
Lecture 11: Cache II

Department of Computer Science

Tsung Tai Yeh

Thursday: 1:20 pm– 3:10 pm

Classroom: EC-022

CS10014 Computer Organization

Acknowledgements and Disclaimer

● Slides were developed in the reference with

● CS 61C at UC Berkeley

● https://inst.eecs.berkeley.edu/~cs61c/sp23/

● CS252 at ETHZ

● https://safari.ethz.ch/digitaltechnik/spring2023

● CIS510 at Upenn

● https://www.cis.upenn.edu/~cis5710/spring2019/

2

https://inst.eecs.berkeley.edu/~cs61c/sp23
https://inst.eecs.berkeley.edu/~cs61c/sp23/
https://safari.ethz.ch/digitaltechnik/spring2023
https://www.cis.upenn.edu/~cis5710/spring2019/

Outline

● Associativity

● Fully Associative Cache

● N-way Set Associative Cache

● Cache Write Issue

● Block Replacement Policy

● Multi-level Caches

3

Review: Cache Basics (1/2)

● How to transparently move data among levels of a

storage hierarchy

○ Address => index to set of candidates

○ Compare desired address with tag

○ Service hit or miss -> load new block and binding on miss

4

Review: Cache Basics (2/2)

● 4-bit addresses -> 16 bytes memory

● 8 bytes cache, 2 bytes blocks

○ The number of sets: 4 (capacity / block size)

○ How address splits into offset/index/tag bits

■ Offset: least-significant log2(block size) = log2(2) = 1-> 0000

■ Index: next log2(number-of-sets) = log2(4) = 2 -> 0000

■ Tag: rest = 4 – 1 – 2 = 1-> 0000

5

Block Size Tradeoff (1/7)

● Given capacity, manipulate miss rate by changing cache

organization

● One option: increase block size

○ Exploit spatial locality

○ Notice index/offset bits change

○ Tag remain the same

● Increasing cache block size

○ + reduce miss rate (up to a point)

○ + reduce tag overhead (why?)

○ - potentially useless data transfer 6

Block Size Tradeoff (2/7)

● 4KB cache with 1024 4B blocks?

○ 4B blocks -> 2-bit offset, 1024 frames -> 10-bit index

○ 32-bit address - 2-bit offset – 10-bit index = 20-bit tag

○ 20-bit tag / 32-bit block = 63% overhead

● 4KB cache with 512 8B blocks?

○ 8B blocks -> 3-bit offset, 512 frames ->9-bit index

○ 32-bit address – 3-bit offset – 9-bit index = 20-bit tag

○ 20-bit tag / 64-bit block = 32% overhead

● A realistic example: 64KB cache with 64B blocks

○ 16-bit tag / 512-bit block = ~2% overhead 7

Block Size Tradeoff (3/7)

● Benefits of larger block size

○ Spatial locality

■ If we access a given word, we’re likely to access other nearby

words soon

■ Works nicely in sequential array accesses too

8

Block Size Tradeoff (4/7)

● Drawbacks of larger block size

○ Larger block size means larger miss penalty

■ On a miss, takes longer time to load a new block from the

next level memory

○ If block size is too big relative to cache size, then there are too

few blocks

■ Result: miss rate goes up

○ In general, minimize Average Memory Access Time (AMAT)

■ = Hit time + Miss Penalty x Miss Rate

9

Block Size Tradeoff (5/7)

● Hit Time

○ Time to find and retrieve data from current level cache

● Miss Penalty

○ Average time to retrieve data on a current level miss (includes the

possibility of misses on successive levels of memory hierarchy)

● Hit Rate

○ % of requests that are found in current level cache

● Miss Rate

○ 1 - Hit Rate

10

Block Size Tradeoff (6/7)

● Cache Size = 4 bytes, Block Size = 4 bytes

○ Only ONE entry (row) in the cache

● If item accessed, likely accessed again soon

○ But unlikely will be accessed again immediately!

● The next access will likely to be a miss again

○ Continually loading data into the cache but discard data before

using it again

○ Nightmare for cache designer: Ping Pong Effect 11

Cache DataValid Bit

B 0B 1B 3
Tag

B 2

Block Size Tradeoff (7/7)

12

Takeaway Question

● Parameters

○ Simple pipeline with base CPI of 1

○ Instruction mix: 30% loads/stores

○ I$: %miss = 2%, tmiss = 10 cycles

○ D$: %miss = 10%, tmiss = 10 cycles

● What is the new CPI?

13

Takeaway Question

● Parameters

○ Simple pipeline with base CPI of 1

○ Instruction mix: 30% loads/stores

○ I$: %miss = 2%, tmiss = 10 cycles

○ D$: %miss = 10%, tmiss = 10 cycles

● What is the new CPI?

○ CPII$ = %miss I$ * tmiss = 0.02 * 10 cycles = 0.2 cycle

○ CPID$ = % load/store * %miss D$ * tmiss = 0.3 * 0.02 * 10 cycles =

0.3 cycle

○ CPInew = CPI + CPII$ + CPID$ = 1 + 0.2 + 0.3 = 1.5
14

Types of Cache Misses (1/3)

● “Three Cs” Model of Misses

● 1st C: Compulsory misses

○ Occur when a program is first started

○ Cache does not contain any of that program’s data yet, so misses

are bound to occur

○ Can’t be avoided easily

15

Types of Cache Misses (2/3)

● “Three Cs” Model of Misses

● 2nd C: Conflict Misses

○ Miss that occurs because two distinct memory addresses map to

the same cache location

○ Two blocks (which happen to map to the same location) can keep

overwriting each other

○ Big problem in direct-mapped caches

● Dealing with conflict misses

○ Solution 1: Make the cache size bigger

○ Solution 2: Multiple distinct blocks can fit in the same cache index16

Types of Cache Misses (3/3)

17

Outline

● Associativity

● Fully Associative Cache

● N-way Set Associative Cache

● Cache Write Issue

● Block Replacement Policy

● Multi-level Caches

18

Associativity (1/6)

19

Associativity (2/6)

20

● Direct-mapped cache

○ Index completely specifies position which position a block can go

in on a miss

● N-Way Set associative

○ Index specifies a set, but block can occupy any position within the

set on a miss

● Fully associative

○ Block can be written into any position

Associativity (3/6)

21

● Set-associativity

○ Block can reside in one of few frames

○ Frame groups called sets

○ Each frame in set called a way

○ This is 2-way set-associative (SA)

○ 1-way -> directed-mapped (DM)

○ 1-set-> fully-associative (FA)

○ + Reduce conflicts

○ - Increase latencyhit

■ Additional tag match & muxing

Associativity (4/6)

22

● Lookup algorithm

○ Use index bits to find set

○ Read data/tags in all frames in parallel

○ Any (match and valid bit), Hit

○ Notice tag/index/offset bits

■ Only 9-bit index (versus 10-bit

for direct mapped)

Associativity (5/6)

23

Associativity (6/6)

24

● How many blocks can be present in the same index (i.e.,

set)?

● Larger associativity

○ Lower miss rate (reduced conflict)

○ Higher hit latency and area cost

● Smaller associativity

○ Lower cost

○ Lower hit latency

○ Especially important for L1

caches

Outline

● Associativity

● Fully Associative Cache

● N-way Set Associative Cache

● Cache Write Issue

● Block Replacement Policy

● Multi-level Caches

25

Fully Associative Cache (1/5)

● Memory address fields

○ Tag: same as before

○ Offset: same as before

○ Index: Non-exist

● What does this mean?

○ No “rows”: any block can go anywhere in the cache

○ Must compare with all tags in entire cache to see if data is there

26

Fully Associative Cache (2/5)

● Fully Associative Cache (e.g., 32 bytes block)

○ Compare tags in parallel

27

Fully Associative Cache (3/5)

● Fully Associative Cache

○ A block can be placed in any cache location

28

Fully Associative Cache (4/5)

● Benefit of Fully Assoc Cache

○ No conflict misses (since data can go anywhere)

● Drawbacks of Fully Assoc Cache

○ Need hardware comparator for every single entry

○ If we have a 64KB of data in cache with 4 bytes entries, we need

16K comparators

○ Expensive to build

29

Fully Associative Cache (5/5)

● Victim buffer (VB): small fully-associative cache

○ Reduce conflict miss

○ Sits on I$/D$ miss path

○ Small (e.g. 8 entries) so very fast

○ Blocks kicked out of I$/D$ placed in VB

○ On miss, check VB: hit? Place block back

in I$/D$

○ 8 extra ways, shared among all sets

○ Very effective in practice

30

Types of Cache Misses

● “Three Cs” Model of Misses

● 3rd C: Capacity Misses

○ Miss that occurs because the cache has a limited size

○ Miss that would not occur if we increase the size of the cache

○ This is the primary type of miss for Fully Associative cache

31

Outline

● Associativity

● Fully Associative Cache

● N-way Set Associative Cache

● Cache Write Issue

● Block Replacement Policy

● Multi-level Caches

32

N-way Set Associative Cache (1/8)

● Memory address fields:

○ Tag: same as before

○ Offset: same as before

○ Index: points us to the correct “row” (called a set in this case)

● What’s the difference?

○ Each set contains multiple blocks

○ Once we’ve found correct set, must compare with all tags in that

set to find our data

33

N-way Set Associative Cache (2/8)

34

Here is a simple 2-way set

associative cache

N-way Set Associative Cache (3/8)

● Basic idea

○ Cache is directed-mapped w/respect to sets

○ Each set is fully associative with N blocks in it

● Given memory address

○ Find correct set using index value

○ Compare Tag with all Tag values in the determined set

○ If a match occurs, hit! Otherwise a miss

○ Finally, use the offset field as usual to find the desired data within

the block

35

N-way Set Associative Cache (4/8)

● What’s so great about this?

○ Even a 2-way set associative cache avoids a lot of conflict misses

○ Hardware cost isn’t that bad: only need N comparators

● In fact, for a cache with M blocks

○ It’s Direct-Mapped if it’s 1-way set associativity

○ It’s Fully Associative if it’s M-way set associativity

○ So these two are just special cases of the more general set

associative design

36

N-way Set Associative Cache (5/8)

37

2-way set

associative

cache

N-way Set Associative Cache (6/8)

38

4-way set

associative

cache

ways = index

length / offset

length

N-way Set Associative Performance (7/8)

39

N-way Set Associative Performance (8/8)

40

Outline

● Associativity

● Fully Associative Cache

● N-way Set Associative Cache

● Cache Write Issue

● Block Replacement Policy

● Multi-level Caches

41

Cache Write Issue (1/9)

● So far we have looked at reading from cache

○ Instruction fetches, loads

● What about writing into cache

○ Stores, not an issue for instruction caches

● Several new issues

○ Tag/data access

○ Write-through vs. write-back

○ Write-allocate vs. write-not-allocate

○ Hiding write miss latency

42

Cache Write Issue (2/9)

● Tag/Data access

○ Reads: read tag and data in parallel

■ Tag mis-match -> data is wrong (OK, just stall until good data

arrives)

○ Writes: read tag, write data in parallel? No. Why?

■ Tag mis-match -> clobbered data (oops!)

■ For associative caches, which way was written into?

43

Cache Write Issue (3/9)

● Tag/Data access

○ Writes are a pipelined two step (multi-cycle) process

■ Step 1: match tag

■ Step 2: write to matching way

■ Bypass (with address check) to avoid load stalls

■ May introduce structural hazards

44

Cache Write Issue (4/9)

● Write propagation: when to propagate new value to (lower

level) memory?

○ Option #1: Write-through: immediately

■ On hit, update cache

■ Immediately send the write to the next level

○ Option #2: Write-back: when block is replaced

■ Requires additional “dirty” bit per block

■ Replace clean block: no extra traffic

■ Replace dirty block: extra “writeback” of block

45

Cache Write Issue (5/9)

● Option #2: Write-back: when block is replaced

○ Writeback-buffer (WBB)

■ Hide latency of writeback (keep off critical

path)

■ Step#1: Send “fill” request to next-level

■ Step#2: While waiting, write dirty block to buffer

■ Step#3: When new blocks arrives, put it into cache

■ Step#4: Write buffer contents to next-level

46

Cache Write Issue (6/9)

● Write-through

○ - Requires additional bus bandwidth

■ Consider repeated write hits

○ - Next level must handle small writes (1, 2, 4, 8-bytes)

○ + No need for dirty bits in cache

○ + No need to handle “writeback” operations

■ Simplifies miss handling

● Write-back

○ + Key advantages: uses less bandwidth

○ Used in most CPU designs
47

Cache Write Issue (7/9)

● Write Miss Handling

○ Write-allocate: fill block from next level, then write it

■ + Decreases read misses (next read to block will hit)

■ - Requires additional bandwidth

■ Commonly used (especially with write-back caches)

○ Write-non-allocate: just write to next level, no allocate

■ - Potentially more read misses

■ + Uses less bandwidth

■ Use with write-through

48

Cache Write Issue (8/9)

● Write Miss and Store Buffers

○ Read miss?

■ Load can’t go on without the data

■ It must stall

○ Write miss?

■ No instruction is waiting for data

■ Why stall?

49

Cache Write Issue (9/9)

● Write Miss and Store Buffers
○ Stores put address/value to store buffer,

keep going

○ Store buffer writes stores to D$ in the

background

○ Loads must search store buffer

○ + Eliminates stalls on write misses (mostly)

○ Store buffer vs. write-back buffer

■ Store buffer: in front of D$, for hiding store

misses

■ Write-buffer: behind D$, for hiding

writebacks 50

Outline

● Associativity

● Fully Associative Cache

● N-way Set Associative Cache

● Cache Write Issue

● Block Replacement Policy

● Multi-level Caches

51

Block Replacement Policy (1/3)

52

● If we have the choice, where should we write an incoming

block?

○ If there are any locations with valid bit off (empty), then usually

write the new block into the first one

○ If all possible locations already have a valid block, we must pick a

replacement policy:

■ Rule by which we determine which block gets “cached out” on

a miss

Block Replacement Policy (2/3)

53

● On cache miss, which block in set to replace (kick out)?

○ If there are any locations with valid bit off (empty), then usually

write the new block into the first one

○ If all possible locations already have a valid block, we must pick a

replacement policy:

■ Rule by which we determine which block gets “cached out” on

a miss

Block Replacement Policy (3/3)

54

● Block replacement options

○ Random

○ FIFO (first-in first-out)

○ LRU (least recently used)

■ Fit with temporal locality, LRU = least likely to be used in

future

○ NMRU (not most recently used)

■ Track which block in set is MRU

■ On replacement, pick a non-MRU block

■ One MRU pointer per set (vs. N LRU counters)

Block Replacement Policy: LRU (1/8)

55

● LRU (Least Recently Used)

○ Idea:

■ cache out block which has been accessed (read or write)

least recently

○ Pro:

■ temporal locality => recent past use implies likely future use

○ Con:

■ with 2-way set assoc, easy to keep track (on LRU bit)

■ With 4-way or greater, requires complicated hardware and

much time to keep track of this

Block Replacement Policy: LRU (2/8)

56

● Add LRU field to each set

○ LRU data is encoded “way”

○ Hit? Update MRU

○ LRU bits updated on each

access

Block Replacement Policy: LRU (3/8)

57

● We have a 2-way set associative cache with a four word

total capacity and one word blocks. We perform the

following word access (ignore bytes for this problem)

○ 0, 2, 0, 1, 4, 0, 2, 3, 5, 4

● How many hits an how many misses will there be for the

LRU block replacement policy?

Block Replacement Policy: LRU (4/8) 0
lru

2

1
lru

loc 0 loc 1

set 0

set 1

0 2
lruset 0

set 1

0: miss, bring into set 0 (loc 0)

2: miss, bring into set 0 (loc 1)

0: hit

1: miss, bring into set 1 (loc 0)

0set 0

set 1

lrulru

0 2set 0

set 1

lru lru

Addresses 0, 2, 0, 1, 4, 0, ...

Block Replacement Policy: LRU (5/8)

1
lru

loc 0 loc 1

0 2
lruset 0

set 11: miss, bring into set 1 (loc 0)

Addresses 0, 2, 0, 1, 4, 0, ...

4: miss, bring into set 0 (loc 1, replace 2)

0: hit

set 0

set 1

0

1
lru

lru
24

set 0

set 1

0 4

1
lru

lru lru

Block Replacement Policy: LRU (6/8)

● 4-bit address, 8B Cache, 2B Blocks, 2-way

Block Replacement Policy: LRU (7/8)

● 4-bit address, 8B Cache, 2B Blocks, 2-way

Block Replacement Policy: LRU (8/8)

● 4-bit address, 8B Cache, 2B Blocks, 2-way

Outline

● Associativity

● Fully Associative Cache

● N-way Set Associative Cache

● Cache Write Issue

● Block Replacement Policy

● Multi-level Caches

63

Multi-level Caches (1/5)

64

● Taccess vs. %miss tradeoff

● Upper memory components (I$, D$) emphasize low taccess

○ Frequent access -> taccess important

○ Tmiss is not bad -> %miss less important

○ Lower capacity and lower associativity (to reduce taccess)

○ Small-medium block-size (to reduce conflicts)

● Moving down (L2, L3) emphasis turns to %miss

○ Tmiss is bad -> %miss important

○ High capacity, associativity, and block size (to reduce %miss)

Multi-level Caches (2/5)

65

● Memory hierarchy parameters

Multi-level Caches (3/5)

66

● Split vs. unified caches

● Split I$/D$: instruction and data in different caches

○ To minimize structural hazards and taccess

○ Larger unified I$/D$ would be slow, 2nd port even slower

○ Optimize I$ and D$ separately

■ Not write for I$, smaller reads for D$

Multi-level Caches (4/5)

67

● Split vs. unified caches

● Unified L2, L3: instruction and data together

○ To minimize %miss

○ + Fewer capacity misses: unused instruction capacity can be

used for data

○ - More conflict misses: instruction/data conflict

■ A much smaller effect in large caches

○ Instruction/data structural hazards are rare: simultaneous I$/D$

miss

Multi-level Caches (5/5)

68

● Memory performance equation

Takeaway Question

69

● Parameters

○ Baseline pipeline CPI = 1

○ 30% of instructions are memory operations

○ L1: taccess = 1 cycle (included in CPI of 1), %miss = 5% of accesses

○ L2: taccess = 10 cycle, %miss = 20% of L2 accesses

○ L2: taccess = 50 cycle

○ What is the new CPI?

Takeaway Question

70

● Parameters

○ 30% of instructions are memory operations

○ L1: taccess = 1 cycle (included in CPI of 1), %miss = 5% of accesses

○ L2: taccess = 10 cycle, %miss = 20% of L2 accesses

○ L2: taccess = 50 cycle

○ What is the new CPI?

■ CPI = 1 + 30% * 5% * tmissD$

■ tmissD$ = tavgL2 = taccL2+ (%missL2*taccMem) = 10 + (20%*50) = 20

cycles

■ Thus, CPI = 1 + 30% *5% * 20 = 1.3 CPI

Conclusion

● Memory hierarchy

○ Cache (SRAM) -> Memory (DRAM) -> swap (Disk)

○ Smaller, faster, more expensive

● Cache ABCs (capacity, associativity, block size)

○ 3C miss model: compulsory, capacity, conflict

● Write issues

○ Write-back vs. write-through/write-allocate vs. write-no-allocate

71

