
Lecture 5: RISC-V Datapath

Department of Computer Science

Tsung Tai Yeh

Thursday: 1:20 pm– 3:10 pm

Classroom: EC-022

CS10014 Computer Organization

Acknowledgements and Disclaimer

● Slides were developed in the reference with

● CS 61C at UC Berkeley

● https://inst.eecs.berkeley.edu/~cs61c/sp23/

● CS 252 at UC Berkeley

● https://people.eecs.berkeley.edu/~culler/courses/cs252-s05/

● CSCE 513 at University of South Carolina

● https://passlab.github.io/CSCE513/

2

https://inst.eecs.berkeley.edu/~cs61c/sp23
https://inst.eecs.berkeley.edu/~cs61c/sp23/
https://people.eecs.berkeley.edu/~culler/courses/cs252-s05/
https://passlab.github.io/CSCE513/

Outline

● State Element

● Design the Datapath

● R-Type Datapath

● I-Type Datapath

3

5 Components in a Computer

4

Single Core Processor

● Processor (CPU)
● The active part of the computer that does all the work (data

manipulation and decision-making)

● Datapath
○ Contains hardware

necessary to perform

operations required by

the processor

● Control
● Tells the datapath what

needs to be done 5

Combinational Logic Blocks

● Will think of all combinational logic subcircuits as block

diagrams

6

1

0

N

N

a

b N
c

s

32-bit-wide 2-to-1

MUX

A

Add
B

32

32

32

CarryIn

A

B

CarryOut

S

32-Bit Adder ALU (ALUOp selects from

multiple operations)

A

ALU
B

AluOp

Result

RISC-V Single Cycle Processor

● The CPU comprises two types of circuit
● One-instruction-per-cycle

● One every tick of the clock, the

computer executes one instruction

● At the rising clock edge

● All the state elements are

updated with the combinational

logic outputs

● Execution moves to the next

clock cycle

7

Outline

● State Element

● Design the Datapath

● R-Type Datapath

● I-Type Datapath

8

State Elements (1/6)

● State elements required by RV32I ISA
● During CPU execution, each RV32I instruction reads and/or

updates these state elements

9

P

C

Program

Counter
Register
File Reg

Reg[]
Memory
MEM

IME

M

DME

M

State Elements (2/6)

● Program Counter
● The program counter is a 32-bit register
● Input

● N-bit data input bus
● Write Enable: “Control” bit (1: asserted/high

0: de-asserted/0)
● Output

● N-bit data output bus
● Behavior

● If write enable is 1 on the rising clock edge,
set Data Out = Data in

● At all other times, Data out will not change,
it will output it current value

10

clk

Data

In

Write

Enable

N N

Data

Out

A register in

Logisim

State Elements (3/6)

● Register File
● The Register File (RegFile) has 32 registers

● Input

● One 32-bit input data bus, dataW

● Three 5-bit select busses, rs1, rs2, and rsW

● Output

● Two 32-bit output data busses, data1 and data2

11

dataW

rsW

rs1 data1

rs2

data2

Reg[]

clk

32

32

5

5

5

32

RegWEn

State Elements (4/6)

● Register File
● Registers are accessed via their 5-bit register

numbers

● R[rs1]: rs1 selects register to put on data1 bus out

● R[rs2]: rs2 selects register to put on data2 buts out

● R[rd]: rsW selects register to be written via dataW when

RegWEn = 1

● Clock behavior: Write operation occurs on rising clock edge

● Clock input only a factor on write!

● All read operations behave like a combinational block

● If rs1, rs2 valid, then data1, data2 valid after access time 12

dataW

rsW

rs1 data1

rs2

data2

Reg[]

clk

32

32

5

5

5

32

RegWEn

State Elements (5/6)

● Memory
● 32-bit byte-addressed memory space

● Memory access with 32-bit words

● Memory words are accessed as follows

● Read: Address addr selects word to put on dataR bus

● Write: Set MemRW = 1

Address addr selects word to be written with dataW bus

● Like RegFile, clock input is only a factor on write

● If MemRW = 1, write occurs on rising clock edge

● If MemRW = 0 and addr valid, then dataR valid after access

time 13

dataR

addr

MEM

dataW

clk

MemRW

32

32

32

State Elements (6/6)

● Two Memories (IMEM, DMEM)
● Memory holds both instructions and data in one

contiguous 32-bit memory space

● The processor will use two “separate” memories

● IMEM: A read-only memory for fetching instruction

● DMEM: A memory for loading (read) and storing (write) data

words

● Because IMEM is read-only, it always behaves like a combinational

block

● If addr valid, then instr valid after access time

14

dataR

addr

DMEM

dataW

clk

MemRW

32

32

32addr

inst

IMEM

32

32

Outline

● State Element

● Design the Datapath

● R-Type Datapath

● I-Type Datapath

15

Design the Datapath (1/3)

● Task: “Execute an instruction”
● All necessary operations starting

with fetching the instruction

● Problem:

● A single “monolithic’ block would be bulky and inefficient

● Solution:

● Break up the process into stages, then connect the stages to

create the whole datapath

● Smaller stages are easier to design!

● Modularity: Easy to optimize one stage without touching the

others
16

Design the Datapath (2/3)

● The single-cycle processor
● All stages of one RV32I instruction execute within the same clock

cycle

17

5 basic stages

of instruction

execution

(IF) (ID) (EX) (MEM) (WB)

Design the Datapath (3/3)

● The control logic selects “needed” datapath lines based

on the instruction
● MUX selector

● ALU op selector

● Write Enable …

18

Control Logic

Not all

instructions

need all 5

stages

Outline

● State Element

● Design the Datapath

● R-Type Datapath

● I-Type Datapath

19

R-Type Datapath: add (1/3)

● Implementing the add instruction

20

add rd, rs1, rs2

31 25 24 20 19 15 14 12 11 7 6 0

funct7 funct3 opcode

0000000 rs2 rs1 000 rd 0110011
7 5 5 3 5 7

“add” “add”

R-Type Datapath: add (2/3)

● The add instruction makes two changes to processor

state
● RegFile Reg[rd] = Reg[rs1] + Reg[rs2]

● PC PC = PC + 4

21

add rd, rs1, rs2

R[rs1]

R[rs2]

add

inst[11:7]

inst[19:15]

inst[24:20]

addr

inst

IMEM

P

C

clk

add

pc

+4

pc+4

clk

dataW

rsW

rsR1 dataR1

rsR2

dataR2

Reg[]

31 25 24 20 19 15 14 12 11 7 6 0

funct7 rs2 rs1 funct3 rd 0110011

PC = PC + 4 R[rd] = R[rs1] + R[rs2]

Increment PC to next

instruction.

Write Add output to

destination register.

Feed read register
values into Add.

Split instruction to
index into RegFile.

RegWEn
1

Control Logic

A

Add

B

R-Type Datapath: add (3/3)

22

R-Type Datapath: sub (1/3)

● Implementing the sub instruction

● sub subtracts operands instead of adding them
● RegFile Reg[rd] = Reg[rs1] - Reg[rs2]

● PC PC = PC + 4

● Instruction bit inst[30] selects between add/sub

● Details left to control logic
23

sub rd, rs1, rs2

funct7 funct3 opcode

0000000 rs2 rs1 000 rd 0110011 add

0100000 rs2 rs1 000 rd 0110011 sub

addr

inst

IMEM

add

P

C
R[rs1]

clk

clk

R[rs2]

pc

+4

alu

RegWEn
1

Control Logic

dataW

rsW

rsR1 dataR1

rsR2

dataR2

Reg[]

pc+4

A

ALU

B

inst[11:7]

inst[19:15]

inst[24:20]

31 25 24 20 19 15 14 12 11 7 6 0

0100000 rs2 rs1 funct3 rd 0110011

Increment PC to next

instruction.

Write ALU output to

destination register.

Feed read register
values into ALU.

Split instruction to
index into RegFile.

ALUSel
Sub

The control line ALUSel
selects which ALU
operation to output.
Convention: Add(0), Sub(1).

inst[31:0]

Pass instr to Control

for instruction decoding

(for now, all 32 bits).

PC = PC + 4 R[rd] = R[rs1] - R[rs2]

R-Type Datapath: sub (2/3)

24

addr

inst

IMEM

add

P

C
R[rs1]

clk

clk

R[rs2]

pc

+4

alu

RegWEn
1

Control Logic

dataW

rsW

rsR1 dataR1

rsR2

dataR2

Reg[]

pc+4

A

ALU

B

inst[11:7]

inst[19:15]

inst[24:20]

Increment PC to next

instruction.

Write ALU output to

destination register.

Feed read register
values into ALU.

Split instruction to
index into RegFile.

ALUSel
Sub

The control line ALUSel
selects which ALU
operation to output.
Convention: Add(0), Sub(1).

inst[31:0]

“Control, what should I

do? Here’s the

instruction”

PC = PC + 4 R[rd] = R[rs1] - R[rs2]

R-Type Datapath: sub (3/3)

RegFile, enable

register write
ALU performs

Sub op.

25

R-Type Datapath: all R-Type Instruction

26

Funct7 funct3 opcode

0000000 rs2 rs1 000 rd 0110011 add

0100000 rs2 rs1 000 rd 0110011 sub

0000000 rs2 rs1 001 rd 0110011 sll

0000000 rs2 rs1 010 rd 0110011 slt

0000000 rs2 rs1 011 rd 0110011 sltu

0000000 rs2 rs1 100 rd 0110011 xor

0000000 rs2 rs1 101 rd 0110011 srl

0100000 rs2 rs1 101 rd 0110011 sra

0000000 rs2 rs1 110 rd 0110011 or

0000000 rs2 rs1 111 rd 0110011 and

The Control Logic decodes funct3, funct7 instruction

fields and selects appropriate ALU function by setting the

control line ALUSel

A

ALU

B

ALUSel
add,sub,xor,and,or,
slt,sltu,sll,sra,srl

Outline

● State Element

● Design the Datapath

● R-Type Datapath

● I-Type Datapath

27

I-Type Datapath: addi

● RV32I I-format addi

● The addi instruction needs to build an immediate imm!
● RegFile Reg[rd] = Reg[rs1] + imm

● PC PC = PC + 4

28

addi rd, rs1, imm

31 25 24 20 19 15 14 12 11 7 6 0

funct3 opcode

imm[11:0] rs1 000 rd 0010011

12 5 3 5 7

I-Type Datapath: addi (1/5)

addr

inst

IMEM

add

P

C
R[rs1]

clk

clk

R[rs2]

pc

+4

alu

inst[31:0] RegWEn
1

ALUSel
Add

Control Logic

dataW

rsW

rsR1 d ataR1

rsR2

dataR2

Reg[]

pc+4

To compute alu = R[rs1] + imm…

…we should feed in an immediate
to ALU input B (instead of

R[rs2]).

A

ALU

B

inst[11:7]

inst[19:15]

inst[24:20]

✅

PC = PC + 4 R[rd] = R[rs1] + imm

29

addr

inst

IMEM

add

P

C
R[rs1]

clk

clk

R[rs2]

pc

+4

alu

inst[31:0] RegWEn
1

Control Logic

dataW

rsW

rsR1 dataR1

rsR2

dataR2

Reg[]

pc+4

A

ALU

B

inst[11:7]

inst[19:15]

inst[24:20]

0

1

imm

Bsel
1

ALUSel
Add

1. Control line
Bsel=1 selects the
generated immediate
imm for ALU input B.

I-Type Datapath: addi (2/5)

30

addr

inst

IMEM

add

P

C
R[rs1]

clk

cl

k

R[rs2]

pc

+4

alu

inst[31:0] RegWEn
1

Control Logic

dataW

rsW

rsR1 dataR1

rsR2

dataR2

Reg[]

pc+4

A

ALU

B

inst[11:7]

inst[19:15]

inst[24:20]

0

1

Bsel
1

Split and get the

upper 12 bits of
instr.

inst[31:20]
imm[31:0]

ImmSel
I

Imm.

Gen

ALUSel
Add

1. Control line
Bsel=1 selects the
generated immediate
imm for ALU input B.

2. Immediate
Generation Block builds
a 32-bit immediate imm

from instruction bits.

I-Type Datapath: addi (3/5)

31

Imm.

Gen

inst[31:20]

addr

inst

IMEM

add

P

C

inst[11:7]

inst[19:15]

inst[24:20]

R[rs1]

clk

clk
R[rs2]

imm[31:0]

pc

+4

inst[31:0]

Control Logic

dataW

rsW

rsR1 dataR1

rsR2

dataR2

Reg[]

pc+4

0

1

Imm.

Gen

A

ALU

B

alu

R[rs2]

Data inst[24:20] still feeds into Reg[], which still outputs R[rs2].
However, control Bsel=1 means R[rs2] data line is ignored.

Increment PC to next

instruction.

Write ALU

output to

destination

register.

Control line Bsel=1
selects the
generated immediate
imm for ALU input B.

Immediate Generation
Block builds a 32-bit
immediate imm from

instruction bits.

ImmSel
I

RegWEn
1

Bsel
1

ALUSel
Add

I-Type Datapath: addi (4/5)

32

Immediate Generation Block
inst[31:20] imm[31:0]Imm.

GenInstruction
inst[31:0]

31 30 20 19 15 14 12 11 7 6 0

imm[11:0] rs1 funct3 rd opcode

s

31 12 11 0

imm[31:12] imm[11:0]

ssss ssss ssss ssss ssss s...

Copy upper 12 bits of
instruction, inst[31:20], to

lower 12 bits of immediate,
imm[11:0].

Immediate
imm[31:0]

Sign-extend: Copy inst[31] to

upper 20 bits of immediate,
imm[31:12].

33

Imm.

Gen

inst[31:20]

Summary: Arithmetic/Logical Datapath

● All data lines carry information.

● Control logic determines what is “useful/needed” vs. what is “ignored.”

○ e.g., ALUSel: chooses ALU operation; Bsel: chooses register/immediate for ALU input B.

addr

inst

IMEM

add

P

C

inst[11:7]

inst[19:15]

inst[24:20]

R[rs1]

clk

clk
R[rs2]

imm[31:0]

pc

+4

inst[31:0] ImmSel
I: I-Type

RegWEn
1

Control Logic

dataW

rsW

rsR1 dataR1

rsR2

dataR2

Reg[]

pc+4

0

1

Imm.

Gen

A

ALU

B

alu

R[rs2]

pc

Bsel
0: R[rs1]
1: imm

ALUSel
add,sub,xor,and,or,
slt,sltu,sll,sra,srl 34

