
Lecture 13: Multicores

Department of Computer Science

Tsung Tai Yeh

Thursday: 1:20 pm– 3:10 pm

Classroom: EC-022

CS10014 Computer Organization



Acknowledgements and Disclaimer

● Slides were developed in the reference with 

● CS 61C at UC Berkeley 

● https://inst.eecs.berkeley.edu/~cs61c/sp23/

● 6.888 at MIT

● https://courses.csail.mit.edu/6.888/spring13/

● CIS510 at Upenn

● https://www.cis.upenn.edu/~cis5710/spring2019/

2

https://inst.eecs.berkeley.edu/~cs61c/sp23
https://inst.eecs.berkeley.edu/~cs61c/sp23/
https://courses.csail.mit.edu/6.888/spring13/
https://www.cis.upenn.edu/~cis5710/spring2019/


Outline

● Multi-core Processor 

● Pipelining Optimization 

● Superscalar Processor 

● Hardware Multi-Threading 

● Vector Processors 

● Graphics Processors

3



Multi-core Processor (1/4)

● A single core can only be so fast

○ Limited clock frequency

○ Limited instruction-level parallelism

● What if we need even more 

computing power?

○ Use multiple cores!

4

Intel Quad-core “core i7”



Multi-core Processor (2/4)

● Application domains for multiprocessors

○ Scientific computing/super-computing

■ Example: weather simulation, protein folding

■ Each processor computes for a part of data

○ Server workloads

■ Example: airline reservation database

■ Many concurrent updates, searches, lookups, queries

■ Processors handle different requests

○ But software must be written to expose parallelism

5



Multi-core Processor (3/4)

● Multi-core & energy

○ Explicit parallelism (multicore) is highly energy efficient

○ Example: Intel’s Xscale: 

■ 1GHz -> 200 MHz reduces energy used by 30X

■ What if we used 5 Xscales at 200 MHz?

■ Similar performance as 1GHz Xscale, but 1/6th the energy

■ 5 cores * 1/30th = 1/6th

6



Multi-core Processor (4/4)

● Amdahl’s law

○ Consider a task with a “parallel” and “serial” portion

■ What is the speedup with N cores?

● Speedup (n, p, s) = (s + p) / (s + (p/n))

● p is “parallel percentage”, s is “serial percentage”

■ What about infinite cores?

● Speedup (p, s) = (s + p) / s = 1/s

■ Example: can optimize 50% of program A

● Only yields a 2X speedup

7



Pipelined Processors (1/5)

● Microprocessor performance

○ Iron law of performance

8



Pipelined Processors (2/5) 

● Microprocessor performance

○ CPI = CPIideal + CPIstall

■ CPIideal: cycles per instruction if no stall

○ CPIstall contributors

■ Data dependences: RAW, WAR, WAW

■ Structural hazards

■ Control hazards: branches, exceptions

■ Memory latency: cache misses

9



Pipelined Processors (3/5)

● 5-stage pipelined processors

○ Advantages

■ CPIideal is 1 (pipelining)

■ No WAW or WAR hazards

■ Simple elegant

● Still used in ARM & MIPs processors

10



Pipelined Processors (4/5)

● 5-stage pipelined processors

○ Shortcomings

■ Upper performance bound is CPI = 1

■ High latency instructions not handle well

● 1 stage for accesses to large cache or

multiplier

● Clock cycle is high

■ Unnecessary stalls due to rigid pipeline

● If one instruction stalls anything 

behind it stalls
11



Pipelined Processors (5/5)

● Improving 5-stage pipeline performance
○ Higher clock frequency (lower CCT): deeper pipelines

■ Overlap more instructions

○ Higher CPIideal: wider pipeline

■ Insert multiple instruction in parallel in the pipeline

○ Lower CPIstall:

■ Diversified pipelines for different functional units

■ Out-of-order execution

○ Balance conflicting goals

■ Deeper & wider pipelines => more control hazards

■ Branch prediction
12



Outline

● Multi-core Processor 

● Pipelining Optimization 

● Superscalar Processor 

● Hardware Multi-Threading 

● Vector Processors 

● Graphics Processors

13



Pipelining Optimization (1/4)

● Deeper pipelines
○ Idea: break up instruction into N pipeline stages

■ Ideal CCT = 1/N compared to non-pipelined

○ Other motivation for deep pipelines

■ Not all basic operations have the same latency

● Integer ALU, FP ALU, cache access

■ Difficult to fit them in one pipeline stage

● CCT must be large enough to fit the longest one

■ Break some of them into multiple pipeline stages

● E.g., data cache access in 2 stages, FP add in

2 stage, FP mul in 3 stage
14



Pipelining Optimization (2/4)

● Limits to pipeline depth

○ Each pipeline stage introduces some overhead (O)

■ Delay of pipeline registers

■ Inequalities in work per stage

● Cannot break up work into stages at arbitrary points

■ Clock skew

● Clocks to different registers may not be perfectly aligned

15



Pipelining Optimization (3/4)
● Limits to pipeline depth

○ If original CCT was T, with N stages CCT is T/N + O

■ If N -> ∞, speedup = T/(T/N+O) -> T/O

■ Assuming that IC and CPI stay constant

○ Eventually overhead dominates and deeper pipelines have 

diminishing returns

16



Pipelining Optimization (4/4)
● Deep pipelines review

○ Advantages: higher clock frequency

■ The workhorse behind multi-GHz processors

○ Cost: 

■ Complexity: more forwarding & stall cases

○ Disadvantages

■ More overlapping -> more dependencies -> more stall

● CPIstall grows due to data and control hazards

● Clock overhead becomes increasing important

17



Outline

● Multi-core Processor 

● Pipelining Optimization 

● Superscalar Processor 

● Hardware Multi-Threading 

● Vector Processors 

● Graphics Processors

18



Superscalar Processor (1/7) 

● Superscalar (Wider) pipelines

○ Idea: operate on N instructions each clock cycle

■ Known as wide or superscalar pipelines

■ CPIideal = 1/N

○ Options (from simpler to harder)

■ One integer and one floating-point instruction

■ Any N = 2 instructions

■ Any N = 4 instructions

■ Any N = ? Instructions

● What are the limits here?
19



Superscalar Processor (2/7) 

● Superscalar (Wider) pipelines

○ Advantages: Lower CPIideal (1/N)

○ Cost

■ Need wider path to instruction cache

■ Need more ALUs, register file ports…

■ Complexity: more forwarding & stall cases to 

check

○ Disadvantages

■ Parallel execution -> more dependencies -> more stalls

■ CPIstall grows due to data and control hazards
20



Superscalar Processor (3/7) 

● Diversified pipelines

○ Idea: decouple the execution portion

of the pipeline for different instructions

○ Common approach

■ Separate pipelines for simple 

integer, integer multiply, FP, LD/ST

21



Superscalar Processor (4/7) 

● Diversified pipelines

○ Advantage

■ Avoid unnecessary stalls

● E.g. slow FP instruction does

not block independent integer

instruction

○ Disadvantages

■ WAW hazards

22



Superscalar Processor (5/7) 

● Superscalar out-of-order processor

23



Superscalar Processor (6/7) 

● Instruction Level Parallelism (ILP)

24



Superscalar Processor (7/7)

● Challenges of Superscalar Processors

○ Clock frequency: Getting close to pipeline limits

■ Clocking overheads, CPI degradation

○ Branch prediction & memory latency limit the practical benefits of 

out-of-order (OOO) execution

○ Power grows super-linearly with higher clock & more OOO logic

○ Design complexity grows exponentially with issue width

○ Limit ILP -> must exploit TLP and DLP

■ Thread-Level Parallelism: Multithreading and multicore

■ Data-Level Parallelism: SIMD instructions
25



Multi-Threading (1/5) 

● Software “thread”: Independent flows of execution

○ “Per-thread” state

■ Context state: PC, registers

■ Stack (per-thread local variables)

○ “Shared” state: global variables, heap, etc.

○ Threads generally share the same memory space

■ A process is like a thread, but with its own memory space

■ Java has thread support built in, C/C++ use the pthreads lib

26



Multi-Threading (2/5) 

● Software “thread”: Independent flows of execution

○ A thread is the unit of execution within a process

27



Multi-Threading (3/5) 

● Software “thread”: Independent flows of execution

○ Thread: instruction stream with own PC and data

○ Each thread has all the state (instructions, data, PC, register 

state, …) necessary to allow it to execute

○ System software (the O.S.) manages threads

○ “Thread scheduling”, “context switching”

○ In single-core system, all threads share one processor

■ Hardware timer interrupt occasionally triggers O.S.

■ Quickly swapping threads gives illusion of concurrent 

execution
28



Multi-Threading (4/5) 

● Shared Memory Programming Model

○ Programmer explicitly creates multiple threads

○ All loads & stores to a single shared memory space

■ Each thread has its own stack frame for local variables

■ All memory shared, accessible by all threads

○ Multi-threading is commonly used

■ Handling user interaction (GUI programming)

■ Handling I/O latency

■ Expressing parallel work via Thread-Level Parallelism (TLP)

29



Multi-Threading (5/5) 

● Shared memory issues
○ Cache coherence

■ If cores have private (non-shared) caches

■ How to make writes to one cache “show” up in others?

○ Parallel programming

■ How does the programmer express the parallelism?

○ Synchronization

■ How to regulate access to shared data?

■ How to implement “locks”?

○ Memory consistency models

■ How to reconcile shared memory with compiler optimizations, 

store buffers, and out-of-order execution? 30



Outline

● Multi-core Processor 

● Pipelining Optimization 

● Superscalar Processor 

● Hardware Multi-Threading 

● Vector Processors 

● Graphics Processors

31



Hardware Multi-Threading (1/5) 

● A hardware thread is a sequential stream of instructions

● Hardware Multi-threading (MT)

○ Multiple hardware threads dynamically share a single pipeline

○ Replicate only per-thread structures: program counter & registers

○ Hardware interleaves instructions

32



Hardware Multi-Threading (2/5) 

● Motivation

○ Super-scalar hardware underutilized on stalls 

○ Use TLP to increase utilization

33



Hardware Multi-Threading (3/5) 

● Coarse-grained multithreading
○ Switches threads only on costly stalls, such as L2 cache 

misses

○ Advantages

■ Relieves need to have very fast thread-switching

○ Disadvantages

■ Throughput losses from shorter stalls, due to 

start-up costs

■ New thread must fill pipeline before instructions 

complete

○ Better for reducing penalty of high cost stalls, where 

pipeline refill << stall time 34



Hardware Multi-Threading (4/5) 

● Fine-grained multithreading

○ Switches threads on each instruction

■ The execution of multiple threads to be interleaved

○ Advantages

■ Hide both short and long stalls, since instructions

from other threads execute when one stalls

○ Disadvantages

■ Slows down execution of individual threads

■ A thread without stalls will be delayed by instructions

from other threads
35



Hardware Multi-Threading (5/5) 

● Simultaneous multithreading (SMT)

○ Exploiting TLP in a single processor core

○ Each clock, core chooses instructions from multiple

threads to run on ALUs

○ Needs one context per thread

○ Benefits

■ Increasing throughput from concurrent execution

■ Dynamic scheduling

■ No partitioning of many resources

■ E.g. Intel Hyper-threading
36



SIMD Processing (1/2) 

● Single Instruction Multiple Data (SIMD)

○ The instruction sequence applies for multiple elements

○ Vector processing -> amortize instruction costs (fetch, 

decode …) across multiple operations

○ Require regular data parallelism (no or minimal divergence)

● Exploiting SIMD

○ Explicit & low-level, using vector intrinsics

○ Explicit & high-level convey parallel semantics (e.g. foreach)

○ Implicit: parallel compiler infers loop dependencies

37



SIMD Processing (2/2) 

● SIMD Extensions on Modern CPUs

○ SSE: 128-bit operands (4x32-bit or 2x64-bit)

○ AVX: 256-bit operands (8x32-bit or 4x64-bit)

○ Explicit SIMD: parallelization performed at compile time

38



Outline

● Multi-core Processor 

● Pipelining Optimization 

● Superscalar Processor 

● Hardware Multi-Threading 

● Vector Processors 

● Graphics Processors

39



Vector Processors (1/12) 

● Scalar processors operate on single numbers (scalars)

● Vector processors operate on linear sequences of 

numbers (vector)

40



Vector Processors (2/12) 

● What’s in a vector processor?

○ A scalar processor

■ Scalar register file (32 registers)

■ Scalar functional units (arithmetic, load/store, etc.)

○ A vector register file (a 2D register array)

■ Each register is an array of elements

■ E.g. 32 registers with 32 64-bit elements per register

■ MVL = maximum vector length = max # of elements 

per register

○ A set of vector functional units

■ Integer, FP, load/store, etc.. 
41



Vector Processors (3/12) 

● What’s in a vector processor?

42



Vector Processors (4/12) 

● Basic vector ISA

43



Vector Processors (5/12) 

● Advantages of vector ISAs

○ Compact: single instruction defines N operations

■ Amortizes the cost of instruction fetch/decode/issue

■ Also reduces the frequency of branches

○ Parallel: N operations are (data) parallel

■ No dependencies

■ No need for complex hardware to detect parallelism

■ Can execute in parallel assuming N parallel datapaths

44



Vector Processors (6/12) 

● Advantages of vector ISAs

○ Expressive: memory operations describe patterns

■ Continuous or regular memory access pattern

■ Can prefetch or accelerate using wide/multi-banked 

memory

■ Can amortize high latency for 1st element over large 

sequential pattern

45



Vector Processors (7/12) 

● Vector Length (VL)

○ Basic: Fixed vector length (typically in narrow SIMD)

● Vector-length (VL) register

○ Control the length of any vector operation, including vector 

loads and stores

■ E.g. vadd.vv with VL = 10 <-> 

for (i = 0; i < 10; i++) V1[i] = V2[i] + V3[i]

■ VL can be set up to MVL (e.g. 32)

46



Vector Processors (8/12) 

● Optimization 1: Chaining

○ Suppose the following code with VL = 32

○ Chaining

■ V1 is not a single entity but a group of individual elements

■ Pipeline forwarding can work on an element basis

■ Allow vector to chain to 

any other active vector

operations => more R/W

ports
47



Vector Processors (9/12) 

● Optimization 2: Multiple Lanes

○ Elements for each vector register interleaved across the lanes

○ Each lane receives identical control

○ Multiple element operations executed per cycle

○ No need for inter-lane communication for most vector insns

48



Vector Processors (10/12) 

● Chaining & Multi-lane example

49



Vector Processors (11/12) 

● Optimization 3: Conditional Execution

○ Suppose you want to vectorize this:

○ Solution: Vector conditional execution (predication)

■ Add vector flag registers with single-bit elements (masks)

■ Use a vector compare to set a flag register

■ Use flag register as mask control for the vector sub

● Add executed only for vector elements with 

corresponding flag element set

50



Vector Processors (12/12) 

● Optimization 3: Conditional Execution

○ Solution: Vector conditional execution (predication)

■ Use flag register as mask control for the vector sub

● Add executed only for vector elements with 

corresponding flag element set

51



Outline

● Multi-core Processor 

● Pipelining Optimization 

● Superscalar Processor 

● Hardware Multi-Threading 

● Vector Processors 

● Graphics Processors

52



Graphics Processors (1/8) 

● Till mid 90s

○ VGA controllers used to accelerate some display functions

● Mid 90s to mid 00s

○ Fixed-function graphics accelerators for the OpenGL and 

DirectX APIs

○ 3D graphics: triangle setup & rasterization, texture mapping …

● Modern GPUs

○ Programmable multiprocessors optimized for data-parallel app

■ OpenGL/DirectX/CUDA/OpenCL …

○ Some fixed-function hardware (texture, raster ops …) 53



Graphics Processors (2/8) 

● Software GPU Thread Model (CUDA)

○ Single-program multiple data (SPMD) 

○ Each thread has local memory

○ Parallel threads packed in blocks

■ Access to per-block shared memory

■ Synchronize with barrier

○ Grids include independent groups

54



Graphics Processors (3/8) 

● In SAXPY example

○ CUDA code launches 256 threads per block

■ Thread = 1 iteration of scalar loop (1 element in vector loop)

■ Block = body of vectorized loop (with VL = 256 in this ex.)

■ Grid = vectorizable loop

55



Graphics Processors (4/8) 

● 15 SMX processors, shared L2, 6 memory controllers

56



Graphics Processors (5/8) 

● Cores are
○ Multithreaded

○ Data parallel 

● Capabilities
○ 64K registers

○ 192 simple cores

■ Integer and SP FPU

○ 64 DP FPUs

● Scheduling
○ 4 warp schedulers, 2 instruction 

dispatch per warp 57



Graphics Processors (6/8) 

● All threads can be independent

○ HW implements zero-overhead switching

● 32 threads are packed in warps

○ Warp: set of parallel threads that execute the 

same instruction-> data parallelism

○ 1 warp instruction keeps cores busy for multiple 

cycles

● SW thread blocks mapped to warps

○ When HW resources are available

58



Graphics Processors (7/8) 

● 64 warps per SMX

● 32 threads per warp

○ 64K registers/SMX

○ Up to 255 registers per threads (8 warps)

● Scheduling

○ 4 schedulers select 1 warp per cycle

○ 2 independent instructions issued per 

warp (double-pumped FUs)

○ Total bandwidth = 4 x 2 x 32 = 256 ops 

per cycle 59



Graphics Processors (8/8) 

● Each SMX has 64KB of memory

○ Split between shared mem and L1 cache

○ 256 Bytes per access

○ 48KB read-only data cache

○ 1.5MB shared L2

■ Supports synchronization operations

(atomicCAS, atomicADD …)

○ Throughput-oriented main memory

■ GDDRx standards

60



Conclusion

● Instruction-Level Parallelism (ILP)

○ Pipelining, super-scalar processor

● Thread-Level Parallelism (TLP)

○ Hardware multi-threading

● Data-Level Parallelism (DLP)

○ SIMD, Vector processor, GPU

61


