data Hazard

● Control Hazard

● Delay Branch Slot

● Branch Prediction

● Branch Target Buffer

● Superscalar processor

27

Control Hazard (1/10)

28

● Control hazard (conditional branch) occurs when the

instruction fetched may not be the one needed

○ For example, if the “beq” branch is taken

Control Hazard (2/10)

29

● Kill instructions after branch (if taken)

Control Hazard (3/10)

30

Control Hazard (4/10)

31

● Branch prediction reduces penalties

○ Every taken branch in the RV32I pipeline costs 3 clock cycles

○ Note if branch is not taken, then pipeline is not stalled

○ The correct instructions are correctly fetched sequentially after the

branch instruction

● We can improve the CPU performance on average

through branch prediction

○ Early in the pipeline, guess which way branches will go

○ Flush pipeline if branch prediction was incorrect

Control Hazard (5/10)

32

● Naïve predictor: Don’t take branch

Control Hazard (6/10)

33

● We put branch decision-making hardware in ALU stage

○ Therefore, two more instructions after the branch will

always be fetched, whether or not the branch is taken

● Desired functionality of a branch

○ If we do not take the branch, don’t waste any time and

continue executing normally

○ If we take the branch, don’t execute any instructions

after the branch, just go to the desired label

Control Hazard (7/10)

34

● Initial Solution: Stall until decision is made

○ Insert “no-op” instructions (those that accomplish

nothing, just take time) or hold up the fetch of the next

instruction (for 2 cycles)

○ Drawback

■ Seems wasteful, particularly when the branch is not

taken

■ Branches take 3 clock cycles each (assuming

comparator is put in ALU stage)

Control Hazard (8/10)

35

● User inserting no-op instruction

Control Hazard (9/10)

36

● Optimization #1

○ Insert special branch comparator in Stage 2

○ As soon as instruction is decoded (Opcode identifies it as a

branch), immediately make a decision and set the new

value of the PC

○ Benefit

■ Since branch is complete in Stage 2, only one

unnecessary instruction is fetched, so only one no-op is

need

Control Hazard (10/10)

37

Outline

● Data Hazard

● Control Hazard

● Delay Branch Slot

● Branch Prediction

● Branch Target Buffer

● Superscalar processor

38

Delayed Branch Slot (1/3)

39

● Optimization #2: Delayed Branch Slot

○ Old definition:

■ if we take the branch, none of the instructions after

the branch get execute by accident

○ New definition:

■ Whether or not we take the branch, the single

instruction immediately following the branch gets

executed (called the branch-delay slot)

Delayed Branch Slot (2/3)

40

● Optimization #2: Delayed Branch Slot

○ We always execution instruction after branch

○ Worst-case:

■ Can always put a no-op in the branch-delay slot

○ Better case:

■ Can find an instruction before the branch which can be placed

in the branch-delay slot without affecting flow of the program

■ The compiler must be smart to find instructions to do this

Delayed Branch Slot (3/3)

41

Delayed

slot

Outline

● Data Hazard

● Control Hazard

● Delay Branch Slot

● Branch Prediction

● Branch Target Buffer

● Superscalar processor

42

Branch Prediction (1/4)

43

● When to perform branch prediction?

○ Option #1: During decode

■ Look at instruction opcode to determine branch instructions

■ Can calculate next PC from instruction (for PC-relative

branches)

■ One cycle “mis-fetch” penalty even if branch predictor is

correct

○ Option #2: During fetch?

■ How do we do that?

● Branch predictor

Branch Prediction (2/4)

44

● Speculative execution

○ Execute before all parameters known with certainty

○ Correct speculation

■ Avoid stall, improve performance

○ Incorrect speculation (mis-speculation)

■ Must abort/flush/squash incorrect instructions

■ Must undo incorrect changes

○ Control speculation

■ Are these the correct instructions to execute next?

Branch Prediction (3/4)

45

● Branch recovery

○ What to do when branch is actually taken

■ Instruction that are in F and D are wrong

■ Flush them, i.e., replace them with nops

■ They haven’t written permanent state yet (regfile, DMem)

■ Two cycle penalty for taken branches

Branch Prediction (4/4)

46

● Mis-speculation recovery

○ What to do on wrong guess

■ Branch resolves in X (EXEC.) stage

■ Younger insts (in F, D) haven’t changed permanent state

■ Flush insts currently in D and X

Takeaway Questions

47

● Assume that

○ Branch: 20%, load: 20%, store: 10%, other: 50%

○ Say, 75% of branches are taken

○ What is the CPI?

Takeaway Questions

48

● Assume that

○ Branch: 20%, load: 20%, store: 10%, other: 50%

○ Say, 75% of branches are taken

○ What is the CPI?

■ CPI = 1 + 20% * 75% *2 = 1.3

■ Branches cause 30% slowdown

● Worse with deeper pipelines, why?

● Can we do better than assuming branch is not

taken?

Takeaway Questions

49

● Assume that

○ Branch: 20%, load: 20%, store: 10%, other: 50%

○ Say, 75% of branches are taken

○ Dynamic branch prediction

■ Branches predicted with 95% accuracy

■ What is the CPI?

Takeaway Questions

50

● Assume that

○ Branch: 20%, load: 20%, store: 10%, other: 50%

○ Say, 75% of branches are taken

○ Dynamic branch prediction

■ Branches predicted with 95% accuracy

■ What is the CPI?

● CPI = 1 + 20% * 5% * 2 = 1.02

Outline

● Data Hazard

● Control Hazard

● Delay Branch Slot

● Branch Prediction

● Branch Target Buffer

● Superscalar processor

51

Branch Target Buffer (1/6)

52

● Learn from past, predict the future

○ Record the past in a hardware structure

● Branch target buffer (BTB)

○ “guess” the future PC based on past behavior

○ Last time the branch X was taken, it went to address “Y”

○ So, in the future, if address X is fetched, fetch address Y next

○ PC indexes table of bits target addresses

○ Essentially: branch will go to the same place it went last time

Branch Target Buffer (2/6)

53

Branch Target Buffer (3/6)

54

● At fetch, how does inst know it’s a branch & should read

BTB?

○ All insts access BTB in parallel with instruction fetch

● Key idea: use BTB to predict which insts are branches

○ Implement by “tagging” each entry with its corresponding PC

○ Update BTB on every taken branch inst, record target PC

■ BTB[PC].tag = PC, BTB[PC].target = target of branch

PC

+

4

BTB
tag

=
=

target
predicted target

Branch Target Buffer (4/6)

55

● All insts access at Fetch stage in parallel with Imem

○ Check for tag match, signifies inst at that PC is a branch

○ Predicted PC = (BTB[PC].tag == PC) ? BTB[PC].target: PC + 4

PC

+

4

BTB

tag

=
=

target
predicted target

Branch Target Buffer (5/6)

56

● Why does a BTB work?
○ Because most control instructions use direct targets

○ Target encoded in inst itself -> same “taken” target every time

● What about indirect targets?
○ Target held in a register -> can be different each time

○ Two indirect calls

■ Dynamically linked functions (DLLs): target always the same

■ Dynamically dispatched (virtual) functions: hard but

uncommon

○ Two indirect unconditional jumps

■ Switches, function returns

Branch Target Buffer (6/6)

57

● Return Address Stack (RAS)

○ Call instructions?

■ RAS[TopOfStack++] = PC + 4

○ Return instructions? Predicted-target = RAS[--TopOfStack]

○ Q: How can you tell if an inst is a call/return before decoding it?

■ Ans: another predictor (or put them in BTB marked as

“return”)

■ Or pre-decoded bits in inst memory, written when first

executed

Outline

● Data Hazard

● Control Hazard

● Delay Branch Slot

● Branch Prediction

● Branch Target Buffer

● Superscalar processor

58

Superscalar Processors (1/2)

59

● How to further increase processor performance?

○ Increase clock rate

■ Limited by technology and power dissipation

○ Increase pipeline depth

■ “Overlap” instruction execution through deeper pipeline, e.g.

10 or 15 stages

● Less work per stage -> shorter clock cycle/lower power

● But more potential for all three types of hazards! (more

stalling -> CPI > 1)

○ Design a “superscalar” processor

Superscalar Processors (2/2)

60

● Superscalar processor
○ Multiple-issue: start multiple instructions

per clock cycle

■ Multiple execution units execute

instructions in parallel

■ Each execution unit has its own

pipeline

■ CPI < 1: multiple instructions

completed per clock cycle

○ Dynamic “out-of-order” execution

■ Reorder instructions dynamically in

HW to reduce impact of hazards

Conclusion

● Pipeline challenge is hazards

○ Forwarding helps with many data hazards

○ Delayed branch helps with control hazard in 5 stage pipeline

○ Load delay slot / interlock necessary

● More aggressive performance

○ Superscalar

○ Out-of-order execution

61

