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Problems for Pipelining CPUs (1/2)
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● Hazards prevent next instruction from executing 

during its designated clock cycle
○ Structural hazard: 

■ Occurs when multiple instructions compete for access to 

a single physical resource

○ Data hazard: 

■ Instructions have data dependency

■ Need to wait for previous instruction to complete its data 

read/write

○ Control hazard:

■ Flow of execution depends on previous instruction



Problems for Pipelining CPUs (2/2)
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Data Hazard (1/10)
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● Data hazard

○ Instructions have data dependency

○ Need to wait for previous instruction to complete its data 

read/write

○ Occurs when an instruction reads a register before a 

previous instruction has finished writing to that register

● Three cases to consider

○ Register access

○ ALU result

○ Load data hazard



Data Hazard: REG (1/2)
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● Register Access

The same register is 

written and read in one 

cycle:

1. WB must write value 

before ID reads new value

2. No structural hazard –

Separate ports allows 

simultaneous R/W



Data Hazard:REG (2/2)
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● Register Access

Solution: RegFile HW 

should write-then-read in 

the same cycle

1. Exploit high speed of 

RegFile (100 ps + 100 ps)

2. Might not always be 

possible to write-then-

read in the same cycle., 

e.g. in high-frequency 

designs 



Data Hazard: ALU (1/6)
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● ALU Result

Problem: Instruction depends 

on WB’s RegFile write from 

previous instruction

sub, or’s ID reads old value 

of s0 and calculates wrong 

result

xor gets the right value; 

RegFile is write-then-read



Data Hazard: ALU(2/6)
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● ALU solution 1: Stalling
“Bubble” to effectively nop:

1. Affected pipeline 

stages do nothing during 

clock cycles

2. Stall all stages by 

preventing PC, IF/ID 

pipeline register from 

writing



Data Hazard: ALU (3/6)
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● ALU solution 1: Stalling
Stalls reduce performance

1. Compiler could 

rearrange code/insert 

nops to avoid hazard (and 

therefore stalls), but this 

requires knowledge of the 

pipeline structure



Data Hazard: ALU (4/6)
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● ALU solution 2: Forwarding
Forwarding (bypassing)

uses the result when it is

computed

1. Don’t wait for value to 

be stored in RegFile

2. Grab operand from 

the pipeline stage



Data Hazard: ALU (5/6)
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● ALU solution 2: Forwarding Forwarding (bypassing) 

Implementation:

1. Make extra 

connections in the 

datapath

2. Also add forwarding 

control logic



Data Hazard: ALU (6/6)

● Forwarding EX output
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Data Hazard: Load (1/8)
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● Forwarding cannot fix all data hazards



Data Hazard: Load (2/8)
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● Forwarding cannot fix all data hazards



Data Hazard: Load (3/8)
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● Forwarding cannot fix all data hazards

○ Must stall instruction dependent on load, then 

forward (more hardware)

sub $t3,$t0,$t2
A
L
UI$ Reg D$ Reg

lw $t0,0($t1)

IF ID/RF EX MEM WBA
L
UI$ Reg D$ Reg



Data Hazard: Load (4/8)
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● Hardware stalls pipeline

○ Called “interlock”



Data Hazard: Load (5/8)
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● The instruction slot after a load is called load delay slot

● If this instruction uses the result of load

○ The hardware must stall for one cycle (plus forwarding)

○ This results in performance loss!



Data Hazard: Load (6/8)
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● Stall is equivalent to “nop”



Data Hazard: Load (7/8)
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● Code scheduling: Fix data hazard using the compiler

○ In the delay slot, put an instruction unrelated to the load result

○ -> No performance loss!



Data Hazard: Load (8/8)
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● Instruction slot after a load is called “load delay slot”

● If the instruction uses the result of the “LOAD”

○ The hardware interlock will stall it for one cycle

● If the compiler puts an unrelated instruction in that slot

○ No stall

○ Letting the hardware stall the instruction in the delay 

slot is equivalent to putting a NOP in the slot



Takeaway Questions

● Assume a program executed in a processor

○ Branch: 20%, load: 20%, store: 10%, others: 50%

○ 50% of loads are followed by dependent instruction

■ Require 1 cycle stall (i.e. instruction of 1 nop)

● What is the CPI of such a program in this processor?
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Takeaway Questions

● As before

○ Branch: 20%, load: 20%, store: 10%, others: 50%

● Hardware interlocks: same as software interlock

○ 20% of instructions require 1 cycle stall (i.e. insertion of 1 nop)

○ 5% of instructions require 2 cycle stall (i.e. insertion of 2 nops)
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Takeaway Questions

● As before

○ Branch: 20%, load: 20%, store: 10%, others: 50%

● Hardware interlocks: same as software interlock

○ 20% of instructions require 1 cycle stall (i.e. insertion of 1 nop)

○ 5% of instructions require 2 cycle stall (i.e. insertion of 2 nops)

● What is the CPI?

○ CPI = 1 + 0.2 * 1 + 0.05 * 2 = 1.3

○ In software, # instructions would increase 30%

○ In hardware, # instructions stays at 1, but CPI would increase 30%
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Control Hazard (1/10)
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● Control hazard (conditional branch) occurs when the 

instruction fetched may not be the one needed

○ For example, if the “beq” branch is taken



Control Hazard (2/10)
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● Kill instructions after branch (if taken)



Control Hazard (3/10)
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Control Hazard (4/10)
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● Branch prediction reduces penalties

○ Every taken branch in the RV32I pipeline costs 3 clock cycles

○ Note if branch is not taken, then pipeline is not stalled

○ The correct instructions are correctly fetched sequentially after the 

branch instruction

● We can improve the CPU performance on average 

through branch prediction

○ Early in the pipeline, guess which way branches will go

○ Flush pipeline if branch prediction was incorrect



Control Hazard (5/10)

32

● Naïve predictor: Don’t take branch



Control Hazard (6/10)
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● We put branch decision-making hardware in ALU stage

○ Therefore, two more instructions after the branch will 

always be fetched, whether or not the branch is taken

● Desired functionality of a branch

○ If we do not take the branch, don’t waste any time and 

continue executing normally

○ If we take the branch, don’t execute any instructions 

after the branch, just go to the desired label



Control Hazard (7/10)
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● Initial Solution: Stall until decision is made

○ Insert “no-op” instructions (those that accomplish 

nothing, just take time) or hold up the fetch of the next 

instruction (for 2 cycles)

○ Drawback

■ Seems wasteful, particularly when the branch is not 

taken

■ Branches take 3 clock cycles each (assuming 

comparator is put in ALU stage)



Control Hazard (8/10)
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● User inserting no-op instruction



Control Hazard (9/10)
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● Optimization #1

○ Insert special branch comparator in Stage 2

○ As soon as instruction is decoded (Opcode identifies it as a 

branch), immediately make a decision and set the new 

value of the PC

○ Benefit

■ Since branch is complete in Stage 2, only one 

unnecessary instruction is fetched, so only one no-op is 

need



Control Hazard (10/10)
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Delayed Branch Slot (1/3)
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● Optimization #2: Delayed Branch Slot

○ Old definition: 

■ if we take the branch, none of the instructions after 

the branch get execute by accident

○ New definition:

■ Whether or not we take the branch, the single 

instruction immediately following the branch gets 

executed (called the branch-delay slot)



Delayed Branch Slot (2/3)
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● Optimization #2: Delayed Branch Slot

○ We always execution instruction after branch

○ Worst-case:

■ Can always put a no-op in the branch-delay slot

○ Better case:

■ Can find an instruction before the branch which can be placed 

in the branch-delay slot without affecting flow of the program

■ The compiler must be smart to find instructions to do this



Delayed Branch Slot (3/3)
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Delayed 

slot
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Branch Prediction (1/4)
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● When to perform branch prediction?

○ Option #1: During decode

■ Look at instruction opcode to determine branch instructions

■ Can calculate next PC from instruction (for PC-relative 

branches)

■ One cycle “mis-fetch” penalty even if branch predictor is 

correct

○ Option #2: During fetch?

■ How do we do that?

● Branch predictor



Branch Prediction (2/4)
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● Speculative execution

○ Execute before all parameters known with certainty

○ Correct speculation

■ Avoid stall, improve performance

○ Incorrect speculation (mis-speculation)

■ Must abort/flush/squash incorrect instructions

■ Must undo incorrect changes

○ Control speculation

■ Are these the correct instructions to execute next?



Branch Prediction (3/4)
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● Branch recovery

○ What to do when branch is actually taken

■ Instruction that are in F and D are wrong

■ Flush them, i.e., replace them with nops

■ They haven’t written permanent state yet (regfile, DMem)

■ Two cycle penalty for taken branches



Branch Prediction (4/4)
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● Mis-speculation recovery

○ What to do on wrong guess

■ Branch resolves in X (EXEC.) stage

■ Younger insts (in F, D) haven’t changed permanent state

■ Flush insts currently in D and X



Takeaway Questions

47

● Assume that

○ Branch: 20%, load: 20%, store: 10%, other: 50%

○ Say, 75% of branches are taken

○ What is the CPI?



Takeaway Questions
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● Assume that

○ Branch: 20%, load: 20%, store: 10%, other: 50%

○ Say, 75% of branches are taken

○ What is the CPI?

■ CPI = 1 + 20% * 75% *2 = 1.3

■ Branches cause 30% slowdown

● Worse with deeper pipelines, why?

● Can we do better than assuming branch is not 

taken?



Takeaway Questions
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● Assume that

○ Branch: 20%, load: 20%, store: 10%, other: 50%

○ Say, 75% of branches are taken

○ Dynamic branch prediction

■ Branches predicted with 95% accuracy

■ What is the CPI?



Takeaway Questions
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● Assume that

○ Branch: 20%, load: 20%, store: 10%, other: 50%

○ Say, 75% of branches are taken

○ Dynamic branch prediction

■ Branches predicted with 95% accuracy

■ What is the CPI?

● CPI = 1 + 20% * 5% * 2 = 1.02



Outline
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Branch Target Buffer (1/6)
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● Learn from past, predict the future

○ Record the past in a hardware structure

● Branch target buffer (BTB)

○ “guess” the future PC based on past behavior

○ Last time the branch X was taken, it went to address “Y”

○ So, in the future, if address X is fetched, fetch address Y next

○ PC indexes table of bits target addresses

○ Essentially: branch will go to the same place it went last time



Branch Target Buffer (2/6)
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Branch Target Buffer (3/6)
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● At fetch, how does inst know it’s a branch & should read 

BTB?

○ All insts access BTB in parallel with instruction fetch

● Key idea: use BTB to predict which insts are branches

○ Implement by “tagging” each entry with its corresponding PC

○ Update BTB on every taken branch inst, record target PC

■ BTB[PC].tag = PC, BTB[PC].target = target of branch

PC

+

4

BTB
tag

=
=

target
predicted target



Branch Target Buffer (4/6)
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● All insts access at Fetch stage in parallel with Imem

○ Check for tag match, signifies inst at that PC is a branch

○ Predicted PC = (BTB[PC].tag == PC) ? BTB[PC].target: PC + 4

PC

+

4

BTB

tag

=
=

target
predicted target



Branch Target Buffer (5/6)
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● Why does a BTB work?
○ Because most control instructions use direct targets

○ Target encoded in inst itself -> same “taken” target every time

● What about indirect targets?
○ Target held in a register -> can be different each time

○ Two indirect calls

■ Dynamically linked functions (DLLs): target always the same

■ Dynamically dispatched (virtual) functions: hard but 

uncommon

○ Two indirect unconditional jumps

■ Switches, function returns



Branch Target Buffer (6/6)
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● Return Address Stack (RAS)

○ Call instructions?

■ RAS[TopOfStack++] = PC + 4

○ Return instructions? Predicted-target = RAS[--TopOfStack]

○ Q: How can you tell if an inst is a call/return before decoding it?

■ Ans: another predictor ( or put them in BTB marked as 

“return”)

■ Or pre-decoded bits in inst memory, written when first 

executed
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Superscalar Processors (1/2)
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● How to further increase processor performance?

○ Increase clock rate

■ Limited by technology and power dissipation

○ Increase pipeline depth

■ “Overlap” instruction execution through deeper pipeline, e.g. 

10 or 15 stages

● Less work per stage -> shorter clock cycle/lower power

● But more potential for all three types of hazards! (more 

stalling -> CPI > 1)

○ Design a “superscalar” processor



Superscalar Processors (2/2)
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● Superscalar processor
○ Multiple-issue: start multiple instructions 

per clock cycle

■ Multiple execution units execute 

instructions in parallel

■ Each execution unit has its own 

pipeline

■ CPI < 1: multiple instructions 

completed per clock cycle

○ Dynamic “out-of-order” execution

■ Reorder instructions dynamically in 

HW to reduce impact of hazards



Conclusion

● Pipeline challenge is hazards

○ Forwarding helps with many data hazards

○ Delayed branch helps with control hazard in 5 stage pipeline

○ Load delay slot / interlock necessary

● More aggressive performance

○ Superscalar

○ Out-of-order execution
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