
Lecture 2: RISC-V Instruction Set, Part 1

Department of Computer Science
Tsung Tai Yeh

Thursday: 1:20 pm– 3:10 pm
Classroom: EC-022

CS10014 Computer Organization

Acknowledgements and Disclaimer
● Slides were developed in the reference with

● CS 61C at UC Berkeley
● https://inst.eecs.berkeley.edu/~cs61c/sp23/

● CS 252 at UC Berkeley
● https://people.eecs.berkeley.edu/~culler/courses/cs252-s05/

● CSCE 513 at University of South Carolina
● https://passlab.github.io/CSCE513/

2

https://inst.eecs.berkeley.edu/~cs61c/sp23/
https://people.eecs.berkeley.edu/~culler/courses/cs252-s05/
https://passlab.github.io/CSCE513/

Outline
● RISC vs. CISC
● RISC-V Registers
● Basic Arithmetic Instructions
● Immediates
● Data Transfer Instructions

3

What is inside a computer?

4

● A Computer
● Processor
● Main memory
● I/O devices

● North Bridge Chipsets
● High-speed channels
● PCI-E/AGP
● Memory controller hub

● South Bridge Chipsets
● I/O channel
● I/O controller hub

CPU

PCI-E
Controller

Main
Memory

Controller

Display controller

North Bridge Chipsets

I/O
Controller

South Bridge Chipsets Hard
drive
Key

board
Network

MEMGPU

Display

Processor Architecture

● Instruction Set Architecture (ISA)
● Determine the operations (instructions) in a processor

● Micro-architecture
● Refers to the internal organization of a specific processor

5

Different Instruction Set Architecture
● ARM

● Family of ISAs developed by ARM
● Used in embedded systems (mobile and low

power) and desktop (Apple M1/2)
● x86

● Family of ISAs developed by Intel (and AMD)
● Used in general-purpose computing systems

(desktop and servers)
● RISC-V

● Open standard ISAs developed by UC-Berkeley
● Mostly used in embedded systems 6

RISC vs. CISC
● CISC (Complex Instruction Set Computers)

● Complete a task in as few lines of assembly
as possible

● CISC processor should execute a series of
operations

● E.g. MULT 2:3, 5:2
● This MULT instruction loads two values into

separate registers
● Multiplies the operands in the execution unit
● Stores the product in the appropriate

register
● The entire task of multiplying two number

can be completed with on instruction 7

A

B

RISC vs. CISC
● CISC (Complex Instruction Set Computers)

● The compiler has to do very little work to
translate a high-level language statement
into assembly

● The length of the code is short
● Very little RAM is required to store instructions
● The emphasis is put on building complex

instructions directly into the hardware

8

A

B

https://cs.stanford.edu/people/eroberts/courses/soco/projects/risc/risccisc/

RISC vs. CISC
● RISC (Reduced Instruction Set Computers)

● Use simple instructions that can be executed
within one clock cycle

● The “MULT” is divided into three separate
instructions
● LOAD: moves data from the memory bank

to a register
● PROD: finds the product of two operands

located within the registers
● STORE: moves data from a register to

the memory banks
9

A

B

LOAD A, 2:3
LOAD B, 5:2
PROD A, B
STORE 2:3, A

RISC vs. CISC
● RISC (Reduced Instruction Set Computers)

● Require fewer transistors of hardware space
than complex instructions (why?)

● Separate the “LOAD” and “STORE” instructions
reduces the amount of work that the computer
must perform (why?)
● “MULT” automatically erases the registers
● If one of the operands needs to be used for

another computation, the processor must
re-load the data from the memory into a
register

10

A

B

LOAD A, 2:3
LOAD B, 5:2
PROD A, B
STORE 2:3, A

Summary -- RISC vs. CISC
● CISC

● One instruction will take complicated work
● Let the hardware do the complicated operations
● Super-complicated (Slow?) hardware

● RISC
● A simpler (and small) instruction set makes it easier to build fast

hardware
● Let the software do the complicated operations by composing

simpler ones

11

What is RISC-V?
● RISC (Reduced Instruction Set Computers)

● Fifth generation of RISC design from UC Berkeley
● A license-free, royalty-free RISC ISA specification

● Licensing cost for the ISA can be in the noises
● Appropriate for all levels of computer systems, from micro-

controllers to supercomputers
● 32-bit, 64-bit, and 128-bit variants
● We use 32-bit in the class

● Standard maintained by non-profit RISC-V Foundation

12

The RISC-V Instruction Set
● Fixed size of 32 bits
● 32 registers
● Load-store architecture

● Arithmetic and logic instructions working on registers only
● Specific instructions to move data from and to memory

● RISC ISA
● Few (49) instructions in the base ISA
● Regular instruction formats
● Allows for very small hardware implementations

13

The RISC-V Instruction Set
● Standardized extensions of base ISA

● Multiplication and division
● Floating point
● Bit manipulation
● Vector computations
● …

14

Assembler to Machine Code
● Assembler source files (text)

● Assembler converts human-
readable assembly code to
instruction bit patterns

15

foo.S bar.S

Assembler Assembler

foo.o bar.o

Linkerlib.o

a.outMachine code
executable file

Pre-built object
file libraries

How Program is Stored

16

Program Execution
● PC (program counter)

● A special internal register inside the processor holding the byte
address of the next instruction to be executed

● Instruction is fetched from memory
● Control unit executes

instruction using
datapath and memory
the system and
updates PC

● Add +4 bytes to PC
● Move to next

sequential inst. 17

Outline
● RISC vs. CISC
● RISC-V Registers
● Basic Arithmetic Instructions
● Immediates
● Data Transfer Instructions

18

Variables in Hardware
● Instructions must be directly implemented in hardware
● What about variables?

● Live in memory (DRAM)
● Memory is slow compared to the processor
● Predetermined small number of fast registers in processor to hold

variables

19

Registers vs. Memory
● What if more variables than registers?

● Keep most frequently used in registers and move the rest to
memory (called spilling to memory)

● Why not all variables in memory?
● Smaller is faster: registers 100-500 times faster
● Registers more versatile

● In 1 arithmetic instruction: read 2 operands, perform 1
operation, and 1 write

● In 1 data transfer instruction: 1 memory read/write, no
operation

20

How Many Registers?
● Tradeoff between speed and

availability
● More registers -> can house more

variables simultaneously
● Why 32? Smaller is faster, but too

small is bad
● Need to specify 3 registers in

operations
● RISC-V has 32 registers (x0 – x31)

● Each register is 32 bits wide and holds a word
21

RISC-V Registers
● Register denoted by ‘x’ can be referenced by number (x0-

x31) or name
● Register that hold programmer variables

● s0 – s1 <-> x8 – x9
● s2 – s11 <-> x18-x27

● Registers that hold temporary variables
● t0 – t2 <-> x6 – x7
● t3 – t6 <-> x28-x31

● Register have no type
● The operation being performed determines how register contents

are treated 22

Registers live inside the processor

23

● Registers are part of the datapath

Registers -- Summary

24

● In high-level languages, the number of variables is limited
only by available memory

● ISAs have a fixed, small number of operands call registers
● Special locations built directly into hardware
● Benefit:

● Registers are EXTREMELY FAST
● Drawback:

● Operations can only be performed on these predetermined
number of registers

Outline
● RISC vs. CISC
● RISC-V Registers
● Basic Arithmetic Instructions
● Immediates
● Data Transfer Instructions

25

RISC-V Instruction (1/2)
● Instruction Syntax is rigid

● 1 operator, 3 operands
● op = operation name (“operator”) such add, sub …
● dst = register getting the result (“destination”)
● src1 = first register for operation (“source 1”)
● src2 = second register for operation (“source 2”)

● Keep hardware simple via regularity

26

op dst, src1, src2

RISC-V Instruction (2/2)
● One operation per instruction

● At most one instruction per line
● Assembly instructions are related to C

● Operations (=, +, -, *, /, &, |, etc.)
● A single line of C may break up into several lines of RISC-V

27

RISC-V Instructions Example
● Integer Addition (add)

● Example: add x1, x2, x3 (in RISC-V)
● Equivalent to a = b + c (in C)

where C variables ó RISC-V registers are:
a ó x1, b ó x2, có x3

● Integer Subtraction (sub)
● Example: sub x3, x4, x5 (in RISC-V)
● Equivalent to d = e – f

where C variables óRISC-V registers are:
d ó x3, eó x4, f ó x5

28

RISC-V Instructions Example
● Suppose a->s0, b->s1, c->s2, d->s3, and e->s4

● C-code
● a = (b + c) - (d + e)

● RISC-V codes
add t1, s3, s4
add t2, s1, s2
sub s0, t2, t1

29

Ordering of
instructions
matters (must
follow the order
of operations)

Utilize temporary
registers

Comments in RISC-V
● Comments in RISC-V follow the hash mark (#) until the

end of the line
● Improve readability and helps you keep track of variables/registers
● C-code

● a = (b + c) - (d + e)
● RISC-V codes

add t1, s3, s4 # temp1 = d + e
add t2, s1, s2 #temp2 = b + c
sub s0, t2, t1 #a = temp2 – temp1

30

Ordering of
instructions
matters (must
follow the order
of operations)

The Zero Register
● Zero appears so often in code and is so useful that it has

its register!
● Register zero (x0 or zero) always has the value 0 and

cannot be changed!
● Any instruction with x0 as dst has no effect

● Example uses
● Assume s1->a, s2->b, s3->c
● add s3, x0, x0 # c= 0
● add s1, s2, x0 # a = b

31

No-Op
● A No-op is an instruction

● Does not perform any operation
● Expend to ‘ADDI x0, x0, 0’
● Still takes some time to process this no-op instruction (why?)

● Instruction fetch and decode
● Why does the processor need this no-op instruction?

● Sync. I/O devices
● Force the CPU to wait a little for external devices to

complete their work and report data to the CPU
● Padding in the data alignment

32

Summary

33

● Instruction set architecture (ISA) specifies the set of
commands (instructions) a computer can execute

● CISC processor reduces the number of instruction count
● RISC processor breaks complex instructions into

multiple simple ones
● RISC-V employs load-store architecture

○ Arithmetic and logic instructions working on registers only
○ Specific instructions to move data from and to memory

Takeaway Questions

34

● What is the value of RISC-V Register 1 (x1 = x0 + x0)?
● (A) 1
● (B) 0
● (C) 2

● What are advantages of the RISC instructions?
● (A) Reducing the complexity of the processor
● (B) Decreasing the number of executed instructions
● (C) Simplify the compiler design

Outline
● RISC vs. CISC
● RISC-V Registers
● Basic Arithmetic Instructions
● Immediates
● Data Transfer Instructions

35

Immediates
● Numerical constants are called immediates

● Operation names end with “I”, replace second source register with
an immediate

● Ex: add immediate:
addi x3, x4, -10 (in RISC-V)

f = g – 10 (in C)
where RISC-V registers x3, and x4 are associated with C
variables f, g 36

opi dst, src, imm

Immediates & Sign Extension…
● Immediates are small

● An I-type instruction can only have 12 bits of immediate
● The immediate value is a 12-bit signed number, ranging from -(2n-1)

-2048 to (2n-1 - 1) -2048
● 1 sign bit and 11 value bits

● In RISC-V, immediates are “sign extended”
● addi rd, rs, simm12

sign extend 12-bit immediate to 32-bit and do “add” with the
register “rs”. The result is written back to the register “rd”

● Sign extension of -2047 decimal (MSB =1)
1000 0000 0000 -> 1111 1111 1111 1111 1111 1000 0000 0000

37

Outline
● RISC vs. CISC
● RISC-V Registers
● Basic Arithmetic Instructions
● Immediates
● Data Transfer Instructions

38

Five Components of a Computer

39

● Data transfer instructions are between registers (Datapath)
and memory
○ Allow us to fetch and store operands in memory

Data Transfer

40

● C variables map onto registers;
● What about large data structures like the array?

○ Our one-dimensional array indexed by addresses starting at 0
● RISC-V instructions only operate on registers!
● Data transfer instructions move data between register and

memory
○ Store: register TO memory
○ Load: register FROM memory

Data Transfer

41

● Instruction syntax for data transfer

○ memop = operation name (“operator”)
○ reg = register for operation source or destination
○ bAddr = register with a pointer to memory (“base address”)
○ off = address offset (immediate) in bytes (“offset”)
○ Access memory at address bAddr + off
○ A register holds a word of raw data (no type)
○ Make sure to use a register (and offset) that points to a valid

memory address

memop reg, off(bAddr)

Memory is Byte-Addressed
● What was the smallest data type in C?

● A char, which was a byte (8 bits)
● Everything is multiples of 8 bits

(e.g. 1word = 4 bytes)
● Memory addresses are indexed by bytes,

not words
● Word addresses are 4 bytes apart

● Word addr is same as left-most byte
● Addrs must be multiples of 4 to be “word-

aligned”
● Pointer arithmetic not done in assembly 42

Data Transfer Instruction
● Load Word (lw)

● Takes data at address bAddr+off FROM memory and place it
into reg

● Store Word (sw)
● Takes data in reg and stores it TO memory at address

bAddr+off
● Example usage

43

Data Transfer Instruction
● RISC-V has byte data transfers

● Load byte: lb
● Store byte: sb

● Example
● lb x10, 1(x11)
● Copies 8 bits (Byte) and make sign-extend to 32-bit than write

to rd

44

Loading and Storing Bytes
● RISC-V has byte data transfers:

● Load byte: lb
● Store byte: sb

● For example
● addi x11, x0, 0x3f5

sw x11, 0(x5)
lb x12, 1(x5)

● What is the value in x12?
● Note that 0x3f5 (HEX) =

0011 1111 0101(BIN)
45

3 f 5
0x3f5 = 1013(DEC)

Loading and Storing Bytes
● RISC-V is “little-endian”

● Byte[0] = least significant byte of the number
● Byte[3] = most significant byte of the number

● For this example
● Byte[0] = 0xf5
● Byte[1] = 0x03
● Byte[2] = 0x00
● Byte[3] = 0x00

46

Summary
● Hardware registers provide a few very fast variables for

instruction to operate on
● Assembly code is human-readable version of computer’s

native machine code, converted to binary by an
assembler

47

Takeaway Questions

48

● What is the value in x12?
● (A) 0x8
● (B) 0xf8
● (C) 0xfffffff8

addi x11, x0, 0x8f5
sw x11, 0(x5)
lb x12. 1(x5)

Takeaway Questions

49

● What is the value in x12?
● (A) 0x8
● (B) 0xf8
● (C) 0xfffffff8

addi x11, x0, 0x8f5
sw x11, 0(x5)
lb x12. 1(x5)

The range of the 12-bit signed immediate is -212 <-> 212 - 1

1000 0000 0000 ó 1111 1111 1111
-2048(DEC) ó. 2047(DEC)

Sign

Takeaway Questions

50

● What is the value in x12?
● (A) 0x8
● (B) 0xf8
● (C) 0xfffffff8

addi x11, x0, 0x8f5
sw x11, 0(x5)
lb x12. 1(x5)

0x8f5 <=> 1000 1111 0101 (2’ complement) <=> -779(DEC)

1000 1111 0101 (2’complement) -> -779
1000 1111 0100 (1’ complement)
0111 0000 1011 (unsigned 779)

Sign

Takeaway Questions

51

● What is the value in x12?
● (A) 0x8
● (B) 0xf8
● (C) 0xfffffff8

addi x11, x0, 0x8f5
sw x11, 0(x5)
lb x12. 1(x5)

0x8f5 <=> 1000 1111 0101 (2’ complement) <=> -779(DEC)

1111 1111 1111 1111 1111 1000 1111 0101 (Signed extend
0x8f5 to 32-bits) => 0xfffff8f5

Sign

Takeaway Questions

52

● What is the value in x12?
● (A) 0x8
● (B) 0xf8
● (C) 0xfffffff8

addi x11, x0, 0x8f5
sw x11, 0(x5)
lb x12. 1(x5)

• addi x11, x0, 0x8f5
• The immediate got sign extended, x11 is 0xfffff8f5 because

x11 is signed 32-bit register
• sw x11, 0(x5)
• the value of x11 is copied to x5 = 0xfffff8f5

Takeaway Questions

53

● What is the value in x12?
● (A) 0x8
● (B) 0xf8
● (C) 0xfffffff8

addi x11, x0, 0x8f5
sw x11, 0(x5)
lb x12, 1(x5)

• lb x12, 1(x5)
• Load byte sign extend to the register
• 0(x5) = 0xf5
• 1(x5) = 0xfffffff8

