
Lecture 3: RISC-V Instruction Set, Part 2

Department of Computer Science

Tsung Tai Yeh

Thursday: 1:20 pm– 3:10 pm

Classroom: EC-022

CS10014 Computer Organization

Acknowledgements and Disclaimer

● Slides were developed in the reference with

● CS 61C at UC Berkeley

● https://inst.eecs.berkeley.edu/~cs61c/sp23/

● CS 252 at UC Berkeley

● https://people.eecs.berkeley.edu/~culler/courses/cs252-s05/

● CSCE 513 at University of South Carolina

● https://passlab.github.io/CSCE513/

2

https://inst.eecs.berkeley.edu/~cs61c/sp23/
https://people.eecs.berkeley.edu/~culler/courses/cs252-s05/
https://passlab.github.io/CSCE513/

Outline

● R-Format

● I-Format

● S-Format

● SB-Format

● U-Format

● UJ-Format

3

Instructions as Numbers

● RISC-V instructions are each
● 1 word = 4 bytes = 32 bits

● Divide the 32-bit instruction into “fields”
● Regular field sizes -> simpler hardware

● Will need some variation …

● Define 6 types of instruction formats
● R-Format, I-Format, S-Format, U-Format

● SB-Format, UJ-Format

4

RISC-V Instruction format

● Most data we work with is in words (32-bit chunks)
● Each register is a word

● lw and sw both access memory one word at a time

● How do we represent instructions?
● Instructions are fixed-size 32-bit words

● Same 32-bit instruction definitions used from RV32, RV64,

RV128

5

RISC-V 6 Instruction format

● R-format: arithmetic/logical operations (add/xor),

instructions using register inputs

● I-format: instructions with immediates, loads

(addi/lw/jalr)

● S-format: for stores (sw/sb)

● B-format: for branches (beq, bge)

● U-format: 20-bit upper immediate instructions

(lui/auipc)

● J-format: for jumps (jal)
6

RISC-V Instruction format

7

R-Format Instruction Layout

● 32-bit instruction word divided into six fields of varying
numbers of bits each = 7+5+5+3+5+7 = 32
● opcode is a 7-bit field that lives in bits 6-0 of the instruction
● rs2 is a 5-bit field that lives in bits 24-20 of the instruction
● Recall: RISC-V has 32 registers

● A 5-bit field can represent exactly 25 = 32 that interpret as
the register numbers x0-x31

8

Field’s bit positions
Name of field

Number of bits in a field

R-Format Instructions opcode/funct fields

● opcode: partially specifies which instruction it is
● Note that the field is equal to 0110011two for all R-format

● Note that the field is equal to 1100011two for all B-format

● funct7+funct3: these two fields describe what operation

to perform

● How many R-format instructions can we encode?
● According to the funct varies: (27) x (23) = 210 = 1024

9

R-Format Instructions register specifiers

● Each register field (rs1, rs2, rd)
● holds a 5-bit unsigned integer (0-31) corresponding to a

register number (x0-x31)

● rs1 (Source Register #1)
● Specifies register containing the first operand

● rs2 (Source Register #2)
○ Specifies the second register operand

● rd (Destination Register)
○ Specifies register which will receive a result of a computation 10

R-Format Example

● RISC-V assembly instruction
● add x18, x19, x10

● Why aren’t combining funct7 and funct3 as a single 10-bit

field?

11

R-Format Example

12

Machine

codes

R-Format Example

13

Outline

● R-Format

● I-Format

● S-Format

● SB-Format

● U-Format

● UJ-Format

14

I-Format Instruction

● What about instructions with immediates?
● addi x15, x1, -50

● The 5-bit field is too small for most immediates

● Only the imm field is different from the R-format

● rs2 and funct7 are replaced by 12-bit signed immediate 15

I-Format Instruction

● Immediate (12): 12-bit number?
● All computations are done in words, so 12-bit immediate must

be extended to 32-bits

● Always sign-extended to 32-bits before used in an arithmetic

operation

● imm[11:0] can hold values in range [-2048ten, +2047ten]

● How does the immediate handle > 12 bits values?

16

I-Format Example

● addi x15, x1, -50

17

I-Format Example

18

All I-Type Arithmetic Instructions

19

Memory Load Instruction

● Memory load instructions are also I-type
● 12-bit signed immediate is added to the base address in

register rs1 to form the memory address

● The value loaded from memory is stored in register rd

20

I-Format Load Example

● lw x14, 8(x2)

21

Takeaway Questions

22

● In I-type, if the number of registers were halved, which

statement is true?
● (A) There must be fewer I-type instructions

● (B) There must be more R-type instructions

● (C) I-type instructions could have 2 more immediate bits

Outline

● R-Format

● I-Format

● S-Format

● SB-Format

● U-Format

● UJ-Format

23

All RV32 Load Instructions

● LBU: load unsigned byte

● LH: load halfword, which loads 16 bits (2 bytes) and sign-extends to fill

the destination 32-bit register

● LHU is a load unsigned halfword, which zero-extends 16 bits to fill

destination 32-bit register
24

S-Format for Stores

● Store needs to read two registers
● rs1 for base memory address

● rs2 for data to be stored, as well as need immediate offset

● The store instruction doesn’t write a value to the register file,

no rd !

25

S-Format Example

● sw x14, 8(x2)

26

All RV32 Store Instructions

27

Outline

● R-Format

● I-Format

● S-Format

● SB-Format

● U-Format

● UJ-Format

28

RISC-V Conditional Branches

● beq, bne, bge, blt
● BEQ x1, x2, Label

● Need to specify an address to go to

● Also take two registers to compare

● Don’t write into a register (similar to stores)

● How do you encode the label, i.e., where do you branch to?

29

Branching Instruction Usage

● Branches are typically used by “for loops” (if-else,

while, for)
● Loops are generally small (< 50 instructions)

● Function calls and unconditional jumps handled with jump

instructions (J-Format)

● Instructions stored in a localized area of memory

(Code/Text)
● Largest branch distance limited by size of code

● Address of current instruction stored in the program counter

(PC)
30

PC-Relative Addressing

● PC-Relative Addressing
● Use the immediate field as a two’s-complement offset to PC

● Branches generally change the PC by a small amount

● Can specify addresses from the PC

● Why not use byte address offset from PC as the

immediate?

31

Branching Reach

● RISC-V uses 32-bit addresses, and memory is byte-

addressed
● Instructions are “word-aligned”

● Address is always a multiple of 4 (in bytes)

● PC always points to an instruction

● PC is typed as a pointer to a word

● Can do C-like pointer arithmetic

● Let immediate specify # of words instead of # of bytes

● Instead of specifying bytes from the PC

● Specifying words = bytes addresses around

PC 32

Branch Calculation

● If we don’t take the branch
● PC = PC + 4 = next instruction

● If we do take the branch
● PC = PC + (immediate * 4)

● “Immediate” indicates the number of instructions to

move (remember, specifies words) either forward (+) or

backwards (-)

33

RISC-V B-Format for Branches

● B-Format is mostly the same as S-Format
● With two register sources (rs1/rs2) and a 12-bit immediate

● But now immediate represents values -212 to +212 – 2 in 2-

byte increments
● The 12 immediate bits encode even a 13-bit signed byte offset (the

lowest bit of offset is always zero, so there is no need to store it)

34

Branch Example (1/2)

● Determine offset
● Branch offset = 4 x 32-bit instructions = 16 bytes

● Branch with offset of 0, branches to itself

35

Branch Example (2/2)

● Encode offset

36

Branch Example (2/2)

● Complete encoding

37

All RISC-V Branch Instructions

38

Questions on PC-addressing

● Encode offset

39

Questions on PC-addressing

● What do we do if the destination is > 210 instructions away

from the branch?
● Other instructions save us

40

Dealing with Large Immediates

● How do we deal with 32-bit immediates?
● The I-type instructions only give us 12 bits

● Solution
● Need a new instruction format for dealing with the rest of the 20

bits

● This instruction should deal with

● A destination register to put the 20 bits into

● The immediate of 20 bits

● The instruction opcode

41

Outline

● R-Format

● I-Format

● S-Format

● SB-Format

● U-Format

● UJ-Format

42

U-Format for “Upper Immediate” Instructions

● Has 20-bit immediate in upper 20 bits of 32-bit instruction

word

● One destination register, rd

● Used for two instructions
● LUI – Load Upper Immediate

● AUIPC – Add Upper Immediate to PC 43

LUI to create long immediates

● LUI instruction
● Write the upper 20 bits of the destination with the immediate value,

and clear the lower 12 bits

● Together with an ADDI to set low 12 bits, can create any 32-bit

value in a register using two instructions (LUI/ADDI)

44

Outline

● R-Format

● I-Format

● S-Format

● SB-Format

● U-Format

● UJ-Format

45

UJ-Format Instructions (1/3)

● For branches, we assumed that we won’t want to branch

too far, so we can specify a change in the PC

● For general jumps (jal), we may jump to anywhere in code

memory
● Ideally, we would specify a 32-bit memory address to jump to

● We cannot fit both a 7-bit opcode and a 32-bit address into a single

32-bit word

● We must write to an rd register when linking

46

UJ-Format Instructions (2/3)

● jal saves PC+4 in register rd (the return address)

● Set PC = PC + offset (PC-relative jump)

● Target somewhere within locations, 2 bytes apart

● 32-bit instructions

● “j” jump is a pseudo-instruction – the assembler will instead use jal but

sets rd=x0 to discard the return address

47

Uses of JAL

48

JALR Instruction (I-Format)

49

● jalr rd, rs1, offset

● Writes PC + 4 to rd (return address)

● Sets PC = rs1 + offset

Uses of jalr

50

auipc (Add Upper Immediate to Program

Counter): this sets rd to the sum of the

current PC and a 32-bit value with the low

12 bits as 0 and the high 20 bits coming

from the U-type immediate.

Summary of RISC-V Instruction Formats

51

