X //1 National Yang Ming Chiao Tung University
T i [N
a7+ Computer Architecture & System Lab

Lecture 13: Multicores

CS10014 Computer Organization

Department of Computer Science
Tsung Tai Yeh
Thursday: 1:20 pm- 3:10 pm

Classroom: EC-022

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Acknowledgements and Disclaimer

e Slides were developed in the reference with

® CS61C at UC Berkeley
® hittps://inst.eecs.berkeley.edu/~cs61c/sp23/
® 6.888 at MIT
® https://courses.csail.mit.edu/6.888/spring13/
® (CIS510 at Upenn
® hitps://www.cis.upenn.edu/~cis5710/spring2019/

https://inst.eecs.berkeley.edu/~cs61c/sp23
https://inst.eecs.berkeley.edu/~cs61c/sp23/
https://courses.csail.mit.edu/6.888/spring13/
https://www.cis.upenn.edu/~cis5710/spring2019/

#Z % National Yang Ming Chiao Tung University

X2
=3¢071\
l

&t/ Computer Architecture & System Lab

Outline

« Multi-core Processor

« Pipelining Optimization

« Superscalar Processor

» Hardware Multi-Threading
» Vector Processors

« Graphics Processors

X ,ﬁ\ National Yang Ming Chiao Tung University

=337
_‘,E{'!' Computer Architecture & System Lab

Multi-core Processor (1/4)

« A single core can only be so fast Mmorya;hnoug TEEFE
o Limited clock frequency - bast E] ,

- Limited instruction-level parallelism e fe Liizorez Core 3

« What if we need even more =
computing power?

> Use multiple cores! AR agHE T

" ——

- ad

Intel Quad-core “core i7”

X ,ﬁ\ National Yang Ming Chiao Tung University

=337
"Eg-r Computer Architecture & System Lab

Multi-core Processor (2/4)

o Application domains for multiprocessors

o Scientific computing/super-computing
« Example: weather simulation, protein folding
= Each processor computes for a part of data

o Server workloads
= Example: airline reservation database
= Many concurrent updates, searches, lookups, queries
= Processors handle different requests

o But software must be written to expose parallelism

X

a4 Computer Architecture & System Lab

Multi-core Processor (3/4)

X %ﬁ\ National Yang Ming Chiao Tung University

o Multi-core & energy
o Explicit parallelism (multicore) is highly energy efficient
o Example: Intel’'s Xscale:
= 1GHz -> 200 MHz reduces energy used by 30X
= What if we used 5 Xscales at 200 MHz?
= Similar performance as 1GHz Xscale, but 1/6™ the energy
= 5 cores* 1/30" = 1/6th

%% National Yang Ming Chiao Tung University

;\ iy
a4 Computer Architecture & System Lab

Multi-core Processor (4/4)

« Amdahl’s law
o Consider a task with a “parallel” and “serial” portion

= What is the speedup with N cores?
o Speedup (n,p,s)=(s+p)/(s+(p/n))
» p is “parallel percentage”, s is “serial percentage’

= What about infinite cores?
o« Speedup (p,s)=(s+p)/s=1/s

= Example: can optimize 50% of program A
o Onlyyields a 2X speedup

National Yang Ming Chiao Tung University

z
iy
% Computer Architecture & System Lab

Pipelined Processors (1/5)

o I\/IiCI‘OpI‘OCGSSOI‘ performance
Iron law of performance

©)
CPU time = CPU Clock Cycles % Clock cyele time
CPU time = Instruction Count Cycles Per Instruction % Clock cyele time
CPU time = Scconds _ Instructions - Clock Cy:clcs e Scconds
Program Program Instruction Clock Cycle
43 L3>
ISA, Orgamzafion, Hardware
Compiler ISA Technology.
Orgamzation

Technology

X

,/1\ National Yang Ming Chiao Tung University

=X}z
‘,%-r Computer Architecture & System Lab

Pipelined Processors (2/5)

° MiCrOprOCGSSOr performance
o CPl = CPligey t+ CPlgy,

CPl. .4 Cycles per instruction if no stalll

o CPlg,, contributors

Data dependences: RAW, WAR, WAW
Structural hazards

Control hazards: branches, exceptions
Memory latency: cache misses

X ,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘Eg-r Computer Architecture & System Lab

Pipelined Processors (3/5)

o b-stage pipelined processors Fetch
o Advantages -
s CPl.,is 1 (pipelining) Read Registers
= No WAW or WAR hazards v
= Simple elegant ALU
o Still used in ARM & MIPs processors v
Memory
Y

Write Registers

10

X ,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘,%-r Computer Architecture & System Lab

Pipelined Processors (4/5)

o b-stage pipelined processors
o Shortcomings
= Upper performance bound is CPI =1
= High latency instructions not handle well
» 1 stage for accesses to large cache or
multiplier
« Clock cycle is high
= Unnecessary stalls due to rigid pipeline
 If one instruction stalls anything
behind it stalls

Fetch

Y
Decode

Read Registers

Y
ALU

Memory

Y
Write Registers

11

X ,/1\ National Yang Ming Chiao Tung University

=X}z
‘ég-r Computer Architecture & System Lab

Pipelined Processors (5/5)

e Improving 5-stage pipeline performance
o Higher clock frequency (lower CCT): deeper pipelines

= Overlap more instructions
o Higher CPIl,,: wider pipeline
= Insert multiple instruction in parallel in the pipeline
o Lower CPl:
« Diversified pipelines for different functional units
= Out-of-order execution
o Balance conflicting goals
= Deeper & wider pipelines => more control hazards
= Branch prediction

12

#Z % National Yang Ming Chiao Tung University

X2
=3¢071\
l

&t/ Computer Architecture & System Lab

Outline

« Multi-core Processor

« Pipelining Optimization

« Superscalar Processor

» Hardware Multi-Threading
» Vector Processors

« Graphics Processors

X

,/1\ National Yang Ming Chiao Tung University

=X}z
‘,%-r Computer Architecture & System Lab

Pipelining Optimization (1/4)

o Deeper pipelines
o ldea: break up instruction into N pipeline stages
Ideal CCT = 1/N compared to non-pipelined
o Other motivation for deep pipelines
Not all basic operations have the same latency

Integer ALU, FP ALU, cache access

Difficult to fit them in one pipeline stage

CCT must be large enough to fit the longest one

Break some of them into multiple pipeline stages

E.g., data cache access in 2 stages, FP add in
2 stage, FP mul in 3 stage

Fetch 1

¥
Fetch 2

Y
Decode

Y
Read Registers

Y
ALU

Y
Memory 1

Y
Memory 2

Y
Write Registers

14

X ,/1\ National Yang Ming Chiao Tung University

=337
‘,%-r Computer Architecture & System Lab

Pipelining Optimization (2/4)

o Limits to pipeline depth
o Each pipeline stage introduces some overhead (O)
= Delay of pipeline reqgisters
= Inequalities in work per stage
« Cannot break up work into stages at arbitrary points
= Clock skew
« Clocks to different registers may not be perfectly aligned

15

X ,ﬁ\ National Yang Ming Chiao Tung University

=X}z
"Eg-r Computer Architecture & System Lab

Pipelining Optimization (3/4)
o Limits to pipeline depth
o Iforiginal CCT was T, with N stages CCTis T/N + O
s IfN-> speedup = T/(T/N+QO) -> T/O
= Assuming that IC and CPI stay constant
o Eventually overhead dominates and deeper pipelines have

diminishing returns 25 F
—rFrrequency
20 ~ _Eeprlform ance |-

LT e B e 7 & A —

R T S

- T/N|-> o|—- T/N|—- or .

mmmmmmmmmmm

Pipeline Depth [Ed Grochowski, 7/6/01]

X ,/1\ National Yang Ming Chiao Tung University

=X}z
",%-r Computer Architecture & System Lab

Pipelining Optimization (4/4)
o Deep pipelines review
o Advantages: higher clock frequency
= The workhorse behind multi-GHz processors
o Cost:
= Complexity: more forwarding & stall cases
o Disadvantages
= More overlapping -> more dependencies -> more stall
« CPI,, grows due to data and control hazards
o Clock overhead becomes increasing important

17

#Z % National Yang Ming Chiao Tung University

X2
=3¢071\
l

&t/ Computer Architecture & System Lab

Outline

« Multi-core Processor

« Pipelining Optimization

« Superscalar Processor

» Hardware Multi-Threading
» Vector Processors

« Graphics Processors

X ,ﬁ\ National Yang Ming Chiao Tung University

=337
‘,%-r Computer Architecture & System Lab

Superscalar Processor (1/7) -
 Superscalar (Wider) pipelines EEEE
- ldea: operate on N instructions each clock cycle o
= Known as wide or superscalar pipelines i
= CPliges = 1IN AIU
o Options (from simpler to harder) oy
= One integer and one floating-point instruction v
= Any N = 2 instructions Hemen
= Any N = 4 instructions :
= Any N = ? Instructions Write Registers

« What are the limits here?
19

X

,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘Eg-r Computer Architecture & System Lab

Superscalar Processor (2/7)
o Superscalar (Wider) pipelines

O

O

O

Advantages: Lower CPl., (1/N)
Cost
= Need wider path to instruction cache
= Need more ALUs, register file ports...
= Complexity: more forwarding & stall cases to
check
Disadvantages

Fetch
N A
Y

Decode
Read Registers

Write Registers

= Parallel execution -> more dependencies -> more stalls

= CPI,, grows due to data and control hazards

20

() et o
Superscalar Processor (3/7)
o Diversified pipelines

O

O

|dea: decouple the execution portion
of the pipeline for different instructions
Common approach
= Separate pipelines for simple
Integer, integer multiply, FP, LD/ST

IntAdd

Fetch
L)
Decode

Read Reqgisters
L

Y

Y ¥
IntMult FPU

L Y

Y Y
IntMult FPU

: T

v
FPU

¥

v
FPU

L] L)

Write Registers

21

X ,/1 National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Superscalar Processor (4/7)

o Diversified pipelines
o Advantage
= Avoid unnecessary stalls
« E.g.slow FP instruction does
not block independent integer
Instruction
o Disadvantages
« WAW hazards

Fetch
L)
Decode

Read Reqgisters
L

L

Y Y ¥
IntAdd IntMult FPU

L Y

Y Y
IntMult FPU

: T

v
FPU

¥

v
FPU

Y L] L)

Write Registers

22

I\
4"F Computer Architecture & System Lab

)

ﬁiﬁ National Yang Ming Chiao Tung University
=t

Superscalar Processor (5/7)
e Superscalar out-of-order processor

- |I-Cache

e

In Order

QOut Of Order
- —

In Order

-

Branchy Fetch

Unit

Predict
‘ I

Instruction Buffer

Decode/Rename
Dispatch .
Y
I Y Y Y I Reservation Stations
v v v v v Y
Int Int FP FP Lis us

v l ! Y

Reorder Buffer I *

Retire

Y Y
Write Buffer 4L_ >| D-Cache

23

#Z % National Yang Ming Chiao Tung University

1Y
£ Computer Architecture & System Lab

Superscalar Processor (6/7)

e Instruction Level Parallelism (ILP)

Data-flow execution order

D =3(a-b) + Tac

Id b
sub a-b

mul 3(a-b) : ‘;
Id ¢ Q Q
mul ac \ /

mul 7ac
add 3(a-b)+7ac
st d

&

é%ﬁ\ National Yang Ming Chiao Tung University

_‘, 874 Computer Architecture & System Lab

Superscalar Processor (7/7)
o Challenges of Superscalar Processors

O

O

O

O

O

Clock frequency: Getting close to pipeline limits

= Clocking overheads, CPI degradation

Branch prediction & memory latency limit the practical benefits of
out-of-order (OOQ) execution
Power grows super-linearly with higher clock & more OOO logic

Design complexity grows exponentially with issue width
Limit ILP -> must exploit TLP and DLP
= Thread-Level Parallelism: Multithreading and multicore

= Data-Level Parallelism: SIMD instructions
25

X

a4 Computer Architecture & System Lab

Multi-Threading (1/5)

o Software “thread”: Independent flows of execution

o “Per-thread” state
= Context state: PC, registers
= Stack (per-thread local variables)

o “Shared” state: global variables, heap, etc.

o Threads generally share the same memory space
= A process is like a thread, but with its own memory space
= Java has thread support built in, C/C++ use the pthreads lib

X %ﬁ\ National Yang Ming Chiao Tung University

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Multi-Threading (2/5)

o Software “thread”: Independent flows of execution

o A thread is the unit of execution within a process
Single Thread

Multi Threaded

[Registers” Stack }

[Registers ” Stack l

|

[Registers H Stack]

Code]

Thread

Thread

Thread

27

X

,/1\ National Yang Ming Chiao Tung University

=X}z
‘ég-r Computer Architecture & System Lab

Multi-Threading (3/5)

o Software “thread”: Independent flows of execution

O

O

O

O

O

Thread: instruction stream with own PC and data

Each thread has all the state (instructions, data, PC, register
state, ...) necessary to allow it to execute
System software (the O.S.) manages threads

“Thread scheduling”, “context switching”
In single-core system, all threads share one processor

= Hardware timer interrupt occasionally triggers O.S.
= Quickly swapping threads gives illusion of concurrent

execution
28

X

a4 Computer Architecture & System Lab

Multi-Threading (4/5)

« Shared Memory Programming Model

o Programmer explicitly creates multiple threads

o All loads & stores to a single shared memory space
= Each thread has its own stack frame for local variables
= All memory shared, accessible by all threads

o Multi-threading is commonly used
= Handling user interaction (GUI programming)
= Handling I/O latency
= EXpressing parallel work via Thread-Level Parallelism (TLP)

X %ﬁ\ National Yang Ming Chiao Tung University

29

X

,/1\ National Yang Ming Chiao Tung University

=X}z
‘,%-r Computer Architecture & System Lab

Multi-Threading (5/5)

e Shared memory issues
o Cache coherence
= If cores have private (non-shared) caches
= How to make writes to one cache “show” up in others?
o Parallel programming
= How does the programmer express the parallelism?
o Synchronization
= How to regulate access to shared data?
= How to implement “locks”?
o Memory consistency models
= How to reconcile shared memory with compiler optimizations,
store buffers, and out-of-order execution?

30

#Z % National Yang Ming Chiao Tung University

X2
=3¢071\
l

&t/ Computer Architecture & System Lab

Outline

« Multi-core Processor

« Pipelining Optimization

« Superscalar Processor

« Hardware Multi-Threading
» Vector Processors

« Graphics Processors

X ,ﬁ\ National Yang Ming Chiao Tung University

=X}z
"Eg-r Computer Architecture & System Lab

Hardware Multi-Threading (1/5)

« A hardware thread is a sequential stream of instructions

« Hardware Multi-threading (MT)
o Multiple hardware threads dynamically share a single pipeline
o Replicate only per-thread structures: program counter & registers
o Hardware interleaves instructions

Regfile0

Redfile1

32

_\ ,1 National Yang Ming Chiao Tung University
\
a4 Computer Architecture & System Lab

Hardware Multi-Threading (2/5)

e Motivation
o Super-scalar hardware underutilized on stalls
o Use TLP to increase utilization

o NG BEREEEE s CEMIERRANRNEEND
e SN sl oLt | Ll L

Cache miss Carhe riss T Cache miss T Execution
Units T
me

33

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Coarse-Grained

Hardware Multi-Threading (3/5) [
e Coarse-grained multithreading =.
o Switches threads only on costly stalls, such as L2 cache HEE
misses =
o Advantages
= Relieves need to have very fast thread-switching
o Disadvantages

= Throughput losses from shorter stalls, due to
start-up costs
= New thread must fill pipeline before instructions
complete
o Better for reducing penalty of high cost stalls, where H
pipeline refill << stall time 34

National Yang Ming Chiao Tung University

£Y ir
\
@ Computer Architecture & System Lab F. -
ine-Grained

Hardware Multi-Threading (4/5) o=

o Fine-grained multithreading
o Switches threads on each instruction
= The execution of multiple threads to be interleaved
o Advantages e
= Hide both short and long stalls, since instructions
from other threads execute when one stalls
o Disadvantages b
= Slows down execution of individual threads
= A thread without stalls will be delayed by instructions
from other threads

\

35

X

E‘i’ﬁ‘ National Yang Ming Chiao Tung University SimUItan eous
(4™ F Computer Architecture & System Lab . .
dash M

ultithreading

Hardware Multi-Threading (5/5) EEOL

o Simultaneous multithreading (SMT)
o Exploiting TLP in a single processor core
o Each clock, core chooses instructions from multiple
threads to run on ALUs

o Needs one context per thread

o Benefits
= Increasing throughput from concurrent execution
= Dynamic scheduling
= No partitioning of many resources
= E.g. Intel Hyper-threading

o
o
= v]

|

]
]
[]
]
B
]
]

S
S

36

X ,/1\ National Yang Ming Chiao Tung University

=X}z
",%-r Computer Architecture & System Lab

SIMD Processing (1/2)

« Single Instruction Multiple Data (SIMD)
o The instruction sequence applies for multiple elements
o Vector processing -> amortize instruction costs (fetch,
decode ...) across multiple operations
o Require regular data parallelism (no or minimal divergence)

o EXxploiting SIMD
o Explicit & low-level, using vector intrinsics

o Explicit & high-level convey parallel semantics (e.g. foreach)
o Implicit: parallel compiler infers loop dependencies

37

X ,/1 National Yang Ming Chiao Tung University
AT d 1N
Wik Computer Architecture & System Lab

S

SIMD Processing (2/2)

o SIMD Extensions on Modern CPUs
o SSE: 128-bit operands (4x32-bit or 2x64-bit)
o AVX: 256-bit operands (8x32-bit or 4x64-bit)
o Explicit SIMD: parallelization performed at compile time

#Z % National Yang Ming Chiao Tung University

X2
=3¢071\
l

&t/ Computer Architecture & System Lab

Outline

« Multi-core Processor

« Pipelining Optimization

« Superscalar Processor

» Hardware Multi-Threading
o Vector Processors

« Graphics Processors

X ,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘Eg-r Computer Architecture & System Lab

Vector Processors (1/12)

o Scalar processors operate on single numbers (scalars)
o Vector processors operate on linear sequences of

numbers (vector)
SCALAR VECTOR
(1 operation) (N operations)
rl| |r2 viiv2
}_P/
r3 V3 Aecior
add r3, rl, r2 vadd.vv v3, vl, v2

X ,/1\ National Yang Ming Chiao Tung University

=X}z
",%-r Computer Architecture & System Lab

Vector Processors (2/12)

o« What's in a vector processor?

o A scalar processor
= Scalar reqister file (32 registers)
= Scalar functional units (arithmetic, load/store, etc.)

o A vector reqister file (a 2D reqister array)
= Each reqister is an array of elements
= E.g. 32 registers with 32 64-bit elements per register
= MVL = maximum vector length = max # of elements

per register

o A set of vector functional units

= Integer, FP, load/store, etc..

41

X

=§§fﬁ\ National Yang Ming Chiao Tung University

_‘r 874 Computer Architecture & System Lab

Vector Processors (3/12)

o What's in a vector processor?

| FP add/subtract .—.
| FP multiply '——
| FP divide I—‘
_hl
™
| Integer '—b-

| Logical I—"

Scalar
registarns

42

National Yang Ming Chiao Tung University

z
Computer Architecture & System Lab

By

E\\% I

“d
Cyf,

Vector Processors (4/12)

Comment

o Basic vector ISA
Instr. Operands Operation
VADD.VV V1,V2,V3 VI=V2+V3 vector + vector

VADD.SV V1,R0,V2 V1=RO+V2 scalar + vector
VMUL.VV V1,V2,V3 VI=V2*¥V3 vector x vector
VMUL.SV V1,R0,V2 VI1=RO*V2 scalar x vector
VLD V1l,R1 V1=M[R1...R1+63] load, stride=1
VLDS V1,R1,R2 VI1=M[R1...R1+63*R2] load, stride=R2
VLDX V1,R1,V2 VI=M[R1+V2,i=0..63] indexed("gather")
VST V1,R1 M[R1...R1+63]=V1 store, stride=1
VSTS V1,R1,R2 VI1=M[R1..R1+63*R2] store, stride=R2
VSTX V1,R1,V2 VI=M[R1+V2,i=0..63] indexed("“scatter")
43

+ regular scalar instructions...

X ,/1\ National Yang Ming Chiao Tung University

=X}z
",%-r Computer Architecture & System Lab

Vector Processors (5/12)

« Advantages of vector ISAs

o Compact: single instruction defines N operations
= Amortizes the cost of instruction fetch/decode/issue
= Also reduces the frequency of branches

o Parallel: N operations are (data) parallel
= No dependencies
= NoO need for complex hardware to detect parallelism
= Can execute in parallel assuming N parallel datapaths

44

X ,/1 National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Vector Processors (6/12)

« Advantages of vector ISAs
o EXxpressive: memory operations describe patterns
= Continuous or regular memory access pattern
= Can prefetch or accelerate using wide/multi-banked
memory
= Can amortize high latency for 15t element over large
sequential pattern

45

'X$Z % National Yang Ming Chiao Tung University

=3¢71n
‘,%-r Computer Architecture & System Lab

Vector Processors (7/12)

o Vector Length (VL)
o Basic: Fixed vector length (typically in narrow SIMD)

o Vector-length (VL) register
o Control the length of any vector operation, including vector
loads and stores
« E.g.vadd.vv with VL =10 <->
for (i=0;i<10; i++) V1[i] = V2[i] + V3]
= VL can be set up to MVL (e.g. 32)

X

#Z % National Yang Ming Chiao Tung University
RN -
a4 Computer Architecture & System Lab

Vector Processors (8/12)

o Optimization 1: Chaining
o Suppose the following code with VL = 32
vmul . vv vl,v2,Vv3

vadd.vv v4,vV1,V5 # very long RAW hazard

o Chaining

V1 is not a single entity but a group of individual elements
Pipeline forwarding can work on an element basis

Allow vector to chain to Unchained
any other active vector

operations => more R/W chained
ports vadd

vmul vadd

vmul

a7

5‘?{1‘ National Yang Ming Chiao Tung University

_‘r 874 Computer Architecture & System Lab

Vector Processors (9/12)

o Optimization 2: Multiple Lanes
o Elements for each vector register interleaved across the lanes
o Each lane receives identical control
o Multiple element operations executed per cycle
o No need for inter-lane communication for most vector insns

Vector Reg.

Partition

=
’_f_f_\

=
’_f_f_\

il

Elements

Elements

To/From Memory System

Elements

Elements

=

=

: Pipelined
Datapath

48

,ﬁ National Yang Ming Chiao Tung University
i
874 Computer Architecture & System Lab

Vector Processors (10/12)
o Chaining & Multi-lane example

VL=16, 4 lanes,

Scalar LSU FUO
Aol . o 2 FUs, 1 LSU
l vadd.vv _ ':3 chaining -=> 12
addu =3 | : ops/cycle
Time v1d =
Just 1 new
vmul.vv == . .
i | i | instruction
vadd.vv - | ':: issued per cycle
addu 1 ! m

Instr. Issue: =

Element Operqtiéns:

X ,/1\ National Yang Ming Chiao Tung University

=X}z
‘,%-r Computer Architecture & System Lab

Vector Processors (11/12)

o Optimization 3: Conditional Execution
o Suppose you want to vectorize this:
for (i=0; i<N; i++) if (A[i]'= B[i]) A[i] -= B[i];

o Solution: Vector conditional execution (predication)

= Add vector flag registers with single-bit elements (masks)

= Use a vector compare to set a flag register

= Use flag register as mask control for the vector sub

« Add executed only for vector elements with
corresponding flag element set

50

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Vector Processors (12/12)

o Optimization 3: Conditional Execution
o Solution: Vector conditional execution (predication)
= Use flag register as mask control for the vector sub
« Add executed only for vector elements with
corresponding flag element set

vld V1, Ra

vld V2, Rb

vemp.neq.vv . MO, V1, V2 # vector compare
vsub.vv v3, V2, V1, MO # conditional wvadd

vst V3, Ra

51

#Z % National Yang Ming Chiao Tung University

X2
=3¢071\
l

&t/ Computer Architecture & System Lab

Outline

« Multi-core Processor

« Pipelining Optimization

« Superscalar Processor

» Hardware Multi-Threading
» Vector Processors

« Graphics Processors

X ,/1 National Yang Ming Chiao Tung University
AT d 1N
Wik Computer Architecture & System Lab

S

Graphics Processors (1/8)

o Till mid 90s
o VGA controllers used to accelerate some display functions

o Mid 90s to mid 00s

o Fixed-function graphics accelerators for the OpenGL and

DirectX APIs

o 3D graphics: triangle setup & rasterization, texture mapping ...
o« Modern GPUs

o Programmable multiprocessors optimized for data-parallel app

= OpenGL/DirectX/CUDA/OpenCL ...
o Some fixed-function hardware (texture, raster ops ...)

53

§<—>| per-Threa d Lo cal M emory

'X$7 % National Yang Ming Chiao Tung University
=‘;§‘;'IP Computer Architecture & System Lab
Graphics Processors (2/8)
Thread

Thread Block

o Software GPU Thread Model (CUDA)
o Single-program multiple data (SPMD)

- Each thread has local memory e
- Parallel threads packed in blocks S, ey
= Access to per-block shared memory e« sequece
= Synchronize with barrier
o Grids include independent groups e s — — — I
54

'X$7 % National Yang Ming Chiao Tung University
=X
a4 Computer Architecture & System Lab

ia

Graphics Processors (3/8)

o In SAXPY example

o CUDA code launches 256 threads per block
= Thread =1 iteration of scalar loop (1 element in vector loop)

= Block = body of vectorized loop (with VL = 256 in this ex.)
= Grid = vectorizable loop

C Code CUDA Code
/l Invoke DAXPY // Invoke DAXPY with 256 threads per block
daxpy(n, 2.0, x,¥): __host__
(I DAXPY inC int nblocks = (n+ 255) / 256;
void daxpy(int n, double a, double #x, double *y) daxpy<<<nblocks, 256>>>(n. 2.0, %, y):
{ [/ DAXPY in CUDA
for (int i = 0; i < n; ++) —device__
yli] = a*x[i] + y[i): void daxpy(int n, double a, double *x, double *y)
} {
int 1 = blockldx x*blockDim.x + threadldx x;
if (i < n) y[i] = a*=x[i] + y[i];
i

Y T4
RN
‘I?

5h

National Yang Ming Chiao Tung University

Computer Architecture & System Lab

Graphics Processors (4/8)

e 15 SMX processors, shared L2, 6 memory controllers

Joy10nu03 Asowo

PCI Express 3.0 Host Interface

3
H
3
]
<
o
g
L
S
3

o000 Kiowow

soj100u05 Kiowop

Joj10nu03 Kiowow

Streaming Multiprocessing (SM)/ SIMT Core

Instruction Cache

Tensor
FP64/32 | BRI

SP/SFU Tensor
L Core
Register
Files

L1 Data Cache/Shared memory

Tensor
FP64/32 | PRl

Register
Files

SP/SFU | s
L J Core [4

FP64/32 | ISl
SP/SFU | Rt
|
Register
Files

Warp Scheduler | Warp Scheduler | | Warp Scheduler | | Warp Scheduler
| 1 | | 1
SIMD Dispatch SIMD Dispatch SIMD Dispatch SIMD Dispatch
Unit Unit Unit Unit
I 1
v Ad

FP64/32 | IS
SP/SFU
Core

Register
Files

Texture memory

56

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
g7/ Computer Architecture & System Lab

Graphics Processors (5/8)

o Cores are
o Multithreaded
o Data parallel
o Capabillities
o 64K registers
o 192 simple cores
= Integer and SP FPU
o 64 DP FPUs

o Scheduling
o 4 warp schedulers, 2 instruction
dispatch per warp

SMX

Instruction Cache

Warp Scheduler
Dispatch Dispatch
& 4

‘Warp Scheduler

Dispatch Dispatch
+ 4

Warp Scheduler
Dispatch Dizpatch
3 L 3

Dispateh Dispatch
3 1

Register File (65,536 x 32-bit)

4+ + & L2 kS 4 & 4 + &

Coms Gom cm- Corn Core Cors - ot $FU
Cors Cora Core - Cern Core Caors - uwET SFU
Cord Cosa Core - Cers Core Cors - uwET SFU
Come Core Gm- Com Core Cons - veEt SFL
Core Code Core - Cere Core Core - uoaT EFU
Core Coeo Enn- Core Core Core - T SFU
Core Comn Cors - Com Core Core - uvET SFU
Core Core Core - Core Core Core - st SFU
Cors Com Core - Corn Core Gors - usT SFU

Core Cose Core - Core Core Core - LvET SFL

Core Core CM- Core Core Cors - wovaT SFU

Core Coms Cors - Cora Core Caors - vvaT SR
unET 8

. L = 3 k3 &+ £+ L e E S &
-cmcm-..:.-.. EFU

(-ml.-wﬂr!-#r":mc“-lrfw
Core Core Cﬂ-m Core C#'l-

Core Come Cone -cﬂi Core Cone - Loest |8
WMW-MWW-L:-M
Core Cone Mt-ﬂcﬂ Care Cc(l- LOOET
Core Cone C‘tl'-ﬂof. Cara L'.nm- [TETa
Core Cone m-cou Cone m- LT | &
mmm-cmmm-nr-r-r-
Core Cone Gmr-ﬁurc e Cﬂru- (LS
Core Core &n-ﬂum Core :-ru- LessT |8
Cors Coam C:n-ihn Cars Cq—-- LoesT |15
Core Cons ﬂ:nn-tm Core Cl:ro- LoesT |5
Core Come Cong -Gl:ﬂ Carg Cora - LEesT

o o o e [o o o O <

Gmmcut-ﬂu‘mwt-lr-ﬁr

~Interconnect Network
HIGMII-MHH i:nhi

48 KB Read-Only Data Cache

Tex

Tax

Tex
Tex

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
a4 Computer Architecture & System Lab

Graphics Processors (6/8)

Photo: Judy Schoonmaker

» All threads can be independent e s
- HW implements zero-overhead switching LI
« 32 threads are packed in warps [wapsimsiucton 1
- Warp: set of parallel threads that execute the | f f
same instruction-> data parallelism r 7 ‘\ca',p'sYi,fst,‘u:;ﬁi,,:9‘5Y .
o 1 warp instruction keeps cores busy for multiple ”” ”m ‘ { ‘ ‘ *
cycles aisisiiaiiatsn
o SW thread blocks mapped to warps e

> When HW resources are available | [vam iinsiucionss |

58

x%7 ¢ National Yang Ming Chiao Tung University

‘i‘!’ Computer Architecture & System Lab

Graphics Processors (7/8)

o 064 warps per SMX

o 32 threads per warp
o 64K registers/SMX
o Up to 255 registers per threads (8 Warps)

e Scheduling

o 4 schedulers select 1 warp per cycle

o 2 independent instructions issued per
warp (double-pumped FUSs)

o Total bandwidth =4 x 2 x 32 = 256 ops
per cycle 59

X

#Z % National Yang Ming Chiao Tung University

‘i—r Computer Architecture & System Lab

Graphics Processors (8/8)

o« Each SMX has 64KB of memory (I;T;i
o Split between shared mem and L1 cache -*‘—j’, —
- 256 Bytes per access vy || cone | (S
o 48KB read-only data cache | !
- 1.5MB shared L2 [et
= Supports synchronization operations !
(atomicCAS, atomicADD ...)
o Throughput-oriented main memory

= GDDRXx standards

60

X ,/1\ National Yang Ming Chiao Tung University

=X}z
‘,%-r Computer Architecture & System Lab

Conclusion

 Instruction-Level Parallelism (ILP)
o Pipelining, super-scalar processor

o Thread-Level Parallelism (TLP)
o Hardware multi-threading

o Data-Level Parallelism (DLP)
o SIMD, Vector processor, GPU

61

