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Outline

● C Memory Management
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C Memory Management(1/3)

● A program’s address space contains 4 regions
● Stack:

● Local variables, grows downward
● Heap:

● Space requested for pointers via malloc()
● Resizes dynamically
● Grows upward

● Static data:
● Variables declared outsize main
● Does not grow or shrink

● Code
● Load when the program starts, does not change
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C Memory Management(2/3)
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● Variable declaration does allocate memory

● If declare outside a procedure, allocated in static 

storage

● If declare inside procedure allocated on the stack and 

free when procedure returns

● main() is a procedure



C Memory Management(3/3)

● C has 3 pools of memory
● Static storage: global variable storage

● basically permanent, entire program run

● The stack: local variable storage

● Parameters, return address

● Stack frame in C

● The Heap: dynamic storage

● Malloc()

● Data lives until deallocated by the programmer

● C requires knowing where objects are in memory otherwise 

things don’t work as expected
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The Stack (1/1)
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● Stack frame includes:
● Return address

● Parameters

● Space for other local variables

● Stack frames contiguous blocks of memory
○ Stack pointer tells where top stack frame is

● When procedure ends
● Stack frame is tossed off the stack

● Free memory for future stack frame

SP



The Stack (2/2)
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● Last in, first out (LIFO) memory usage
Stack



The Heap (Dynamic Memory)

● Large pool of memory, not allocated in contiguous order

● In C, specify the number of bytes of memory explicitly to 

allocate item

● malloc (): Allocates raw, uninitialized memory from 

heap
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So far …

● How do we manage memory?
● Code, Static storage are easy:

● They never grow or shrink

● Stack space is also easy:

● Stack frames are created

● Destroyed in last-in, first-out (LIFO) order

● Managing the heap is tricky:

● Memory can be allocated/deallocated at any time
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Heap Management (1/2)

● An example
● Request R1 for 100 bytes

● Request R2 for 1 byte

● Memory from R1 is freed

● Request R3 for 50 bytes
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Heap Management (2/2)

● An example
● Request R1 for 100 bytes

● Request R2 for 1 byte

● Memory from R1 is freed

● Request R3 for 50 bytes
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Where should we place 

the R3?


