
Lecture 8: Pipelining I

Department of Computer Science

Tsung Tai Yeh

Thursday: 1:20 pm– 3:10 pm

Classroom: EC-022

CS10014 Computer Organization



Acknowledgements and Disclaimer

● Slides were developed in the reference with 

● CS 61C at UC Berkeley 

● https://inst.eecs.berkeley.edu/~cs61c/sp23/

● CS 252 at UC Berkeley

● https://people.eecs.berkeley.edu/~culler/courses/cs252-s05/

● CSCE 513 at University of South Carolina

● https://passlab.github.io/CSCE513/

2

https://inst.eecs.berkeley.edu/~cs61c/sp23
https://inst.eecs.berkeley.edu/~cs61c/sp23/
https://people.eecs.berkeley.edu/~culler/courses/cs252-s05/
https://passlab.github.io/CSCE513/


Outline

● Pipelining

● Pipelining Execution

● Pipelining Datapath

● Pipelining Hazard

● Structural Hazard

3



Single-Cycle RISC-V RV32I Datapath (1/3)

4



Single-Cycle RISC-V RV32I Datapath (2/3)

5

● Estimate the clock rate (frequency) of our single-cycle 

processor

○ 1 cycle per instruction

○ lw is the most demanding instruction

○ The max clock frequency = 1/800 ps = 1.25 GHz

Instr IF = 200ps ID = 100ps ALU = 200ps MEM=200ps WB = 100ps Total

add X X X X 600ps

beq X X X 500ps

jal X X X X 600ps

lw X X X X X 800ps

sw X X X X 700ps



Single-Cycle RISC-V RV32I Datapath (3/3)

6

● How to improve the clock rate?

● Will clock rate improvement help the performance as well?

○ We want to increase the clock rate to result in programs executing

quicker

Instr IF = 200ps ID = 100ps ALU = 200ps MEM=200ps WB = 100ps Total

add X X X X 600ps

beq X X X 500ps

jal X X X X 600ps

lw X X X X X 800ps

sw X X X X 700ps



Pipelining RISC-V RV32I Datapath (1/2)

7



Pipelining RISC-V RV32I Datapath (2/2)

8

● Each stage operates on different instructions



Takeaway Questions

● Which statement is true after pipelining the single-cycle 

processor?

○ (a) Instructions/program (instruction counts) decreases

○ (b) Cycles/instruction (CPI) decreases

○ (c) Time/cycle (clock rate) decreases

9



Iron Law of Processor Performance (1/4)

10

CPI - Cycles Per Instructions



Iron Law of Processor Performance (2/4)

11

● Instructions per program determined by

○ Algorithm, e.g. O(N2) vs O(N)

○ Programming language

○ Compiler

○ Instruction Set Architecture (ISAs)



Iron Law of Processor Performance (3/4)

12

● CPI determined by

○ ISA

○ Processor implementation (or microarchitecture)

○ E.g. the single-cycle RISC-V design, CPI = 1

○ Complex instructions (e.g. strcpy), CPI >> 1

○ Superscalar processors, CPI < 1 (next lectures)



Iron Law of Processor Performance (4/4)

13

● Time per cycle determined by

○ ISA

○ Processor microarchitecture (determines the critical 

path through logic gates)

○ Technology (e.g. 5 nm vs. 28 nm)

○ Power budget (lower voltages reduce transistor speed)



Energy Efficiency (1/5)

14

● Where does energy go in CMOS?

Symbol (INV)
VDD

OutA OutA

VDD

M2

M1

Charging 

capacitors

(CV2)
(70%)

Leakage

(30%)



Energy Efficiency (2/5)

15

● Energy per task

○ Want to reduce capacitance and voltage to reduce energy/task

Energy  =    Instructions Energy    
Program            Program *  Instruction

Energy  α    Instructions *    C   V2

Program            Program

“Capacitance” depends on

technology, 

processor features

e.g. # of cores

Supply voltage, 

e.g. 1V



Energy Efficiency (3/5)

16

● Performance/power trends



Energy Efficiency (4/5)

17

● End of Dennard Scaling
○ Dennard Scaling: Power density remained constant for a given area 

of silicon while the dimension of the transistor shrank

○ In next-generation processors, significantly improved energy 

efficiency thanks to 

■ Moore’s Law

● The size of transistors is not shrinking as much as before 

● Need to go to 3D

■ Reduce supply voltage

● Increasing “leakage power” where transistor switches don’t 

fully turn off 

■ Power becomes a growing concern – the “power wall”



Energy Efficiency (5/5)

18

● Energy “Iron Law”

○ Energy efficiency is key metric in all computing devices

○ For power-constrained systems (e.g. 20 MW datacenter), need 

better energy efficiency to get more performance at the same 

power

○ For energy-constrained systems (e.g. 1W phone), need better 

energy efficiency to prolong battery life

Performance =         Power      *   Energy Efficiency

(Tasks/Second)      (Joules/Second)     (Tasks/Joule)



Outline

● Pipelining

● Pipelining Execution

● Pipelining Datapath

● Pipelining Hazard

● Structural Hazard

19



Pipelining (1/4)

20

● Ann, Brian, Cathy, Dave 
each has one load of clothes to wash, dry, 
fold, and put away

○ Washer takes 30 minutes

○ Dryer takes 30 minutes

○ “Folder” takes 30 minutes

○ “Stasher” takes 30 minutes to put clothes 
into drawers

A B C D



Pipelining (2/4)

21

● Sequential Laundry

T
a
s
k

O
r
d
e
r

B

C

D

A

30
Time

30 30 3030 30 3030 30 30 3030 30 30 3030

6 PM 7 8 9 10 11 12 1 2 AM

Sequential laundry takes 

8 hours for 4 loads



Pipelining (3/4)

22

● Pipelining laundry

T

a

s

k

O

r

d

e

r

B

C

D

A

12 2 AM6 PM 7 8 9 10 11 1

Time3030 30 3030 30 30

Pipelining laundry takes 

3.5 hours for 4 loads !



Pipelining (4/4)

23

● Pipelining doesn’t help latency of single task, it 

helps the throughput of entire workload

● Multiple tasks operating simultaneously using 

different resources

● Potential speedup = number of pipelining stages

○ Pipelining rate limited by slowest pipeline stage

○ Unbalanced lengths of pipe stages reduce speedup



Outline

● Pipelining

● Pipelining Execution

● Pipelining Datapath

● Pipelining Hazard

● Structural Hazard

24



Pipelining Execution (1/10)

25

● Steps in Executing RISC-V

○ IFtch: Instruction fetch, increment PC

○ Dcd: Instruction decode, read registers

○ Execute (Exec)

■ Mem-ref: Calculate Address

■ Arith-log: Perform Operation

○ Mem

■ Load: Read data from memory

■ Store: Write data to memory

○ WB: Write data back to register



Pipelining Execution (2/10)

26

● Every instruction must take the same number of steps, also 

called the pipeline “stage”, so some will go idle sometimes

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

IFtch Dcd Exec Mem WB

Time



Pipelining Execution (3/10)

27

● Symbolic Representation of 5 Stages



Pipelining Execution (4/10)

28

● In register, right half highlight read, left half write

I

n

s

t

r.

O

r

d

e

r

Load

Add
Store

Sub

Or

I$

Time (clock cycles)

I$

A
L
U

Reg

Reg

I$

D$

A
L
U

A
L
U

Reg

D$

Reg

I$

D$

Reg

A
L
U

Reg Reg

Reg

D$

Reg

D$

A
L
U

Reg

I$



Pipelining Execution (5/10)

29

● In a single-cycle CPU, only one instruction can 

access any resources in one clock cycle



Pipelining Execution (6/10)

30

● In a pipelined CPU, multiple instructions access 

resources in one clock cycle



Pipelining Execution (7/10)

31



Pipelining Execution (8/10)

32

● The pipelined CPU uses one clock for all stages; 

clock cycle time is limited by the slower stages



Pipelining Execution (9/10)

33

● Throughput = # instructions / time



Pipelining Execution (10/10)

34

● The delay time of each pipeline stage

○ Memory access: 2 ns

○ ALU operation: 2 ns

○ Register file read/write: 1 ns

● Single-cycle processor

○ lw: IF + Read Reg + ALU + Memory + Write Reg 

= 2 +       1          +   2 + 2         +  1  = 8 ns

○ add: IF + Read Reg + ALU + Write Reg  = 6 ns 

● Pipelined Execution

○ Max (IF, Read Reg, ALU, Memory, Write Reg) = 2ns



Takeaway Questions

● Which of the following statement(s) is/are True or False?

○ (a) Thanks to pipelining, I have reduced the time it took 

me to wash my shirt. 

(b) Longer pipelines are always a win (since less work 

per stage & a faster clock)

35



Takeaway Questions

● Which of the following statement(s) is/are True or False?

○ (a) Thanks to pipelining, I have reduced the time it took 

me to wash my shirt.  (False)

■ Throughput better, not execution time

○ (b) Longer pipelines are always a win (since less work 

per stage & a faster clock) (False)

■ longer pipelines do usually mean faster clock, but 

branches cause problems!

36



Outline

● Pipelining

● Pipelining Execution

● Pipelining Datapath

● Pipelining Hazard

● Structural Hazard

37



Pipelining Datapath (1/10)

38

● Each stage needs to process data from a different inst.



Pipelining Datapath (2/10)

39

● Use pipeline registers to carry instruction data between 

stages! 



Pipelining Datapath (3/10)

40

Single-cycle datapath means

1 clock cycle, from input to output.

○ Clock period limited by 

propagation delays of adder 

and shifter.

Insertion of pipeline register allows 

higher clock frequency.

Clock period now limited by

max {adder/shifter prop. delays}.

Higher throughput (outputs/s).

Pipeline 

Register



Pipelining Datapath (4/10)

41



Pipelining Datapath (5/10)

42



Pipelining Datapath (6/10)

43



Pipelining Datapath (7/10)

44



Pipelining Datapath (8/10)

45



Pipelining Datapath (9/10)

46



Pipelining Datapath(10/10)

47

● Like the single-cycle CPU, control is usually 

computed during instruction decode (ID)

○ Control information for later stages is stored in pipeline 

registers



Outline

● Pipelining

● Pipelining Execution

● Pipelining Datapath

● Pipelining Hazard

● Structural Hazard

48



Pipelining Hazard (1/2)

49



Pipelining Hazard (2/2)

50

● Limits to pipelining
○ Hazards result in pipeline “stalls” or “bubbles”

○ Structural hazards:

■ Multiple instructions in the pipeline compete for access to 

a single physical resource

○ Control hazards:

■ Pipelining of branches causes later instruction fetches to 

wait for the result of the branch

○ Data hazards:

■ Instructions have data dependency

■ Need to wait for previous instruction complete its data 

read/write



Outline

● Pipelining

● Pipelining Execution

● Pipelining Datapath

● Pipelining Hazard

● Structural Hazard

51



Structural Hazard (1/6)

52

● Structural Hazard #1: Single Memory

Read the 

same memory 

twice in the 

same clock 

cycle



Structural Hazard (2/6)

53

● Structural Hazard #1: Single Memory

○ Infeasible and inefficient to create a second memory

○ Solution

■ Have both an L1 instruction cache and an L1 data 

cache

■ Need more complex hardware to control when both

caches miss



Structural Hazard (3/6)

54

● Structural Hazard #1: Single Memory

○ Structural hazard if IMEM, DMEM were same hardware

RV32I 

separates 

IMEM and 

DMEM to avoid 

structural 

hazard



Structural Hazard (4/6)

55

● Structural Hazard #2: Registers

Read and write 

to registers 

simultaneously



Structural Hazard (5/6)

56

● Structural Hazard #2: Registers
○ Two different solutions have been used

■ RegFile access is very fast: takes less than half the

time of the ALU stage

● Write to registers during the first half of each clock 

cycle

● Read from registers during the second half of

each clock cycle

■ Build RegFile with independent read and write ports

○ Result: can perform read and write during the same clock

cycle



Structural Hazard (6/6)

57

● Structural Hazard #2: Registers

○ Each RV32I instruction

■ Reads up to 2 operands in decode stage

■ Writes up to 1 operand in writeback stage

■ Structural hazard occurs if RegFile HW

does not support simultaneous read/write !

○ RV32I RegFile-> no structural hazard

■ 2 independent read ports, 1 write port

■ Three accesses (2R/1W) can happen at 

the same cycle



Conclusion

● Optimal Pipeline

○ Each stage is executing part of an instruction each clock cycle

○ One instruction finishes during each clock cycle

○ On average, execute far more quickly

● What makes this work?

○ Similarities between instructions allow us to use same stages for 

all instructions

58


