
Lecture 4-2: C Memory Management

Department of Computer Science

Tsung Tai Yeh

Thursday: 1:20 pm– 3:10 pm

Classroom: EC-022

CS10014 Computer Organization



Acknowledgements and Disclaimer

● Slides were developed in the reference with 

● CS 61C at UC Berkeley 

● https://inst.eecs.berkeley.edu/~cs61c/sp23/

● CS 252 at UC Berkeley

● https://people.eecs.berkeley.edu/~culler/courses/cs252-s05/

● CSCE 513 at University of South Carolina

● https://passlab.github.io/CSCE513/

2

https://inst.eecs.berkeley.edu/~cs61c/sp23/
https://people.eecs.berkeley.edu/~culler/courses/cs252-s05/
https://passlab.github.io/CSCE513/


Outline

● C Memory Management

3



C Memory Management(1/3)

● A program’s address space contains 4 regions
● Stack:

● Local variables, grows downward
● Heap:

● Space requested for pointers via malloc()
● Resizes dynamically
● Grows upward

● Static data:
● Variables declared outsize main
● Does not grow or shrink

● Code
● Load when the program starts, does not change

4

~FFFF FFFFhex

~0hex



C Memory Management(2/3)

5

● Variable declaration does allocate memory

● If declare outside a procedure, allocated in static 

storage

● If declare inside procedure allocated on the stack and 

free when procedure returns

● main() is a procedure



C Memory Management(3/3)

● C has 3 pools of memory
● Static storage: global variable storage

● basically permanent, entire program run

● The stack: local variable storage

● Parameters, return address

● Stack frame in C

● The Heap: dynamic storage

● Malloc()

● Data lives until deallocated by the programmer

● C requires knowing where objects are in memory otherwise 

things don’t work as expected
6



The Stack (1/1)

7

● Stack frame includes:
● Return address

● Parameters

● Space for other local variables

● Stack frames contiguous blocks of memory
○ Stack pointer tells where top stack frame is

● When procedure ends
● Stack frame is tossed off the stack

● Free memory for future stack frame

SP



The Stack (2/2)

8

● Last in, first out (LIFO) memory usage
Stack



The Heap (Dynamic Memory)

● Large pool of memory, not allocated in contiguous order

● In C, specify the number of bytes of memory explicitly to 

allocate item

● malloc (): Allocates raw, uninitialized memory from 

heap
9



So far …

● How do we manage memory?
● Code, Static storage are easy:

● They never grow or shrink

● Stack space is also easy:

● Stack frames are created

● Destroyed in last-in, first-out (LIFO) order

● Managing the heap is tricky:

● Memory can be allocated/deallocated at any time

10



Heap Management (1/2)

● An example
● Request R1 for 100 bytes

● Request R2 for 1 byte

● Memory from R1 is freed

● Request R3 for 50 bytes

11



Heap Management (2/2)

● An example
● Request R1 for 100 bytes

● Request R2 for 1 byte

● Memory from R1 is freed

● Request R3 for 50 bytes

12

Where should we place 

the R3?


