X %% National Yang Ming Chiao Tung University

=X}7]

I
a7+ Computer Architecture & System Lab

Lecture 4-2: C Memory Management

CS10014 Computer Organization

Department of Computer Science
Tsung Tai Yeh
Thursday: 1:20 pm- 3:10 pm

Classroom: EC-022

X ,/1 National Yang Ming Chiao Tung University
AT d 1N
14 Computer Architecture & System Lab

Acknowledgements and Disclaimer

e Slides were developed in the reference with

® CS61C at UC Berkeley

® https://inst.eecs.berkeley.edu/~cs61c/sp23/
® CS 252 at UC Berkeley

® https://people.eecs.berkeley.edu/~culler/courses/cs252-s05/
® CSCE 513 at University of South Carolina

® hittps://passlab.qgithub.io/CSCE513/

https://inst.eecs.berkeley.edu/~cs61c/sp23/
https://people.eecs.berkeley.edu/~culler/courses/cs252-s05/
https://passlab.github.io/CSCE513/

National Yang Ming Chiao Tung University
Computer Architecture & System Lab

=z
1'r

Outline
e C Memory Management

X

a4 Computer Architecture & System Lab

C Memory Management(1/3)

e A program’s address space contains 4 regions
® Stack: ~FFFF FFFF, o,

X %ﬁ\ National Yang Ming Chiao Tung University

® |ocal variables, grows downward o ’[—il-c—is- 77
® Heap:

® Space requested for pointers via malloc()

® Resizes dynamically

e Grows upward 2% 722
® Static data: heap

® Variables declared outsize main .

e Does not grow or shrink static data
® Code code

® Load when the program starts, does not change

Ohex 4

#Z % National Yang Ming Chiao Tung University
=Y 1Y -
874 Computer Architecture & System Lab

C Memory Management(2/3)

e Variable declaration does allocate memory
e If declare outside a procedure, allocated in static
storage
e If declare inside procedure allocated on the stack and
free when procedure returns
e main() is a procedure

int myGlobal;
main() {
int myTemp;

X ,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘,%-r Computer Architecture & System Lab

C Memory Management(3/3)

e C has 3 pools of memory
® Static storage: global variable storage
® Dasically permanent, entire program run
® The stack: local variable storage
® Parameters, return address
® Stack framein C
® The Heap: dynamic storage
e Malloc()
e Data lives until deallocated by the programmer
® C requires knowing where objects are in memory otherwise
things don’t work as expected

X ,ﬁ National Yang Ming Chiao Tung University
AT d 1N
Wik Computer Architecture & System Lab

S

The Stack (1/1)

e Stack frame includes:
® Return address
® Parameters
® Space for other local variables
e Stack frames contiguous blocks of memory
O Stack pointer tells where top stack frame is

e When procedure ends
® Stack frame is tossed off the stack
® [Free memory for future stack frame

e
The Stack (2/2)
! Stack
e Lastin, first out (LIFO) memory usage

main ()

{ a(0); Stack Pointer —p

void a (int m) Stack Pointer =

{ b(1);

} .
void b (int n) Stack Pointer —
{ c(2);
} Stack Pointer -

Stack Pointer -

void d (int p)
{
}

#Z % National Yang Ming Chiao Tung University
RN -
874 Computer Architecture & System Lab

The Heap (Dynamic Memory)

e Large pool of memory, not allocated in contiguous order
e In C, specify the number of bytes of memory explicitly to
allocate item
int *ptr;
ptr = (int *) malloc(sizeof (int)) ;

e malloc (): Allocates raw, uninitialized memory from
heap

X ,ﬁ\ National Yang Ming Chiao Tung University

=X}z
‘Eg-r Computer Architecture & System Lab

So far ...

e How do we manage memory?

® Code, Static storage are easy.
® They never grow or shrink

® Stack spaceis also easy:
® Stack frames are created
® Destroyed in last-in, first-out (LIFO) order

® Managing the heap is tricky:
® Memory can be allocated/deallocated at any time

10

X %% National Yang Ming Chiao Tung University

Ny
SHZ1N

=‘, 874 Computer Architecture & System Lab

Heap Management (1/2)

e An example
® Request R1 for 100 bytes
® Request R2 for 1 byte
e Memory from R1 is freed
® Request R3 for 50 bytes

R2 (1 byte\

R1 (100 bytes)

11

'X$Z % National Yang Ming Chiao Tung University

=3¢71n
‘Eg-r Computer Architecture & System Lab

Heap Management (2/2)

e An example
® Request R1 for 100 bytes
® Request R2 for 1 byte
e Memory from R1 is freed
® Request R3 for 50 bytes

Where should we place
the R3?

R37?

R2 (1 by’[e\

R3?

12

