Computer Organization

Lecture-1: Syllabus

Tsung Tai Yeh

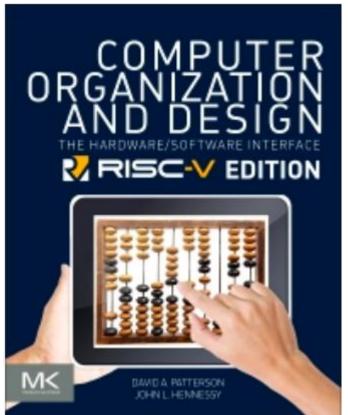
Thursday: 1:20 pm- 3:10 pm

Classroom: EC-022

Course Information

- Instructor: Tsung Tai Yeh
 - ttyeh@cs.nycu.edu.tw
- TA team+: (EC-619)
 - Kai-Chieh Hsu (<u>kaijhsu.cs12@nycu.edu.tw</u>)
 - Cheng-Hsi Liu (<u>brianliu.cs11@nycu.edu.tw</u>)
 - Yu-Lun Ning (en.cs10@nycu.edu.tw)
- Lecture: R56
- Course website
 - https://shorturl.at/kqMV4
 - https://shorturl.at/akpqR

Course website QR Code


Course Information

- Lecture time: 1:20 pm 3:10 pm, Thursday
 - Might have one more hour for lab tutorials and additional lectures
- Classroom: EC-022
- Grade:
 - 45% for 4 lab assignments, 25% midterm, and 30% final exam
 - Midterm exam: 4/25 during the class
 - Final exam: 6/20 during the class

Textbook

- Computer Organization and Design, RISC-V Edition: The Hardware/ Software Interface, 2017
 - John L. Hennessy and David A. Patterson

Lecture Topics

- RISC-V Instruction Set Architecture (ISA)
- CPU Processor Organization
 - Pipelining
 - Branch prediction
 - Multi-core
- Memory Hierarchy
 - DRAM Memory
 - Cache Organization

Prerequisite Courses

- Prerequisite Courses
 - Digital Circuit Design
 - Data Structures and Object-oriented Programming
- Prerequisite Techniques
 - C/C++ Programming
 - Verilog Programming

Lab Assignments

- 5 lab assignments
- Need to use Verilog and Python to do each lab assignment
- Please submit your code to E3 by the deadline
- You can ask questions via discord
- https://discord.gg/gD6WSNfveJ

Lab Assignments

- Lab 0 (for practice)
 - Environment Setup & simple Verilog practice
- Lab 1 (10%, submission deadline: 4/18)
 - Single Cycle CPU w/ Simple RISC-V Instruction
- Lab 2 (10%, submission deadline: 5/9)
 - Single Cycle CPU w/ Branch Instruction
- Lab 3 (10%, submission deadline: 5/30)
 - Simple Pipeline CPU
- Lab 4 (15%, submission deadline: 6/20)
 - Advance Pipeline CPU
- Lab 5 (optional)
- Implement Cache Manager

Intended Lecture Outcomes (ILOs)

- Learn the great ideas of computer organization
- Learn the formats of the RISC-V instruction set
- Understand the details of the pipelining CPU processor organization
- Introduce the memory hierarchies (DRAM and Cache)
- Implement a simple RISC-V CPU processor