
Lecture 4: RISC-V Instruction Set, Part 3

Department of Computer Science

Tsung Tai Yeh

Thursday: 1:20 pm– 3:10 pm

Classroom: EC-022

CS10014 Computer Organization

Acknowledgements and Disclaimer

● Slides were developed in the reference with

● CS 61C at UC Berkeley

● https://inst.eecs.berkeley.edu/~cs61c/sp23/

● CS 252 at UC Berkeley

● https://people.eecs.berkeley.edu/~culler/courses/cs252-s05/

● CSCE 513 at University of South Carolina

● https://passlab.github.io/CSCE513/

2

https://inst.eecs.berkeley.edu/~cs61c/sp23/
https://people.eecs.berkeley.edu/~culler/courses/cs252-s05/
https://passlab.github.io/CSCE513/

Outline

● Branch instructions

● Bitwise/Logical instructions

● Loops in assembly

● Inequality in RISC-V

● Functional calling

3

C Decisions: if Statements

● 2 kinds of if statements in C
● if (condition) clause

● if (condition) clause1 else clause2

● Rearrange 2nd if into following:

4

RISC-V Decision Instructions

● Conditional branches

● Decision instruction in RISC-V
● beq register1, register2, L1

● beq is “Branch if (registers are) equal”

if (register1 == register2) goto L1

● Complementary RISC-V decision instruction
● bne register1, register2, L1

● bne is “Branch if (registers are) not equal”

if (register != register2) goto L1

5

RISC-V Goto Instruction

● Unconditional branches

j label

● Call a jump instruction
● Jump (or branch) directly to the given label without needing to

satisfy any condition

● Same meaning as (using C)

● goto label

● Technically, it’s the same as

● beq $x0, $x0, label

Since it always satisfies the condition

6

Compiling C if into RISC-V (1/2)

7

Compiling C if into RISC-V (1/2)

8

RISC-V

Summary

9

● A decision allows us to decide what to execute at run-

time rather compile-time

● C decision are made using conditional statements within

if, while, do while, for

● RISC-V decision making instructions are conditional

branches: beq and bne

Outline

● Branch instructions

● Bitwise/Logical instructions

● Loops in assembly

● Inequality in RISC-V

● Functional calling

10

Bitwise Operations

● New Perspective: View register as 32 raw bits rather than

as a single 32-bit number

● Registers are composed of 32 bits

● We many want to access individual bits (or groups of bits)

rather than the whole

● Introduce two new classes of instructions:
● Logical & Shift Ops

11

Logical Operators (1/3)

● Two basic logical operators
● AND: outputs 1 only if both inputs are 1

● OR: outputs 1 if at least one input is 1

● Truth Table

12

Logical Operators (2/3)

● Logical Instruction Syntax
● 1 2, 3, 4

● 1) operation name

● 2) register that will receive value

● 3) first operand (register)

● 4) second operand (register) or immediate constant

● Instruction Names:
● and, or: Both of these expect the third argument to be a register

● andi, ori: Both of these expect the third argument to be an

immediate

13

Logical Operators (3/3)

● Note: a->s1, b->s2, c->s3

14

Uses for Logical Operators (1/2)

● anding a bit with 0 produces a 0 at the output

● anding a bit with 1 produces the original bit

● This can be used to create a mask (andi $t0, $t0, 0xFF)

15

1011 0110 1010 0100 0011 1101 1001 1010

mask: 0000 0000 0000 0000 0000 0000 1111 1111

The result of anding this:

0000 0000 0000 0000 0000 0000 1001 1010

Mask the last 8 bits

Uses for Logical Operators (2/2)

● “oring” a bit with 1 produces a 1 at the output

● “anding” a bit with 0 produces the original bit

● This can be used to force certain bits of a string to 1s
● For example, if $t0 contains

0x12345678, then after this instruction

ori $t0, $t0, 0xFFFF

● …$t0 contains 0x1234FFFF

● E.g. the high-order 16-bits are untouched, while the low-order

16 bits are forced to 1s

16

Shift Instruction (1/4)

● Move (shift) all the bits in a word to the left or right by a

number of bits

17

Shift Instruction (2/4)

● Shift right arith by 8 bits

18

Shift Instruction (3/4)

● Shift Instruction Syntax:
● 1 2, 3, 4

● 1) operation name

● 2) register that will receive value

● 3) first operand (register)

● 4) shift amount (constant < 32)

● Since shifting may be faster than multiplication, a

good compiler usually notices when C code

multiplies by a power of 2 and compiles it to a shift

instruction
19

Shift Instruction (4/4)

● sra (shift right arithmetic): Shifts right and fills emptied bits by sign

extending

20

RISC-V

Outline

● Branch instructions

● Bitwise/Logical instructions

● Loops in assembly

● Inequality in RISC-V

● Functional calling

21

Loops in C/Assembly (1/3)

● Simple loop in C; A[] is an array of ints

● Rewrite this as

22

Loops in C/Assembly (2/3)

● Final compiled RISC-V code:

● Original code

23

Loops in C/Assembly (3/3)

● There are three types of loops in C
● While

● do … while

● for

● Each can be rewritten as either of the other two, so the

method used in the previous example can be applied to

“while” and “for” loops as well

24

Outline

● Branch instructions

● Bitwise/Logical instructions

● Loops in assembly

● Inequality in RISC-V

● Functional calling

25

Inequalities in RISC-V (1/2)

● General programs need to test “<” and “>” as well

● Create a RISC-V Inequality instruction
● Set on Less Than

● Syntax: slt reg1, reg2, reg3

● Meaning: reg1 = (reg2 < reg3)

26

Inequalities in RISC-V (2/2)

● For example
● if (g < h) goto Less; #g:$s0, h:$s1

● RISC-V code

● Branch if $t0 != 0 -> (g < h)

● Register $0/$x0 always contains the value 0, so “bne” and “beq”

often use it for comparison after an “slt” instruction

● A slt -> bne pair means if (… < …) goto… 27

Immediates in Inequalities

● There is an immediate version of slt to test against

constants: slti

● A slti -> beq pair means if (… ≥ …) goto… 28

What about unsigned numbers?

● Unsigned inequality instructions: sltu, sltiu
● Which sets results to 1 or 0 depending on unsigned comparisons

29

RISC-V Signed vs. Unsigned

● RISC-V Signed vs. Unsigned is an “overloaded” term
● Do/Don’t sign extend

(lb, lbu)

● Don’t overflow

(addu, addiu, subu, multu, divu)

● Do signed/unsigned compare

(slt, slti/sltu, sltiu)

30

Summary

31

● To help the conditional branches

● Make decision concerning inequalities

● We introduce a single instruction
“Set on Less Than” called slt, slti, sltu, sltiu

Takeaway Questions

32

What is ???

Takeaway Questions

33

● What C code properly fills in the following blank?
● (A) j >= 2 && j < i

● (B) j < 2 || j < i

● (C) j < 2 && j >=i

Takeaway Questions

34

● What C code properly fills in the following blank?
● (A) j >= 2 && j < i

● (B) j < 2 || j < i

● (C) j < 2 && j >=i

Outline

● Branch instructions

● Bitwise/Logical instructions

● Loops in assembly

● Inequality in RISC-V

● Functional calling

35

Calling Conventions

● CalleR: the calling function

● CalleE: the function being called
● E.g. Alice is caller and Bob is callee

● What instructions can accomplish the functional call?

36

void Alice () {

Bob ();

}

Function Call Bookkeeping

● Registers play a major role in keeping track of information

for function call

● Register conventions
● Return address $ra

● Arguments $a0 - $a7

● Return value $s0 - $s1

● Local variables $t0 - $t6

● The stack is also used; more

later

37

Instruction Support for Functions (1/6)

38

C code

RISC-V

In RISC-V 32, all instructions are

4 bytes (32-bits), and stored in

memory just like data. Here we

show the addresses of where

the programs are stored.

Instruction Support for Functions (2/6)

39

C code

RISC-V

address

1000 add $a0, $s0, $x0 # x = a

1004 add $a1, $s1, $x0 # y = b

1008 addi $ra, $x0, 1016 # $ra = 1016

1012 j sum # jump to sum

1016 …

2000 sum: add $t0, $a0, $a1

2004 jr $ra

Instruction Support for Functions (3/6)

40

C code

RISC-V

Question: Why use jr here? Why not simply use j?

…

2000 sum: add $t0, $a0, $a1

2004 jr $ra

Answer: “sum” might be called by many functions, so we

can’t return to a fixed place. The calling proc to “sum”

must be able to say “return here”.

Instruction Support for Functions (4/6)

● Jump and link (jal)
● Single instruction to jump and save the return address

41

Before:

1008 add $ra, $x0 $1016 # $ra = 1016

1012 j sum # goto sum

After:

1008 jal sum

Why have a jal?

jal moves a new value into the PC and simultaneously saves the

old value in register x1 ($ra) can get back from the subroutine to

the instruction immediately following the jump by transferring

control back to PC in register x1

Instruction Support for Functions (5/6)

● Jump and link (jal)
● jal label

● Behaves like the simple jump instruction (j), but also stores a

return address in register 31 ($ra)

● Step 1 (link):

● Save the address of next instruction into $ra

● The next instruction (PC + 4)

● Why the next instruction? Why not the current one?

● Step 2 (jump)

● Jump to the given label

42

Instruction Support for Functions (6/6)

● Jump Register (jr)
● jr src

● Instead of providing a label to jump to, the jr instruction provides

a register that contains an address to jump to

● Only useful if we know the exact address to jump to

● Very useful for function calls:

● jal stores return address in register

● jr $ra jumps back to that address

43

Nested Procedures (1/2)

● sumSquare nested procedure
● sumSquare is calling mult

● There is a value in $ra that sumSquare wants to jump back to,

but the call to mult will overwrite this

● Need to save sumSquare return address before call to mult

44

Nested Procedures (2/2)

● In general, you may need to save some other info in

addition to $ra

● When a C program is run, there are 3 important memory

area memory areas allocated
● Static: Variables declared once per program, cease to exist only

after execution completes. E.g. C globals

● Heap: Variables declared dynamically. E.g. malloc()

● Stack: Space to be used by procedure during execution; this is

where we can save register values

45

C Memory Allocation Review

46

Using the Stack (1/2)

● We have a register $sp which always points to the last

used space in the stack

● To use the stack, we decrement this pointer by the

amount of space we need and then fill it with info.

● How do we compile this?

47

Using the Stack (2/2)

48

sumSquare:
addi $sp, $sp, -8 #space on stack

sw $ra, 4($sp) #save ret addr

sw $a1, 0($sp) #save y

add $a1, $a0, $x0 # mult(x, x)

jal mult # call mult

lw $a1, 0($sp) # restore y

add $a0, $a0, $a1 # mult() + y

lw $ra, 4$($sp) # get ret addr

addi $sp $sp, 8 # restore stack

jr $ra

mult: …

“push”

“pop”

Steps for Making a Procedure Call

● (1) Save necessary values onto the stack

● (2) Assign argument(s), if any

● (3) jal call

● (4) Restore values from stack

49

Rules for Procedures

● Call with a jal instruction, returns with a jr $ra

● Accepts up to 8 arguments in $a0 - $a7
● Any more arguments should be passed on the stack

● Return value is always in $s0 (and if necessary in $s1)

50

Basic Structure of a Function

51

Register Conventions (1/3)

● When callee returns from executing, the caller needs to

know which register may have changed and which are

guarantee to be unchanged

● Register conventions
● A set of generally accepted rules as to which registers will be

unchanged after a procedure call (jal) and which may be

changed

52

void Alice () {

Bob ();

}

Caller

Callee

Register Conventions (2/3) -- Saved

● $x0: No Change. Always 0

● $s0 - $s7: Restore if you change
● That’s why they’re called save registers. If the callee changes

these in any way, it must restore the original values before

returning

● $sp: Restore if you change
● The stack pointer must point to the same place before and after

the “jal” call, or else the caller won’t be able to restore values

from the stack

● All saved register start with S!
53

Register Conventions (3/3) -- Volatile

● $ra: Can Change
● The jal call itself will change this register. Caller needs to save on

the stack if nested call

● $a0 - $a1: Can Change
● These will contain the new return values

● $t0 - $t6: Can Change
● That’s why they’re called temporary; any procedure may change

them at any time. Caller needs to save if they will need them

afterwards

54

Summary

● Functions called with jal, return with jr $ra

● Use the stack to save anything you need. Just be sure to

leave it the way you found it

● Instructions we know so far
● Arithmetic: add, addi, sub, addu, addiu, subu

● Memory: lw, sw

● Decision, beq, bne, slt, slti, sltu, sltiu

● Unconditional branches (Jumps): j, jal, jr

55

Summary

● Registers we know so far

56

The Constant 0 $x0 $zero

Return address $x1 $ra

Stack pointer $x2 $sp

Global data pointer $x3 $gp

Thread pointer $x4 $tp

Temporary $x5-$x7 $t0-t2

Frame pointer $x8 $s0/$fp

Saved $x9 $s1

Summary

● Registers we know so far

57

Return values/Arguments $x10-$x11 $a0-$a1

Function Arguments $x12-x17 $a2-a7

Saved $x18-x27 $s2-$s11

Temporary $x28-x31 $t3-$t6

