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Outline

● Datapath with Branch
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● Review of Numbers

● IEEE 754 Format

● The implicit 1

● Exception Handling 
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Datapath with Branches(1/2)

● Datapath with Branches
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Datapath with Branches(2/2)
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● Branch Comparator



Takeaway Questions

● What are proper control signals for lui instruction?

○ (a) Bsel = 0, Asel = 0, WBSel = 0

○ (b) Bsel = 0, Asel = 1, WBSel = 1

○ (c) Bsel = 1, Asel = 1, WBSel = 1
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Takeaway Questions

● What are proper control signals for lui instruction?
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lui rd, uimm20



RV32I Control Logics (1/2)

● Control Logics
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RV32I Control Logics (2/2)
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Control Block Design (1/6)

● ROM

○ Read-only memory

○ Can be easily reprogrammed

■ Fix errors

■ Add instructions

○ Popular when designing control logic manually

● Combinatorial Logic

○ Chip designers use logic synthesis tools to convert truth tables to 

networks of gates
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Control Block Design (2/6)

● Instruction type encoded using only 9 bits
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Control Block Design (3/6)

● How to decide whether BrUn is 1?

○ Inst[13] and branch
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imm[12|10:5] rs2 rs1 000 imm[4:1|11] 1100011 BEQ

imm[12|10:5] rs2 rs1 001 imm[4:1|11] 1100011 BNE

imm[12|10:5] rs2 rs1 100 imm[4:1|11] 1100011 BLT

imm[12|10:5] rs2 rs1 101 imm[4:1|11] 1100011 BGE

imm[12|10:5] rs2 rs1 110 imm[4:1|11] 1100011 BLTU

imm[12|10:5] rs2 rs1 111 imm[4:1|11] 1100011 BGEU

Inst[14:12] Inst[6:2]



Control Block Design (4/6)
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Control Block Design (5/6)
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Control Block Design (6/6)

● How to decode add? 
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0000000 rs2 rs1 000 rd 0110011 BEQ

0100000 rs2 rs1 000 rd 0110011 BNE

0100000 rs2 rs1 001 rd 0110011 BLT

0000000 rs2 rs1 010 rd 0110011 BGE

Inst[14:12] Inst[6:2]

add = i[30]•i[14]•i[13]•i[12]•R-type 

R-type = i[6]•i[5]•i[4]•i[3]•i[2]•RV32I 

RV32I = i[1]•i[0] 
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Review of Numbers (1/9)

● Computers are made to deal with numbers

● What can we represent in N bits?

○ Unsigned integers

■ 0 to 2N-1

○ Signed Integers (Two’s Complement)

■ -2(N-1)  to 2(N-1) - 1
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Review of Numbers (2/9)

● What about other numbers?
○ Very large numbers?

■ 3,155,760,00010 (3.1557610 x 109)

○ Very small numbers? (atomic diameters)

■ 0.0000000110 (1.010 x 10-8)

○ Rationals (repeating pattern)

■ 2/3 (0.666666666…)

○ Irrationals

■ 21/2 (1.414213562373….)

○ Transcendentals

■ e(2.718…), pi(3.141…)
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Review of Numbers (3/9)

● Scientific Notation (in Decimal)

○ Normalized form: no leading 0s 

■ (exactly one digit to the left of the decimal point)

○ Alternatives to representing 1/1,000,000,000

■ Normalized: 1.0 x 10-9

■ Not normalized: 0.1 x 10-8; 10.0 x 10-10
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Review of Numbers (4/9)

● Representation of fractions (in Decimal)

● Example 6-digit representation

○ 25.240610 = 2x101 + 5x100 + 2x10-1 + 4 x 10-2 + 6x10-4
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Review of Numbers (5/9)

● Representation of fractions (in Decimal)

● How to store 6.022 x 1023

○ Sign bits: 1 bit (+/-)

○ Mantissa: 4 decimal digits (6022) 

■ Positive integer with no leading zeros

■ We can save it as an unsigned number

○ Exponent: 23

■ Positive or negative integer
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Review of Numbers (6/9)

● Scientific Notation (in Binary)

○ Computer arithmetic that supports it is called floating point

○ Floating point represents numbers where the binary point is not 

fixed, as it is for integers

■ Declare such variable in C as float
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Review of Numbers (7/9)

● Representation of fractions (in Binary)

● Example 6-digit representation

○ 10.10102 = 1x21 + 1x2-1 + 1x2-3 = 2.62510

○ If we assume a “fixed binary point”, the range of 6-bit 

representations with this format: is 0 to 3.9375
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Review of Numbers (8/9)

● Addition in the representation of the fraction
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Review of Numbers (9/9)

● Multiplication in the 

representation of the fraction

● Where is the answer?

○ 0.112 (0.510 + 0.2510 = 0.7510)

○ Need to remember where point is
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IEEE 754 single precision Floating-Point (1/8)

● Normal format: +1.xxxxxxxxxxtwo *2yyyyy
two

● Multiple of word size (32 bits)

○ S represents Sign

○ Exponent represents y’s

○ Significand represents x’s

○ Represent numbers as small as 2.0 x 10-38 to as large as 2.0 x 1038
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IEEE 754 single precision Floating-Point (2/8)

● For “single precision”, a 32-bit word

○ 1 bit for sign(s) of floating point number

○ 8 bits for exponent (E)

○ 23 bits for fraction (F)

○ Get 1 extra bit of precision because leading 1 is implicit:

there should always be a 1, so why store it at all?

○ Can represent approximately numbers in the range of 2.0 x 10-38 to 

2.0 x 1038
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IEEE 754 single precision Floating-Point (3/8)

● A negative floating point number?

○ 2’s complement 10002 = -810

○ 10002 = 810

○ Biased notation stores a signed number N as an unsigned value 

N+B, where B is the bias.

■ IEEE 754, single precision bias value is 127

■ 2’s complement 1111 11112 = -110

● Bias notation = -1 + 127 = 126 = 0111 11102

■ 2’s complement 0000 00012 = 1

● Bias notation = 1 + 127 = 128 = 1000 00002 30



IEEE 754 single precision Floating-Point (4/8)

● Bias Notation

○ IEEE 754 uses bias of 127 for single precision

○ Subtract 127 from Exponent field to get actual value for the 

exponent

○ 1023 is bias for double precision

31



IEEE 754 single precision Floating-Point (5/8)

● A floating point number uses 

○ x bits for exponent

○ y bits for mantissa

○ Assume a system with 3 exponent bits (bias of -3) and 4 mantissa

■ S  XXX  MMMM

○ This represents the number (-1)S * 0bM.MMM * 2 (0bXXX+(-3))
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IEEE 754 single precision Floating-Point (6/8)

● How to convert 10.875 to IEEE 745 FP Format?

○ Step 1: Write the number in binary

■ 1010.1112 = 1.010111000… * 23

○ Step 2: Determine Sign/Exponent/Mantissa

■ Sign = Positive ->0

■ Exponent: 3-(-127) = 130 -> 1000 00102

■ Mantissa: 1010 1110 0000 0000 0000 0000

○ Step 3: Concatenate

■ 0100 0001 0101 0111 0000 0000 0000 0000
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IEEE 754 single precision Floating-Point (7/8)

● How to convert 0xC3CC0000 to decimal?

○ Step 1: Write the number in binary

■ 1100 0011 1100 1100 0000 0000 0000 0000

■ C       3       C       C 0       0       0       0

○ Step 2: Determine Sign/Exponent/Mantissa

■ Sign = Negative ->1

■ Exponent: 1000 01112 -> 135-(127) = 8 

■ Mantissa: 1001 1000 … -> 1.001 1000 = 1 + 2-3 + 2-4

■ (1 + 2-3 + 2-4) * 28 = 28 + 25 + 24 = 304

34



IEEE 754 single precision Floating-Point (8/8)

● How to convert 0x00000000 to decimal?

○ Step 1: Determine Sign/Exponent/Mantissa

■ Sign = Positive ->0

■ Exponent: 0000 00002 -> 0-(127) = -127

■ Mantissa: 0000 0000 … -> 0

■ 0* 2-127 = 0
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The implicit 1 (1/7)

● Our mantissa is guaranteed not to have any leading zeros

○ If we wanted to write 0.234*105, we’d instead write it as 2.34*104

● In binary, every digit is only either 1 or 0

○ Since the MSB can’t be 0, it must therefore be 1

○ If the first bit will always be 1, we don’t need to store it!

○ We can save 1 bit (or alternatively add another bit of precision) to 

the mantissa by not including the MSB of the mantissa

■ This is known as the implicit 1

■ The resulting mantissa is a “normalized” number
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The implicit 1 (2/7)

● How to convert 10.875 to IEEE 745 FP Format?

○ Step 1: Write the number in binary

■ 1010.1112 = 1.010111000… * 23

○ Step 2: Determine Sign/Exponent/Mantissa

■ Sign = Positive ->0

■ Exponent: 3-(-127) = 130 -> 1000 00102

■ Mantissa: 0101 1100 0000 0000 0000 000

○ Step 3: Concatenate

■ 0100 0001 0010 1110 0000 0000 0000 0000
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The implicit 1(3/7)

● How to convert 0x00000000 to decimal?

○ Step 1: Determine Sign/Exponent/Mantissa

■ Sign = 0 -> Positive

■ Exponent: 0000 00002 -> 0-(127) = -127

■ Mantissa: 0000 0000 … -> 1.000….

■ 1* 2-127 = 0
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The implicit 1 (4/7)

● How to convert 0x00000001 to decimal?

○ Step 1: Determine Sign/Exponent/Mantissa

■ Sign = 0 -> Positive

■ Exponent: 0000 00002 -> 0-(127) = -127

■ Mantissa: 0000 0000 …1 -> 1.000….1 = 1 + 2-23

■ (1 + 2-23)*2-127 = 2-127 + 2-150
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The implicit 1(5/7)

● Problems with the implicit 1: Underflow

○ The smallest number (in absolute value) we can represent is 2-127

○ The underflow: the result of computation gets too small to be 

represented

● Solution: Denormalized numbers

○ If the exponent bits are all zero, then it instead represent

■ (-1)S * 0.MMMM * 2(000+(-3)+1)

○ Ends up losing precision at small numbers (so there is still 

underflow), but at least it’s not a sudden cliff drop
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The implicit 1(6/7)

● How to convert 0x00000000 to decimal?

○ Step 1: Determine Sign/Exponent/Mantissa

■ Sign = 0 -> Positive 

■ Exponent: 0000 00002 -> all zeros, so exponent meaning is 

0-(127)+1 = -126

■ Mantissa: 0000 0000 … -> 0.000…

■ 0* 2-126 = 0 (We can represent 0)
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The implicit 1(7/7)

● How to convert 0x00000001 to decimal?

○ Step 1: Determine Sign/Exponent/Mantissa

■ Sign = 0 -> Positive 

■ Exponent: 0000 00002 -> all zeros, so exponent meaning is 

0-(127)+1 = -126

■ Mantissa: 0000 0000 …1 -> 0.000…1 = 0 + 2-23

■ (0+2-23)* 2-126 = 2-149 (Much closer to 0)
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Exception Handling (1/6)

● Exception cases:

○ We should deal with “1 divided by 0”

○ Ideally, we include an “infinity” value to handle these cases

● If the exponent bits are all ones, then

○ If the mantissa is all zeros, it either ∞ or -∞ (depending on sign bit)

○ If the mantissa isn’t all zeros, then it’s a NaN (Not a Number)
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Exception Handling (2/6)

● IEEE-754 standard

○ SXXX XXXX XMMM MMMM MMMM MMMM MMMM MMMM

● If the exponent bits are nonzero and not all ones, then

○ (-1)S * 1.MMMM… * 2(XXXX XXXX+(-127))

● If the exponent bits are all zero, then 

○ (-1)S * 0.MMMM… * 2(0+(-127)+1)

● If the exponent bits are all ones, then

○ If the mantissa is all zeros, it either ∞ or -∞ (depending on sign bit)

○ If the mantissa isn’t all zeros, then it’s a NaN (Not a Number)
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Exception Handling (3/6)

● Convert 0xFF80 0000 as an IEEE-754 float to decimal

○ Step 1: Convert 0xFF80 0000 as binary

■ 1111 1111 1000 0000 0000 0000 0000 0000

■ Sign: 1-> Negative

■ Exponent: 1111 1111. All ones, so we’re dealing with a special 

case

■ Mantissa: 0000…. -> All zeros

■ -∞
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Exception Handling (4/6)

● Convert 0xFF80 0001 as an IEEE-754 float to decimal

○ Step 1: Convert 0xFF80 0001 as binary

■ 1111 1111 1000 0000 0000 0000 0000 0000

■ Sign: 1-> Negative

■ Exponent: 1111 1111. All ones, so we’re dealing with a special 

case

■ Mantissa: 0000…. 1-> Not all zeros

■ NaN
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Exception Handling (5/6)

● Invalid operation
○ Ex. Sqrt(-1.0)
○ By default, returns a NaN (quiet)

● Division by zero
○ By default, return infinity

● Overflow
○ By default, return infinity

● Underflow
○ Return a denorm. Note that we consider any result using a denorm to suffer 

from underflow (due to precision loss)

● Inexact value
○ Any math that yields a number that can’t be exactly represented, 

like 1.0/3
○ Rounds to a representable number according to the rounding rule 49



Exception Handling (6/6)

● IEEE 754: Rounding Rules

○ The most common is “round to the nearest value”, and break ties 

to the even number (last bit 0)

■ To round 14.5 to the nearest 2, go to 14, since 14 is closer to 

14.5 than 16

■ To round 15 to the nearest 2, go to 16, since 16 ends in 

more 0 bits than 14
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Double Precision Representation

● Next Multiple of word size (64 bits)

● Double Precision (vs. Single Precision)
○ C variable declared as double

○ Represent numbers almost as small as 2.0 x 10-308 to almost as large 

as 2.0 x 10308

○ Primary advantage is greater accuracy due to larger significand
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Conclusion

● Floating point: we break up the bucket-o-bits differently

○ A single sign bit (0 == positive, 1 == negative)

○ An exponent in biased form

○ A significant with an implicit leading 1

● Complications occur at the edge

○ Maximum exponent -> Either ∞ or NaN

○ Minimum exponent -> Either 0 or a denormalization

■ Fixed exponent, no more implicit leading 1
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