
Lecture 10: Cache I

Department of Computer Science

Tsung Tai Yeh

Thursday: 1:20 pm– 3:10 pm

Classroom: EC-022

CS10014 Computer Organization

Acknowledgements and Disclaimer

● Slides were developed in the reference with

● CS 61C at UC Berkeley

● https://inst.eecs.berkeley.edu/~cs61c/sp23/

● CS252 at ETHZ

● https://safari.ethz.ch/digitaltechnik/spring2023

● CSCE 513 at University of South Carolina

● https://passlab.github.io/CSCE513/

2

https://inst.eecs.berkeley.edu/~cs61c/sp23
https://inst.eecs.berkeley.edu/~cs61c/sp23/
https://safari.ethz.ch/digitaltechnik/spring2023
https://passlab.github.io/CSCE513/

Outline

● Memory Hierarchy

● Memory Caching

● Cache Basics

● Direct-Mapped Cache

● Read Data in Direct-Mapped Cache

● Directed-Mapped Cache Hardware

3

Review: Pipelining

● Pipeline challenge is hazards

○ Forwarding helps with many data hazards

○ Delayed branch helps with control hazard in the 5 stage pipeline

○ Data hazards with loads => Load delay slot

■ Interlock => “smart” CPU has HW to detect if conflict with

instruction following load, if so it stalls

○ More aggressive performance

■ Superscalar

■ Out-of-order execution

4

Takeaway Questions

● Assume two processors
○ Unpipelined: 1GHz

○ Pipelined: 4GHz

● Before pipelining
○ Program took 1 second to execute

○ 1% of instructions were mis-predicted branches

○ 5% of instructions triggered load-delay stalls

● What is the performance of the pipelined processor?

(seconds)

5

Takeaway Questions

● Assume two processors

○ Unpipelined: 1GHz

○ Pipelined: 4GHz

● Before pipelining

○ Program took 1 second to execute

○ 1% of instructions were mis-predicted branches

○ 5% of instructions triggered load-delay stalls

● What is the performance of the pipelined processor? (seconds)

○ .25 + (.01 * 1 * 2) + (.05 * 1 * 1) = 0.37 seconds

6

Outline

● Memory Hierarchy

● Memory Caching

● Cache Basics

● Direct-Mapped Cache

● Read Data in Direct-Mapped Cache

● Directed-Mapped Cache Hardware

7

Memory Hierarchy (1/3)

● As we move to deeper levels, the latency goes up and

price per bit goes down

8

Memory Hierarchy (2/3)

● Processor
○ Holds data in register file (~100 bytes)

○ Registers accessed on nanosecond timescale

● Memory (we’ll call “main memory”)
○ More capacity than registers (~Gbytes)

○ Access time ~50-100 ns

○ Hundreds of clock cycles per memory access

● Disk
○ HUGE capacity

○ Very slow: runs ~milliseconds

9

Memory Hierarchy (3/3)

● If level closer to processor, it is:

○ Smaller

○ Faster

○ More expensive

○ Subset of lower levels (contains most recently used data)

● Lowest level (usually disk) contains all available data

● Memory hierarchy presents the processor with the illusion

of a very large & fast memory

10

Outline

● Memory Hierarchy

● Memory Caching

● Cache Basics

● Direct-Mapped Cache

● Read Data in Direct-Mapped Cache

● Directed-Mapped Cache Hardware

11

Memory Caching (1/6)

● Slow DRAM access has disastrous impact on CPU perf.

○ 1980 processor exec. ~one inst. in the same time as DRAM access

○ 2015 processor exec. ~1000 insts. In the same time as DRAM

access

12

Memory Caching (2/6)

● Mismatch between processor and memory speeds

○ Leads us to add a new level: a memory cache

● The memory cache

○ Implemented with same IC processing technology as the CPU

(usually integrated on the same chip)

○ Faster but more expensive than DRAM

○ Cache is a copy of a subset of main memory

○ Most processors have separate caches for instructions and data

13

Memory Caching (3/6)

● Cache contains copies of data in memory being used

● Memory contains copies of data on disk being used

● Caches work on principles of temporal and spatial locality
○ Temporal locality: if we use it now, chances are we’ll want to use it

again soon

■ Data elements accessed in loops (same data elements are

accessed multiple times)

○ Spatial locality: if we use a piece of memory, chances are we’ll use

the neighboring pieces soon

■ Data elements accessed in array (each time different or just next

element is being accessing)
14

Memory Caching (4/6)

● Intel Pentium 4 Example

15

Memory Caching (5/6)

● Intel Pentium 4 Example

16

Memory Caching (6/6)

● Intel Pentium 4 Example

○ 90 nm, P4, 3.6 GHz

○ L1 D-cache

■ C1 = 16 kB

■ T1 = 4 cycle int/ 9 cycle fp

○ L2 D-cache

■ C2 = 1024 kB

■ T2 = 18 cycle int / 18 cycle fp

○ Main memory

■ T3 = ~50 ns or 180 cycle
17

Outline

● Memory Hierarchy

● Memory Caching

● Cache Basics

● Direct-Mapped Cache

● Read Data in Direct-Mapped Cache

● Directed-Mapped Cache Hardware

18

Cache Basics (1/8)

19

Cache Basics (2/8)

20

● A key question

○ How to map chunks of the main memory address space to blocks in

the cache?

○ Which location in cache can a given “main memory chunk” be

placed in?

Cache Basics (3/8)

21

● Cache associativity

○ One set can contain multiple cache blocks

Cache Basics (4/8)

22

● Block (line): Unit of storage in the cache
○ Memory is logically divided into blocks that map to potential locations

in the cache

● When reading memory, 3 things can happen
○ Cache HIT:

■ Cache block is valid and contains proper address, so read desired
word

○ Cache MISS:
■ Nothing in cache in appropriate block, so fetch from memory

○ Cache miss, block replacement
■ Wrong data is in cache at appropriate block, so discard it and fetch

desired data from memory

Cache Basics (5/8)

23

● Cache hit rate = (# hits) / (# hits + # misses) = (# hits) / (# accesses)

● Average memory access time (AMAT)

○ = (hit-rate * hit-latency) + (miss-rate * miss-latency)

Cache Basics (6/8)

24

● Types of Misses

○ Compulsory: First time data is accessed

○ Capacity: cache too small to hold all data of interest

○ Conflict: data of interest maps to same location in cache

○ Miss penalty: time it takes to retrieve a block from lower level of

hierarchy

Cache Basics (7/8)

● Each block address maps to a potential location in the cache,
determined by the index bits in the address

● Index
○ Specifies the cache index (which “row”/block of the cache we should

look in)

● Offset
○ Once we’ve found correct block, specifies which byte within the block

we want

● Tag
○ The remaining bits after offset and index are determined
○ These are used to distinguish between all the memory address that

map to the same location
25

Cache Basics (8/8)

26

Outline

● Memory Hierarchy

● Memory Caching

● Cache Basics

● Direct-Mapped Cache

● Read Data in Direct-Mapped Cache

● Directed-Mapped Cache Hardware

27

Direct-Mapped Cache (1/7)

● Directed-mapped cache

○ A given main memory block can be placed in only one possible

location in the cache

○ Toy example: 256-byte memory, 64-byte cache, 8-byte blocks

28

Direct-Mapped Cache (2/7)

● In a directed-mapped cache

29

* Cache location 0 can be

occupied by data from:
* Memory location 0, 4, 8

* 4 blocks => any memory

location that is multiple of 4

* What if we want a block

to be bigger than one byte?

Direct-Mapped Cache (3/7)

● In a directed-mapped cache

30

* When we ask for a byte,

the system finds out the

right block and loads it.
* How does it know right block?

* How do we select the byte?

* E.g. Mem address 11101?

* How does it know

WHICH colored block it

originated from?

Direct-Mapped Cache (4/7)

● In a directed-mapped cache

31

* What should go in the tag?
* Do we need the entire address?

* What do all these tags have in

common?

* What did we do with the

immediate when we were branch

addressing, always count by bytes?

* Why not count by cache #?

* It’s useful to draw memory

with the same width as the block

size

Direct-Mapped Cache (5/7)

● In a directed-mapped cache

○ Multiple memory addresses map to the same cache index, how do

we tell which one is in there?

○ What if we have a block size > 1 byte?

○ Ans: divide memory address into three fields

32

Direct-Mapped Cache (6/7)

● A byte-addressable main memory

○ 256 bytes, 8-byte blocks -> 32 blocks in memory

○ Assume cache: 64 bytes, 8 blocks

○ Directed-mapped: A block can go to only one

location

33

Blocks with same

index contend for

the same cache

location => cause

conflict misses

when accessed

consecutively

Direct-Mapped Cache (7/7)

● Direct-mapped cache

○ Two blocks in memory that map to the same index in the cache

cannot be present in the cache at the same time

○ One index -> one entry

○ Can lead to 0% hit rate if more than one block accessed in an

interleaved manner map to the same index

■ Assume addresses A and B have the same index bits but

different tag bits

■ A, B, A, B, A, B, A, B … -> conflict in the cache index

■ All accesses are conflict misses
34

Direct-Mapped Cache Example (1/3)

● Suppose we have a 8B of data in a direct-mapped cache

with 2 byte blocks

● Determine the size of the tag, index, and offset fields if we

are using a 32-bit architecture

○ Offset

■ Need to specify correct byte within a block

■ Block contains 2 bytes = 21 bytes

■ Need 1 bit to specify correct byte

35

Direct-Mapped Cache Example (2/3)

● Suppose we have a 8B of data in a direct-mapped cache

with 2 byte blocks

○ Index (index into an “array of blocks”)

■ Need to specify correct block in cache

■ # blocks/cache = bytes/cache

bytes/block

= 23 bytes/cache

21 bytes/block

= 22 blocks/cache

■ Need 2 bits to specify this many blocks
36

Direct-Mapped Cache Example (3/3)

● Suppose we have a 8B of data in a direct-mapped cache

with 2 byte blocks
○ Tag: use remaining bits as tag

○ Tag length = address length – offset – index

= 32 – 1 – 2 bits

= 29 bits

○ Why not full 32 bit address as tag?

■ All bytes within block need same address (4 bits)

■ Index must be same for every address within a block, so it’s

redundant in tag check, thus can leave off to save memory

37

The tag is leftmost 29 bits of

memory address

Outline

● Memory Hierarchy

● Memory Caching

● Cache Basics

● Direct-Mapped Cache

● Read Data in Direct-Mapped Cache

● Directed-Mapped Cache Hardware

38

Read Data in Direct-Mapped Cache (1/15)

● Ex. 16 KB of data, direct-mapped,

4 word block

● Read 4 addresses

○ 0x00000014

○ 0x0000001C

○ 0x00000034

○ 0x00008014

39

Read Data in Direct-Mapped Cache (2/15)

● 4 addresses divided into

40

0x00000014

0x0000001C

0x00000034

0x00008014

Read Data in Direct-Mapped Cache (3/15)

● 16 KB direct-mapped cache, 16B blocks

○ Valid bit: determines whether anything is stored in that row

(when computer initially turned on, all entries invalid)

41

Read Data in Direct-Mapped Cache (4/15)

● No valid data

42

Read Data in Direct-Mapped Cache (5/15)

● Load that data into cache, setting tag, valid

43

Read Data in Direct-Mapped Cache (6/15)

● Read from cache at offset, return word b

44

Read Data in Direct-Mapped Cache (7/15)

● Read 0x00000034

45

Read Data in Direct-Mapped Cache (8/15)

● Read block 3

46

Read Data in Direct-Mapped Cache (9/15)

● No valid data

47

Read Data in Direct-Mapped Cache (10/15)

● Load that cache block, return word f

48

Read Data in Direct-Mapped Cache (11/15)

● Read 0x00008014

49

Read Data in Direct-Mapped Cache (12/15)

● Read cache block 1, data is valid

50

Read Data in Direct-Mapped Cache (13/15)

● Cache block 1 tag does not match (0 != 2)

51

Read Data in Direct-Mapped Cache (14/15)

● Miss, so replace block 1 with new data & tag

52

Read Data in Direct-Mapped Cache (15/15)

● Return word J

53

Takeaway Questions

● What is the cache status when reading?

○ Read address 0x00000030?

■ 000000000000000000 0000000011 0000

○ Read address 0x0000001C?

■ 000000000000000000 0000000001 1100

54

Takeaway Questions

● 0x00000030 a hit

○ Index = 3, Tag matches, offset = 0,

value = e

● 0x000001C a miss

○ Index = 1, tag mismatch, so replace from

memory, offset = 0xc, value = d

● Read values must = memory values

whether or not cached

○ 0x00000030 = e

○ 0x0000001C = d 55

Outline

● Memory Hierarchy

● Memory Caching

● Cache Basics

● Direct-Mapped Cache

● Read Data in Direct-Mapped Cache

● Directed-Mapped Cache Hardware

56

Directed-Mapped Cache Hardware (1/8)

57

Directed-Mapped Cache Hardware (2/8)

58

Directed-Mapped Cache Hardware (3/8)

59

Directed-Mapped Cache Hardware (4/8)

60

Directed-Mapped Cache Hardware (5/8)

61

● Increase block size

○ Block size , b = 4 words

○ C = 8 words, direct mapped (1 block per set)

○ Number of blocks, B = C/b = 8/4 = 2

Directed-Mapped Cache Hardware (6/8)

62

● Increase block size

○ Block size , b = 4 words

○ C = 8 words, direct mapped (1 block per set)

○ Number of blocks, B = C/b = 8/4 = 2

Directed-Mapped Cache Hardware (7/8)

63

Directed-Mapped Cache Hardware (8/8)

64

Conclusion

● We would like to have the capacity of disk at the speed of

the processor: unfortunately this is not feasible

● So we create a memory hierarchy:

○ each successively lower level contains “most used” data from

next higher level

○ exploits temporal & spatial locality

○ do the common case fast, worry less about the exceptions

● Locality of reference is a Big Idea

65

