
Lecture 7: Floating Point

Department of Computer Science

Tsung Tai Yeh

Thursday: 1:20 pm– 3:10 pm

Classroom: EC-022

CS10014 Computer Organization

Acknowledgements and Disclaimer

● Slides were developed in the reference with

● CS 61C at UC Berkeley

● https://inst.eecs.berkeley.edu/~cs61c/sp23/

● CS 252 at UC Berkeley

● https://people.eecs.berkeley.edu/~culler/courses/cs252-s05/

● CSCE 513 at University of South Carolina

● https://passlab.github.io/CSCE513/

2

https://inst.eecs.berkeley.edu/~cs61c/sp23
https://inst.eecs.berkeley.edu/~cs61c/sp23/
https://people.eecs.berkeley.edu/~culler/courses/cs252-s05/
https://passlab.github.io/CSCE513/

Outline

● Datapath with Branch

● Control Block Design

● Review of Numbers

● IEEE 754 Format

● The implicit 1

● Exception Handling

3

Datapath with Branches(1/2)

● Datapath with Branches

4

Datapath with Branches(2/2)

5

● Branch Comparator

Takeaway Questions

● What are proper control signals for lui instruction?

○ (a) Bsel = 0, Asel = 0, WBSel = 0

○ (b) Bsel = 0, Asel = 1, WBSel = 1

○ (c) Bsel = 1, Asel = 1, WBSel = 1

6

lui rd, uimm20

Takeaway Questions

● What are proper control signals for lui instruction?

7

lui rd, uimm20

RV32I Control Logics (1/2)

● Control Logics

8

RV32I Control Logics (2/2)

9

Outline

● Datapath with Branch

● Control Block Design

● Review of Numbers

● IEEE 754 Format

● The implicit 1

● Exception Handling

10

Control Block Design (1/6)

● ROM

○ Read-only memory

○ Can be easily reprogrammed

■ Fix errors

■ Add instructions

○ Popular when designing control logic manually

● Combinatorial Logic

○ Chip designers use logic synthesis tools to convert truth tables to

networks of gates

11

Control Block Design (2/6)

● Instruction type encoded using only 9 bits

12

Control Block Design (3/6)

● How to decide whether BrUn is 1?

○ Inst[13] and branch

13

imm[12|10:5] rs2 rs1 000 imm[4:1|11] 1100011 BEQ

imm[12|10:5] rs2 rs1 001 imm[4:1|11] 1100011 BNE

imm[12|10:5] rs2 rs1 100 imm[4:1|11] 1100011 BLT

imm[12|10:5] rs2 rs1 101 imm[4:1|11] 1100011 BGE

imm[12|10:5] rs2 rs1 110 imm[4:1|11] 1100011 BLTU

imm[12|10:5] rs2 rs1 111 imm[4:1|11] 1100011 BGEU

Inst[14:12] Inst[6:2]

Control Block Design (4/6)

14

Control Block Design (5/6)

15

Control Block Design (6/6)

● How to decode add?

16

0000000 rs2 rs1 000 rd 0110011 BEQ

0100000 rs2 rs1 000 rd 0110011 BNE

0100000 rs2 rs1 001 rd 0110011 BLT

0000000 rs2 rs1 010 rd 0110011 BGE

Inst[14:12] Inst[6:2]

add = i[30]•i[14]•i[13]•i[12]•R-type

R-type = i[6]•i[5]•i[4]•i[3]•i[2]•RV32I

RV32I = i[1]•i[0]

Outline

● Datapath with Branch

● Control Block Design

● Review of Numbers

● IEEE 754 Format

● The implicit 1

● Exception Handling

17

Review of Numbers (1/9)

● Computers are made to deal with numbers

● What can we represent in N bits?

○ Unsigned integers

■ 0 to 2N-1

○ Signed Integers (Two’s Complement)

■ -2(N-1) to 2(N-1) - 1

18

Review of Numbers (2/9)

● What about other numbers?
○ Very large numbers?

■ 3,155,760,00010 (3.1557610 x 109)

○ Very small numbers? (atomic diameters)

■ 0.0000000110 (1.010 x 10-8)

○ Rationals (repeating pattern)

■ 2/3 (0.666666666…)

○ Irrationals

■ 21/2 (1.414213562373….)

○ Transcendentals

■ e(2.718…), pi(3.141…)
19

Review of Numbers (3/9)

● Scientific Notation (in Decimal)

○ Normalized form: no leading 0s

■ (exactly one digit to the left of the decimal point)

○ Alternatives to representing 1/1,000,000,000

■ Normalized: 1.0 x 10-9

■ Not normalized: 0.1 x 10-8; 10.0 x 10-10

20

Review of Numbers (4/9)

● Representation of fractions (in Decimal)

● Example 6-digit representation

○ 25.240610 = 2x101 + 5x100 + 2x10-1 + 4 x 10-2 + 6x10-4

21

Review of Numbers (5/9)

● Representation of fractions (in Decimal)

● How to store 6.022 x 1023

○ Sign bits: 1 bit (+/-)

○ Mantissa: 4 decimal digits (6022)

■ Positive integer with no leading zeros

■ We can save it as an unsigned number

○ Exponent: 23

■ Positive or negative integer

22

Review of Numbers (6/9)

● Scientific Notation (in Binary)

○ Computer arithmetic that supports it is called floating point

○ Floating point represents numbers where the binary point is not

fixed, as it is for integers

■ Declare such variable in C as float
23

Review of Numbers (7/9)

● Representation of fractions (in Binary)

● Example 6-digit representation

○ 10.10102 = 1x21 + 1x2-1 + 1x2-3 = 2.62510

○ If we assume a “fixed binary point”, the range of 6-bit

representations with this format: is 0 to 3.9375

24

Review of Numbers (8/9)

● Addition in the representation of the fraction

25

Review of Numbers (9/9)

● Multiplication in the

representation of the fraction

● Where is the answer?

○ 0.112 (0.510 + 0.2510 = 0.7510)

○ Need to remember where point is

26

Outline

● Datapath with Branch

● Control Block Design

● Review of Numbers

● IEEE 754 Format

● The implicit 1

● Exception Handling

27

IEEE 754 single precision Floating-Point (1/8)

● Normal format: +1.xxxxxxxxxxtwo *2yyyyy
two

● Multiple of word size (32 bits)

○ S represents Sign

○ Exponent represents y’s

○ Significand represents x’s

○ Represent numbers as small as 2.0 x 10-38 to as large as 2.0 x 1038
28

IEEE 754 single precision Floating-Point (2/8)

● For “single precision”, a 32-bit word

○ 1 bit for sign(s) of floating point number

○ 8 bits for exponent (E)

○ 23 bits for fraction (F)

○ Get 1 extra bit of precision because leading 1 is implicit:

there should always be a 1, so why store it at all?

○ Can represent approximately numbers in the range of 2.0 x 10-38 to

2.0 x 1038

29

IEEE 754 single precision Floating-Point (3/8)

● A negative floating point number?

○ 2’s complement 10002 = -810

○ 10002 = 810

○ Biased notation stores a signed number N as an unsigned value

N+B, where B is the bias.

■ IEEE 754, single precision bias value is 127

■ 2’s complement 1111 11112 = -110

● Bias notation = -1 + 127 = 126 = 0111 11102

■ 2’s complement 0000 00012 = 1

● Bias notation = 1 + 127 = 128 = 1000 00002 30

IEEE 754 single precision Floating-Point (4/8)

● Bias Notation

○ IEEE 754 uses bias of 127 for single precision

○ Subtract 127 from Exponent field to get actual value for the

exponent

○ 1023 is bias for double precision

31

IEEE 754 single precision Floating-Point (5/8)

● A floating point number uses

○ x bits for exponent

○ y bits for mantissa

○ Assume a system with 3 exponent bits (bias of -3) and 4 mantissa

■ S XXX MMMM

○ This represents the number (-1)S * 0bM.MMM * 2 (0bXXX+(-3))

32

IEEE 754 single precision Floating-Point (6/8)

● How to convert 10.875 to IEEE 745 FP Format?

○ Step 1: Write the number in binary

■ 1010.1112 = 1.010111000… * 23

○ Step 2: Determine Sign/Exponent/Mantissa

■ Sign = Positive ->0

■ Exponent: 3-(-127) = 130 -> 1000 00102

■ Mantissa: 1010 1110 0000 0000 0000 0000

○ Step 3: Concatenate

■ 0100 0001 0101 0111 0000 0000 0000 0000

33
S Exponent Mantissa

IEEE 754 single precision Floating-Point (7/8)

● How to convert 0xC3CC0000 to decimal?

○ Step 1: Write the number in binary

■ 1100 0011 1100 1100 0000 0000 0000 0000

■ C 3 C C 0 0 0 0

○ Step 2: Determine Sign/Exponent/Mantissa

■ Sign = Negative ->1

■ Exponent: 1000 01112 -> 135-(127) = 8

■ Mantissa: 1001 1000 … -> 1.001 1000 = 1 + 2-3 + 2-4

■ (1 + 2-3 + 2-4) * 28 = 28 + 25 + 24 = 304

34

IEEE 754 single precision Floating-Point (8/8)

● How to convert 0x00000000 to decimal?

○ Step 1: Determine Sign/Exponent/Mantissa

■ Sign = Positive ->0

■ Exponent: 0000 00002 -> 0-(127) = -127

■ Mantissa: 0000 0000 … -> 0

■ 0* 2-127 = 0

35

Outline

● Datapath with Branch

● Control Block Design

● Review of Numbers

● IEEE 754 Format

● The implicit 1

● Exception Handling

36

The implicit 1 (1/7)

● Our mantissa is guaranteed not to have any leading zeros

○ If we wanted to write 0.234*105, we’d instead write it as 2.34*104

● In binary, every digit is only either 1 or 0

○ Since the MSB can’t be 0, it must therefore be 1

○ If the first bit will always be 1, we don’t need to store it!

○ We can save 1 bit (or alternatively add another bit of precision) to

the mantissa by not including the MSB of the mantissa

■ This is known as the implicit 1

■ The resulting mantissa is a “normalized” number

37

The implicit 1 (2/7)

● How to convert 10.875 to IEEE 745 FP Format?

○ Step 1: Write the number in binary

■ 1010.1112 = 1.010111000… * 23

○ Step 2: Determine Sign/Exponent/Mantissa

■ Sign = Positive ->0

■ Exponent: 3-(-127) = 130 -> 1000 00102

■ Mantissa: 0101 1100 0000 0000 0000 000

○ Step 3: Concatenate

■ 0100 0001 0010 1110 0000 0000 0000 0000

38
S Exponent Mantissa

The implicit 1(3/7)

● How to convert 0x00000000 to decimal?

○ Step 1: Determine Sign/Exponent/Mantissa

■ Sign = 0 -> Positive

■ Exponent: 0000 00002 -> 0-(127) = -127

■ Mantissa: 0000 0000 … -> 1.000….

■ 1* 2-127 = 0

39

The implicit 1 (4/7)

● How to convert 0x00000001 to decimal?

○ Step 1: Determine Sign/Exponent/Mantissa

■ Sign = 0 -> Positive

■ Exponent: 0000 00002 -> 0-(127) = -127

■ Mantissa: 0000 0000 …1 -> 1.000….1 = 1 + 2-23

■ (1 + 2-23)*2-127 = 2-127 + 2-150

40

The implicit 1(5/7)

● Problems with the implicit 1: Underflow

○ The smallest number (in absolute value) we can represent is 2-127

○ The underflow: the result of computation gets too small to be

represented

● Solution: Denormalized numbers

○ If the exponent bits are all zero, then it instead represent

■ (-1)S * 0.MMMM * 2(000+(-3)+1)

○ Ends up losing precision at small numbers (so there is still

underflow), but at least it’s not a sudden cliff drop

41

The implicit 1(6/7)

● How to convert 0x00000000 to decimal?

○ Step 1: Determine Sign/Exponent/Mantissa

■ Sign = 0 -> Positive

■ Exponent: 0000 00002 -> all zeros, so exponent meaning is

0-(127)+1 = -126

■ Mantissa: 0000 0000 … -> 0.000…

■ 0* 2-126 = 0 (We can represent 0)

42

The implicit 1(7/7)

● How to convert 0x00000001 to decimal?

○ Step 1: Determine Sign/Exponent/Mantissa

■ Sign = 0 -> Positive

■ Exponent: 0000 00002 -> all zeros, so exponent meaning is

0-(127)+1 = -126

■ Mantissa: 0000 0000 …1 -> 0.000…1 = 0 + 2-23

■ (0+2-23)* 2-126 = 2-149 (Much closer to 0)

43

Outline

● Datapath with Branch

● Control Block Design

● Review of Numbers

● IEEE 754 Format

● The implicit 1

● Exception Handling

44

Exception Handling (1/6)

● Exception cases:

○ We should deal with “1 divided by 0”

○ Ideally, we include an “infinity” value to handle these cases

● If the exponent bits are all ones, then

○ If the mantissa is all zeros, it either ∞ or -∞ (depending on sign bit)

○ If the mantissa isn’t all zeros, then it’s a NaN (Not a Number)

45

Exception Handling (2/6)

● IEEE-754 standard

○ SXXX XXXX XMMM MMMM MMMM MMMM MMMM MMMM

● If the exponent bits are nonzero and not all ones, then

○ (-1)S * 1.MMMM… * 2(XXXX XXXX+(-127))

● If the exponent bits are all zero, then

○ (-1)S * 0.MMMM… * 2(0+(-127)+1)

● If the exponent bits are all ones, then

○ If the mantissa is all zeros, it either ∞ or -∞ (depending on sign bit)

○ If the mantissa isn’t all zeros, then it’s a NaN (Not a Number)
46

Exception Handling (3/6)

● Convert 0xFF80 0000 as an IEEE-754 float to decimal

○ Step 1: Convert 0xFF80 0000 as binary

■ 1111 1111 1000 0000 0000 0000 0000 0000

■ Sign: 1-> Negative

■ Exponent: 1111 1111. All ones, so we’re dealing with a special

case

■ Mantissa: 0000…. -> All zeros

■ -∞

47

Exception Handling (4/6)

● Convert 0xFF80 0001 as an IEEE-754 float to decimal

○ Step 1: Convert 0xFF80 0001 as binary

■ 1111 1111 1000 0000 0000 0000 0000 0000

■ Sign: 1-> Negative

■ Exponent: 1111 1111. All ones, so we’re dealing with a special

case

■ Mantissa: 0000…. 1-> Not all zeros

■ NaN

48

Exception Handling (5/6)

● Invalid operation
○ Ex. Sqrt(-1.0)
○ By default, returns a NaN (quiet)

● Division by zero
○ By default, return infinity

● Overflow
○ By default, return infinity

● Underflow
○ Return a denorm. Note that we consider any result using a denorm to suffer

from underflow (due to precision loss)

● Inexact value
○ Any math that yields a number that can’t be exactly represented,

like 1.0/3
○ Rounds to a representable number according to the rounding rule 49

Exception Handling (6/6)

● IEEE 754: Rounding Rules

○ The most common is “round to the nearest value”, and break ties

to the even number (last bit 0)

■ To round 14.5 to the nearest 2, go to 14, since 14 is closer to

14.5 than 16

■ To round 15 to the nearest 2, go to 16, since 16 ends in

more 0 bits than 14

50

Double Precision Representation

● Next Multiple of word size (64 bits)

● Double Precision (vs. Single Precision)
○ C variable declared as double

○ Represent numbers almost as small as 2.0 x 10-308 to almost as large

as 2.0 x 10308

○ Primary advantage is greater accuracy due to larger significand
51

Conclusion

● Floating point: we break up the bucket-o-bits differently

○ A single sign bit (0 == positive, 1 == negative)

○ An exponent in biased form

○ A significant with an implicit leading 1

● Complications occur at the edge

○ Maximum exponent -> Either ∞ or NaN

○ Minimum exponent -> Either 0 or a denormalization

■ Fixed exponent, no more implicit leading 1

52

