
Lecture 12: Virtual Memory

Department of Computer Science

Tsung Tai Yeh

Thursday: 1:20 pm– 3:10 pm

Classroom: EC-022

CS10014 Computer Organization



Acknowledgements and Disclaimer

● Slides were developed in the reference with 

● CS 61C at UC Berkeley 

● https://inst.eecs.berkeley.edu/~cs61c/sp23/

● CS252 at ETHZ

● https://safari.ethz.ch/digitaltechnik/spring2023

● CIS510 at Upenn

● https://www.cis.upenn.edu/~cis5710/spring2019/

2

https://inst.eecs.berkeley.edu/~cs61c/sp23
https://inst.eecs.berkeley.edu/~cs61c/sp23/
https://safari.ethz.ch/digitaltechnik/spring2023
https://www.cis.upenn.edu/~cis5710/spring2019/


Outline

● Virtual Memory

● Paged Memory

● Paged Table

● Multi-Level Page Table

● Translation Lookaside Buffer (TLB)

● Handling TLB Misses

3



Review

● Cache design choices

○ Size of cache: speed vs. capacity

○ Block size (i.e., cache aspect ratio)

○ Write policy (write through vs. write back)

○ Associativity choice of N (direct-mapped vs. set vs. fully 

associative)

○ Block replacement policy

○ Multi-level caches

4



Memory Hierarchy (1/3)

5



Memory Hierarchy (2/3)

6

● How does multiple apps (and the OS) share main 

memory?

○ Goal: each applications thinks it has all of the memory

● One app may want more memory than is in the system

○ App’s insn/data footprint may be larger than main memory

○ Requires main memory to act like a cache

■ With disk as next level in memory hierarchy (slow)

■ Write-back, write-allocate, large blocks or “pages”



Memory Hierarchy (3/3)

7

● Solutions

○ Part #1: treat memory as a “cache”

■ Store the overflowed blocks in

“swap” space on disk

○ Part #2: add a level of indirection 

(address translation)

■ MMU is in the CPU

Memory management unit (MMU)



Virtual Memory Motivation (1/2)

8

● What if main memory is smaller than the program 

address space?



Virtual Memory Motivation (2/2)

9

● What if two programs access the same memory address?

○ If all processes can access any 32-bit memory address, they can 

corrupt/crash others

○ Need protection (isolation) between processes



Outline

● Virtual Memory

● Paged Memory

● Paged Table

● Multi-Level Page Table

● Translation Lookaside Buffer (TLB)

● Handling TLB Misses

10



Virtual Memory (1/5)

11

● Virtual memory

○ Level of indirection

○ Application generated addresses are virtual addresses (VAs)

■ Each process thinks it has its own 2N bytes of address space

○ Memory accessed using physical addresses (PAs)

○ VAs translated to PAs at some coarse granularity (page)

○ OS controls VA to PA mapping for itself and all other processes



Virtual Memory (2/5)

12

● Programs use virtual addresses (VA)

○ VA size (N) aka machine size (e.g., Core 2 Duo: 48-bit)

● Memory uses physical addresses (PA)

○ PA size (M) typically M<N, especially if N = 64

● VA -> PA at page granularity (VP -> PP)

○ Mapping need not preserve contiguity

○ VP need not be mapped to any PP

○ Unmapped VPs live on disk (swap) or nowhere (if not yet 

touched)



Virtual Memory (3/5)

13

● A program’s address contains 4 regions
○ Stack:

■ local variables, grows downward

○ Heap:

■ space requested for pointers via malloc(); resizes 

dynamically, grows upward

○ Static data:

■ Variables declared outside main, does not grow or

shrink

○ Code:

■ Loaded when program starts, does not change

Control

Datapath

Program Counter (PC)

Registers

Arithmetic-Logic

Unit (ALU)

Processor Memory

Bytes

Instruction Cache

Data Cache

Code

V
ir

tu
a

l
A

d
d

re
ss

e
s

Heap

Stack

Unused

Memory

P
h
y
si

ca
l
A

d
d
re

ss
e
s

Static Data

?

A process memory

address layout



Virtual Memory (4/5)

14

● Uses of virtual memory

○ Isolation and multi-programming

○ Each app thinks it has 2N B of memory, its stack starts 

0xFFFFFFFF, …

○ Apps prevented from reading/writing each other’s memory

● Protection

○ Each page with a read/write/execute permission set by OS

● Inter-process communication

○ Map same physical pages into multiple virtual address spaces

○ Or share files via the UNIX mmap() call



Virtual Memory (5/5)

15

● Address translation

○ VA -> PA mapping called address translation

○ Split VA into virtual page number (VPN) & page offset (POFS)

○ Translate VPN into physical page number (PPN)

○ POFS is not translated

○ VA -> PA = [VPN, POFS] -> [PPN, POFS]

● Example above

○ 64KB pages -> 16-bit POFS

○ 32-bit machine -> 32-bit VA -> 16-bit VPN

○ Maximum 256 MB memory -> 28-bit PA -> 12-bit PPN



Outline

● Virtual Memory

● Paged Memory

● Paged Table

● Multi-Level Page Table

● Translation Lookaside Buffer (TLB)

● Handling TLB Misses

16



Paged Memory (1/5)

17

● The concept of “paged memory” dominates

○ Physical memory (DRAM) is broken into pages

○ A disk access loads an entire page into memory

○ Typical page size: 4KiB+ (on modern OSs)

■ Need 12 bits of page offset to address all 4KiB

Memory translation maps 

Virtual Page Number (VPN) to 

a Physical Page Number (PPN)



Paged Memory (2/5)

18

● How a program accesses memory?

○ Program executes a load specifying a virtual address (VA)



Paged Memory (3/5)

19

● How a program accesses memory?

○ Computer translates VA to the physical address (PA) in memory

■ Extract virtual page number (VPN) from VA, e.g. top 20 bits if page 

size 4KiB = 212 B

■ Look up physical page number (PPN) in page table

■ Construct PA: physical page number + offset (from virtual address)



Paged Memory (4/5)

20

● How a program accesses memory?

○ If the physical page is not in memory, then OS loads it in from 

disk



Paged Memory (5/5)

21

● How a program accesses memory?

○ The OS reads memory at the PA and returns the data to the 

program



Outline

● Virtual Memory

● Paged Memory

● Paged Table

● Multi-Level Page Table

● Translation Lookaside Buffer (TLB)

● Handling TLB Misses

22



Paged Table (1/11)

23

● A page table is NOT a cache

○ A page table does not have data

○ It is a lookup table

○ All VPNs have a valid entry

○ Page tables are stored in the

main memory



Paged Table (2/11)

24

● 32-bit virtual address space, 4-KiB pages

○ 232 virtual addresses / (212 B/pages)

○ = 220 virtual page numbers (1MB pages)

● One page table per process

○ One entry per virtual page number

○ Entry has physical page number



Paged Table (3/11)

25

● Status Bits

○ Write protection bit

■ On: If process writes to page

trigger exception

○ Valid bit

■ On: Page is in RAM

○ Dirty bit

■ On: page on RAM is 

more up-to-date than 

page on dis



Paged Table (4/11)

26

● Page hit

○ 1) Processor sends virtual address to MMU

○ 2 – 3) MMU fetches PTE from page table in memory

○ 4) MMU sends physical address to L1 cache

○ 5) L1 cache sends data word to processor



Paged Table (5/11)

27

● Page faults
○ Page table entries store status to indicate if the page is in memory 

(DRAM) or only on disk
■ One each memory access, check the page table entry “valid” 

status bit
○ Valid -> in DRAM

■ Read/write data in DRAM
○ Not valid -> on disk

■ Trigger a page fault; OS intervenes to allocate the page into 
DRAM

■ If out of memory, first evict a page from DRAM (LRU/FIFO/random)
■ Read request page from disk into DRAM
■ Finally, read/write data in DRAM



Paged Table (6/11)

28

● Page faults
○ 1) Process sends virtual address to MMU

○ 2-3) MMU fetches PTE from page table in memory

○ 4) Valid bit is 0, so MMU triggers page fault exception

○ 5) Handler identifies victim, and if dirty pages it out to disk

○ 6) Handler pages in new page and updates PTE in memory

○ 7) Handler returns to original process, restarting faulting instruction



Paged Table (7/11)

29

● Each process has a dedicated
page table

○ OS keeps track of which process
is active

● Isolation: Assign processes
different pages in DRAM

○ Prevent accessing other
processes’ memory

○ OS may assign some physical
page to several processes (e.g.
system data), sharing is also
possible



Paged Table (8/11)

30

● A page table contains the mapping of virtual address to 

physical locations

○ Each process has its

own page table

○ OS changes page

tables by changing

contents of Page

Table Base Register

Page tables are stored in main 

memory



Paged Table (9/11)

31

● Page Table Entry (PTE) format

○ Contains either physical page number or indication not in main 

memory

○ OS maps to disk if Not Valid (V=0)

○ If valid, also check if have

permission to use page

■ Access Rights (A.R.) may be

Read Only, Read/Write, 

Executable



Paged Table (10/11)

32



Paged Table (11/11)

33

● How big is a page table on the following machine?
○ 32-bit machine->32-bit VA -> 232 = 4GB virtual memory

○ 4B page table entries (PTEs)

○ 4KB pages

○ 4GB virtual memory / 4KB page size -> 1M VPs

○ 1M VPs * 4 bytes per PTE -> 4MB

● What is the problem when increasing page size from 4 KB to 

16 KB?
○ Internal fragmentation (big pages lead to waste within each page)

● Page tables can get big
○ There are ways of making them smaller



Outline

● Virtual Memory

● Paged Memory

● Paged Table

● Multi-Level Page Table

● Translation Lookaside Buffer (TLB)

● Handling TLB Misses

34



Multi-Level Page Table (1/8)

● Multi-level page table

○ Chop up the page table into 

page-sized units

○ Page directory tells where a 

page of the page table is

■ A number of page directory 

entries (PDE)

■ A page frame number (PFN), 

and a valid bit

35
https://pages.cs.wisc.edu/~remzi/OSTEP/vm-smalltables.pdf



Multi-Level Page Table (2/8)

● What are the advantages 

of multi-level page table?

○ Only allocate “using” 

page-table space

○ Compact and supports

sparse address space

36

1 100

0

0

1 107

V          Page

1 r 10

0

1 r 12

1 rw 13

V    Flags   Page

0

0

1 rw 39

1 rw 40

V    Flags   Page

Page table



Multi-Level Page Table (3/8)

37

● Multi-level page tables

○ Tree of page tables (“trie”)

○ Lowest-level tables hold PTEs

○ Upper-level tables hold pointers

to lower-level tables

○ Different parts of VPN used to

index different levels

● 20-bit VPN

○ Upper 10 bits index 1st –level table

○ Lower 10 bits index 2nd-level table



Multi-Level Page Table (4/8)

38



Multi-Level Page Table (5/8)

39

● Have we saved any space?
○ Isn’t total size of 2nd level tables same as single-level table (i.e., 

4MB)?

○ Yes, but

● Large virtual address regions unused
○ Corresponding 2nd-level tables need not exist

○ Corresponding 1st-level pointers are null

● How large for contiguous layout of 256 MB?
○ Each 2nd-level table maps 4MB of virtual addresses

○ One 1st-level + 64 2nd-level pages

○ 64 total pages = 260 KB (much less than 4MB)



Multi-Level Page Table (6/8)

● How many levels of page tables would be required ?
○ A virtual memory system with physical memory of 8 GB, a page size 

of 8 KB, 46 bit virtual address, and PTE size is 4 B

● Initially
○ Page size = 8 KB = 213 B

○ Virtual address space size = 246 B

○ PTE = 4 B = 22 B

○ Number of pages or number of entries in page table

= 246 B / 213 B = 233

○ Size of page table = 233 x 22 B = 235 B

40



Multi-Level Page Table (7/8)

● How many levels of page tables would be required ?
○ A virtual memory system with physical memory of 8 GB, a 

page size of 8 KB, 46 bit virtual address, and PTE size is 4 B

● Now, size of page table > page size (235 B > 213 B)
○ Create one more level

○ Number of page tables in last level

235 B / 213 B = 222

○ Size of page table [second last level]

○ 222 x 22 B = 224 B

41



Multi-Level Page Table (8/8)

● How many levels of page tables would be required ?
○ A virtual memory system with physical memory of 8 GB, a 

page size of 8 KB, 46 bit virtual address, and PTE size is 4 B

● Now, size of page table > page size (224 B > 213 B)
○ Create one more level [third last level]

○ Number of page tables in second last level

= 224 B / 213 B = 211

○ Size of page table [third last level]=

= 211 x 22 B = 213 B = page size

42



Outline

● Virtual Memory

● Paged Memory

● Paged Table

● Multi-Level Page Table

● Translation Lookaside Buffer (TLB)

● Handling TLB Misses

43



Translation Lookaside Buffer (TLB) (1/4)

44

● Good virtual memory design should be fast (~1 clock 

cycle) and space efficient

○ Every instruction/data access needs address translation

● But if page tables are in memory

○ we must perform a page table walk per instruction/data access

■ Single-level page table: 2 memory accesses

■ Two-level page table: 3 memory accesses

○ Solutions: Cache some translations in Translation Lookaside 

Buffer



Translation Lookaside Buffer (TLB) (2/4)

45

● Translation lookaside buffer (TLB)

○ Small cache: 16-64 entries

○ Associative (4+ way or fully 

associative common)

○ Exploit temporal locality in page

table

○ What if an entry isn’t found in the 

TLB?

■ Invoke TLB miss handler, 

walk page table



Translation Lookaside Buffer (TLB) (3/4)

46

● Translation lookaside buffer (TLB)

○ A cache of address translations

○ Avoid accessing the page table on

every memory access

○ Index = lower bits of VPN (virtual 

page #)

○ Tag = unused bits of VPN + process ID

○ Data = a page-table entry

○ Status = valid, dirty



Translation Lookaside Buffer (TLB) (4/4)

47



Outline

● Virtual Memory

● Paged Memory

● Paged Table

● Multi-Level Page Table

● Translation Lookaside Buffer (TLB)

● Handling TLB Misses

48



Handling TLB Misses (1/4)

49

● The TLB is small; it cannot hold all PTEs

○ Some translation requests will inevitably miss in the TLB

○ Must access memory to find the required PTE

■ Called walking the page table

■ Large performance penalty

TLB hit: Single-cycle translation

TLB miss: Page table walk to refill



Handling TLB Misses (2/4)

50

● Approach #1: Hardware managed (e.g., x86)

○ The hardware does the page walk

○ The hardware fetches the PTE and inserts it into the TLB

■ If the TLB is full, the entry replaces another entry

○ Done transparently to system software

○ Can employ specialized structures and caches

■ E.g., page walkers and page walk caches



Handling TLB Misses (3/4)

51

● Approach #2: Software managed (e.g., MIPS)

○ The hardware raises an exception

○ The operating system does the page walk

○ The operating system fetches the PTE

○ The operating system inserts/evicts entries in the TLB



Handling TLB Misses (4/4)

52

● Hardware managed TLB

○ + No exception on TLB miss. Instruction just stalls

○ + Independent instructions may execute and help tolerate latency

○ + No extra instructions/data brought into caches

● Software-managed TLB

○ + The OS can define the page table organization

○ + More sophisticated TLB replacement policies are possible

○ - Need to generate an exception -> performance overhead due to 

pipeline flush



Memory Access (1/2)

53

● Can a cache hold the requested data if the corresponding 

page is not in main memory?

○ NO !



Memory Access (2/2)

54

● On a memory reference, which block should we access 

first? When should we translate virtual addresses?

○ We will assume physically indexed, physically tagged caches 

(other design exist)

○ This means TLB first, then cache



Conclusion

● Virtual memory gives the illustration of “infinite” capacity

● A subset of virtual pages are located in physical memory

● A page table maps virtual pages to physical pages

○ Address translation

● A TLB speeds up address translation

● Multi-level page tables keep the page table size in check

55


