X //" National Yang Ming Chiao Tung University
=347\
Hlat/ Computer Architecture & System Lab

Accelerator Architectures for Machine
Learning (AAML)

Lecture 8: Tensor Core

Tsung Tai Yeh
Department of Computer Science
National Yang-Ming Chiao Tung University

i
Hlat/ Computer Architecture & System Lab

Acknowledgements and Disclaimer

;i? National Yang Ming Chiao Tung University

e Slides was developed in the reference with
Joel Emer, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, ISCA 2019
tutorial
Efficient Processing of Deep Neural Network, Vivienne Sze, Yu-Hsin
Chen, Tien-Ju Yang, Joel Emer, Morgan and Claypool Publisher, 2020
Yakun Sophia Shao, EE290-2: Hardware for Machine Learning, UC
Berkeley, 2020
CS231n Convolutional Neural Networks for Visual Recognition,
Stanford University, 2020
CS224W: Machine Learning with Graphs, Stanford University, 2021

i
Hlat/ Computer Architecture & System Lab

Outline

;i? National Yang Ming Chiao Tung University

« GPU hardware basics
« Programming Model

e« The SIMT Core
o Warp Scheduling
o Functional Unit
o Operand collector

@ National Yang Ming Chiao Tung University
Hyt# Computer Architecture & System Lab BIOCk (1’0)
Block (0,0
GPU Memory Spaces -
Shared memory
Registersﬂ Registersr

e Global memory
Device DRAM, shared across blocks

O
e Local memory
Reside in global memory
Store variable data consuming too many

(@)

v

O
registers (register spilling)

e Shared memory
o On-chip addressable memory
o Direct mapped Global Mem
e Constant/Texture memory
o Read-only memory Constant Men
Texture Mem

e Register File
Each thread has its private register space

(@)

X //" National Yang Ming Chiao Tung University
=347\
a4 Computer Architecture & System Lab

Global Memory

e Global memory resides in off-chip DRAM
e Global memory is accessed via 32, 64, 128 byte memory transaction
e Misaligned/uncoalescing memory increases # of memory transaction

i void kernel_copy(float *out, float *in, Coalesced/aligned memory access

i Int Offset) i Addresses: 9I6 1l28 1?0 1?2 2?4 2?6 ZTB

i nt i = blockldx.x * blockDim.x + i o 11mﬁTmmﬁ_!_mfmﬁmiii

| threadldx.x + offset; I Memory Divergent access

: } OUt[l] = |n[|]; E Addresses: 9% 1lzs 160 1Tz zT4 z.r]vs 288

R J | ' ‘ '
e o st o 1 2 A

quide/index.html

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

i
Hlat/ Computer Architecture & System Lab

;i? National Yang Ming Chiao Tung University

Memory Coalescing

e Coalesced access
o If all threads in a warp access locations that fall within a single
L1 data cache block and that block is not present in the cache
o Only a single request needs to be sent to the lower level
caches

e Un-coalesced access
o If the threads within a warp access different cache blocks
o Multiple memory accesses need to be generated

X //" National Yang Ming Chiao Tung University
=347\

kY
",ig-r Computer Architecture & System Lab

Memory Coalescing

o Combining memory access of threads in a warp into fewer

transactions
o E.g. Each thread in a warp accesses consecutive 4-byte
memory
o Send one 128-byte request to DRAM (Coalescing)
o Instead of 32 4-byte requests
e Coalescing reduces the number of transactions between

SIMT cores and DRAM
o Less work for interconnect, memory partition, and DRAM

% National Yang Ming Chiao Tung University

33201
&T# Computer Architecture & System Lab

Memory Coalescing

o Supposed that a 3 x 4 matrix is shown :

o Which one is coalescing access pattern ?
- Pattern B is coalescing access pattern

© o1 -
D ODN
O N w
O 0

Pattern A Pattern B
Thread 0: 1,2,3 Thread 0: 1,
Thread 1: 4,5, 6 Thread 1: 2,
Thread 2: 7,8,9 Thread 2: 3,
Thread 3: a, b, c Thread 3: 4,

— —

Time

X i/ National Yang Ming Chiao Tung University

=0
=337

‘Tf &T# Computer Architecture & System Lab

Local Memory

o Off-chip memory
« High latency and low bandwidth as the global
memory

 When will use the local memory ?

- Large structure or array that use too much register space
- A kernel uses too many register than available (register

spilling)

National Yang Ming Chiao Tung University

Pz
Ic '*

Computer Architecture & System Lab

Data Cache & Shared Memory

e A memory access request is first sent from the load/store unit inside the

instruction pipeline to the L1 cache

Load/Store Unito
4{ Arbiter 9 ‘
¢ Pending 0
| Tog Unit @ | | Fendin
‘ ‘ ‘ Table
‘ Address
Crossbar Load Miss Path
‘ B N - Fil Uit | l\glU
Write o e :
Buffer Data 1 - 7y
® | o
e Data Crossbar tore Pat
Y

Register File

X g National Yang Ming Chiao Tung University
~ iy -r Computer Architecture & System Lab

Threads:

Shared Memory L R Rt Al !

e 32 banks organized as 32-bit successive words - : b
e Threads share data in the same thread block . : :
e Programmer-managed on-chip cache a s z
e Bank conflict — A =
o Two or more threads access words within the o = =
same bank i " =

o Serialized memory access (low memory bandwidth) iz - ol

e Which one is bank conflict ? ;; W) 1=
o floati_data = shared[base + S *tid]; S = 3 < . 3

o floati_data = shared[base + S *tid]; S = 2 — . o

o doublei_data = shared[base + tid] - o

o chari_data = shared[base + tid] ::"") » =l

3 n J’-tl‘

S L I—
How to Resolve Bank Conflict ? o H
b
e Shared memory size is 16 x 16 :
e Each thread takes charge of each row operation . 15
e Threads in one block access the same location IR RN A B
(each column) -> 16-way bank conflict (RN T TTT T[]
e Solution ? Memory padding (blue column)

o memory padding

o Add one float at the end of each row

o Changing access pattern

o _ shared _sData[TILE_SIZE][TILE_SIZE + 1]

5 0 I 2 5 5 E 15

http://cuda-programming.blogspot.com/2013/02/bank-conflicts-in-shared-memory-in-cuda.html

ITH OO SN OO0 A& W -
(LIBOOMONHELWN-=-0O

http://cuda-programming.blogspot.com/2013/02/bank-conflicts-in-shared-memory-in-cuda.html

X //" National Yang Ming Chiao Tung University
=347\
Hlat/ Computer Architecture & System Lab

How to Resolve Bank Conflict ?

e Memory padding is one of solution to remove shared memory bank conflict
o _ shared a[32][32] -> shared a[32][33]

Memory
padding
Bank O Bank 3 ol1 1213 la
tido—|0 |1 (2 |3 |4
0 2 |3
tid1—(0 |1 (2 |3 (4
4 O |1 |2
O (1 1|2 |3 |4
3 0 |1
O |1 |2 |3 |4
_ 2 |3 0
tid4—|0 |1 |2 |3 |4
1 3 |4

National Yang Ming Chiao Tung University
Computer Architecture & System Lab

Shared memory access

Pz
Ic '*

Load/Store Unito

e Arbiter
o Determine whether the I
requested addresses N Abicr @ |
within the warp will ¢ Pending |@
) ‘ Tag Unit @ I > Request
cause bank conflict | | [Address Table
H H | 0a iss Pa
o Split the request into two Crossbar Foad Miss Path
parts when the bank Py
ﬂ h Y] — eee B Fill Unit B MMU
conflicts show — 6 POy R
Buffer Data } - Y
® |—»| : }
e Data Crossbar Store Path
Y

e Accepted request
o Bypass tag lookup in the
tag unit, since shared
memory is direct mapped

Register File

X ig\ National Yang Ming Chiao Tung University

XP7

'Tf &T# Computer Architecture & System Lab Load/Store Unit

l (1]
] Arbiter @ |
Shared memory access —
ai.,Umte =
e
e Inthe absence of bank conflict ‘
o The latency of the direct mapped memory HH [H L
lookup is constant (single-cycle) g‘“’;;“j -
o The tag unit determines which bank each I —
thread’s request maps to @ " Data Crossbar
o The address cross bar distributes address Register Flle

to the individual banks within the data array

o Each bank inside the data array is 32-bits wide

o Each bank has its own decoder allowing from independent access to
different rows in each bank

o The data is returned to the appropriate thread’s lane for storage in the
register file via the data crossbar

X //" National Yang Ming Chiao Tung University
=347\
Hlat/ Computer Architecture & System Lab

Load!Store | |niTn

L1 Data Cache Read T
.) 'I'.1;'|.||1irl°
e Access to global memory is restricted 1 1 [@
to a single cache block per cycle -> = —
help to reduce tag storage overhead ,)
e The L1 cache block size is 128 bytes, W L e
. L.) uiter Data 4 t t
is further divided into four 32-byte 'y A __
SeCtO rs '-ﬂ Data Crosshar
e A single access of GDDRS5 is 32-byte e e

e Each 128-byte cache block is composed of 32-bit entries at the same row in
each of the 32 banks

16

Laoad store L 'niro

i

Xi7 National Yang Ming Chiao Tung University
?ig-"? Computer Architecture & System Lab
."l.r]:"::-:w g -
L1 Data Cache Read e —
_: __ -_ o.'lll.dlln'.'hh
. — T T ™ Crosshar
e 1) The LD/ST unit =ir
o Computes memory addresses , .
Write o
Buffer [:'.J.I:a- i i i
(] S EE
'ﬂ Data Crosshar
Register File

e 2) The arbiter
Requests the instruction pipeline schedule
a writeback to the register file if enough

resources are available
e 3) The tag unit
o Check whether the access leads to a cache hit or a miss
e 4) Access the appropriate row of the data array
In the event of a cache hit

O

17

X //" National Yang Ming Chiao Tung University
=347\
&T# Computer Architecture & System Lab

-
£

L1 Data Cache Read

e 5) Pending request table (PRT)
o The tag unit determines a cache
Miss
o The arbiter informs the LD/ST unit to
replay the request and sends request
information
e 6) Memory Management Unit (MMU)
o After an entry is allocated in the PRT
o Virtual to physical address translation
e 7) Fill unit

Load/Store Unito

i
¥ 1
Aurbiter o -
= |

L
Tag Unit 9 :

—ly ‘ 4_.0."".[‘[]“’_':".‘\-
1 I I Crosshar

-

=
-
-
-

o Dara Crosshar
T

Register File

[Pending a
—= Request |
| Table |
Load Miss Path
Fill Unit - 0
| - 1 MMU
o .
Store Path

o Use the subid field in the memory request to lookup information about the

request in the PRT

18

[

X ?\ National Yang Ming Chiao Tung University
- &T# Computer Architecture & System Lab

Constant Memory

e What is the constant memory ?

o Optimized when warp of threads read the same location

o 4 bytes per cycle through broadcasting to threads in a warp

o Serialized when threads in a warp read in different locations

o Very slow when constant cache miss (read data from global mem.)
e Where is the constant memory (64KB) ?

o Data is stored in the device global memory

o Read data through SM constant cache (8KB)
e Declaration of constant memory

o ___constant__ float c_mem]size];

o cudaMemcpyToSymbol() // copy host data to constant memory

19

i
Hlat/ Computer Architecture & System Lab

;i? National Yang Ming Chiao Tung University

Texture Memory

e What is the texture memory ?
o Optimized for spatial locality shown among threads in blocks
o Spatial locality implies threads of the same warp that read
memory addresses are close together
e Where is the texture memory ?
o 28— 128 KB texture cache per SM (Nvidia GPU arch. 8.6)
e Declaration of texture memory
o textlD(texObij, x) // fetch from region of memory with texture object
and coordinate x
o text2D(texObj, x, y) // 2 D texture object with coordinate x and y

20

X //" National Yang Ming Chiao Tung University
=347\
Hlat/ Computer Architecture & System Lab

L2 Cache Bank

e A unified last level cache shared by all SIMT cores
e L1 cache request cannot span across two L2 cache lines

Local Memory Global Memory
Write Hit Write-back Write-back
Write Miss Write-no- Write-no-allocate
allocate

e What are advantages of write-back policy ?

o [Fast data write speed
e Write-no-allocate

o The cache doesn’t allocate a cache line on a write miss

21

X ,/1 National Yang Ming Chiao Tung University
=347\
wd® s Computer Architecture & System Lab

GPU Micro-architecture

Seea s [
ecode Boa _ Bank
Illz'er..'h"'u'arpl:-l Reconv. Stacks Conflict
|PC [RPCActiveMask[1:W] AoEess
: [PCRPCactiveMask[Tw|l| [AT»{Coalesc.[”
o o0 PC [RPClActiveMask[1:W] ﬁ
] —b
=| [Selection To : -
A Eel::h Y
Walid[1:M] | i l=sue >
' : Branch Target PC N
Fetch |« =~ ~— SIMT-Stack
l A Valid[1:N] I-Buffer iﬂcéigﬁ red.
— o Operand
I-Cache |-> Decode ¢ Issue I—)
i e g Collector
—» Boar
oard Done (WID)

http://gpgpu-sim.org/manual/index.php/Main_Page

http://gpgpu-sim.org/manual/index.php/Main_Page

National Yang Ming Chiao Tung University

Pz
Ic '*

Computer Architecture & System Lab

Problems of DNNs on GPU

e DNNSs require a large number of matrix computations
e Tensor core tailors for matrix computation on GPUs

Streaming Multiprocessing-(SM)/ SIMT Core

Instruction Cache

Warp Scheduler

Warp Scheduler

Warp Scheduler

Warp Scheduler

Register
Files

Register
Files

L1 Data Cache/Shared memory

Register
Files

1 1
snwd Dispatch SIMD Dispatch SIMD Dispatch SIMD Dj'l-spatch
Unit Unit Unit _Unit

‘ Tensor 4- Tensor
FP64/32 | Bl FP64/32 B FP64/32 FP64/32
SP/SFU SP/SFU SP/SFU SP/SFU
Core v Core &/ Core W/

Register
Files

Texture memory

Zhu
et.al.,
MICRO
2019

23

X ,/1 National Yang Ming Chiao Tung University
=XL7\
a4 Computer Architecture & System Lab

e Inner product

o Each inner product computes
a single element of the product

matrix C

o High memory transaction in

BK][n]
= B[O][j] and B[1][j] may
stay in a cache line

¥

C(i))

C(i))

for(int m = 0; m < M; m++) {
for(int n = 9; n < N; n++) {

for(int k = 9; k < K; k++) {
C[m][n] += A[m][k]*B[k][n];

Al

B(:,))

24

X ,/1 National Yang Ming Chiao Tung University
=Ng” \
Hyt# Computer Architecture & System Lab

Outer Product

o Quter product for(int k = 0; k < K; k++) {
. f int = 0Q; M;
- Raise k to the outer-most for e e
loop c[m][n] += A[m][k1*B[Kk][n];
. }
o Multiply (m, 1) and (1, n))
matrix }

o Accumulate k (m, n) matrix

o Good to do blocked matrix
multiplication. How ?

AGl | K B(k.:)

X3z National Yang Ming Chiao Tung University

Z
=R [N
1&? Computer Architecture & System Lab

Blocked Outer Product

% iterate through blocks

for k = 1: K/IKO Chlock(:,?) Chlock(:,) Ablock(:
for | = 1:1/10 X Jo
Ablock = &A(i*10, k*KO) “’ g + [
forj=1:J3/J0

Bblock(:,:)

Cblock = &C(i*10, j*J0)
Bblock = &B(k*KO, j*JO)

void do_block(Ablock, Bblock, Cblock){
for kO = 1:KO0
fori0 = 1:10
forj0 =1:J0
Cblock(i0, jO) = Cblock(i0, j0)+ Ablock(iO, kO) *
Bblock(kO, jO) }

26

ig National Yang Ming Chiao Tung University
4

3
=371
a4 Computer Architecture & System Lab

Tensor Core

e Each tensor core is a programmable compute unit for matrix-multiply-and
accumulation (MAC) — inner-product-based

e Each tensor can complete a single 4 x 4 MAC each clock cycle
o Why does tensor core use 4 x 4 matrix ?

e The tensor core has two modes of operation:
o FP16 mode: reads three 4 x 4 16-bit floating-point matrices as source operands
o Mixed-precision: reads two 4 x 4 16-bit floating point matrices along with a third

4 x 4 32-bit floating-point accumulation matrix

AOO (AO1 | AO2 (AD3 BOO | BO1 (BO2 | BO3 €00 | Co1 | CO2 | CO3 D00 | DO1 | DO2 | DO3
A10 (A11|A12 (A13 B10 | B11 (B12 | B13 C10 |C11(C12 |C13 D10 (D11 |D12 | D13
A20 (A21 | A22 |A23 x B20 | B21 | B22 | B23 + C20 |C21 |C22 |C23 - D20 (D21 | D22 | D23
A30 | A31|A32 [A33 B30 | B31 |B32 | B33 €30 |C31(C32|C33 D30 (D31 |D32 | D33

A B . D 21

11\

X%7 % National Yang Ming Chiao Tung University
~{d/ Computer Architecture & System Lab

Warp Matrix Function (WMMA) API

e C++ API performs “warp-level matrix multiply and accumulate (WMMA)” on

tensor cores
CUDA 9.0 supports 16 x 16 x 16 tile size, while later versions have more
flexibility
Each tile is divided into fragments
o Afragment is a set of tile elements that are mapped to registers of a
thread
o Input matrices are distributed across different threads
o Each thread contains only a portion of a tile
CUDA WMMA APIs
o Load_matrix sync, store_matrix_sync, mma_sync

28

x$# % National Yang Ming Chiao Tung University

11\

Hlat/ Computer Architecture & System Lab

Tensor Core PTX instructions

wmma.load.a.sync.layout.shape.type ra, [pa] {stride};
wmma.load.b.sync.layout.shape.type rb, [pb] {stride};
wmma.load.c.sync.layout.shape.type rc,

[pc] {stride};
wmma.mma.sync.alayout.blayout.shape.dtype.ctype rd, ra, rb, rc;

wmma.store.d.sync.layout.shape.type rd, [pd] {stride;}

e Matrices A, B, and C are stored in registers ra, rb, and rc

e The “layout” specifies the operand matrix stored in memory with a row-
major or column-major layout

e The “shape” represents the fragment size of operand matrices

e The type indicates the precision of operand matrices

e The “stride” operand indicates the beginning of each row

29

éi{ﬁ\ National Yang Ming Chiao Tung University

‘Tf &T# Computer Architecture & System Lab

WMMA Operations on Tensor Core

Given A, B, C, and D are 16 x 16 matrices

A warp computes a matrix multiply and accumulate
D=AxB+C

32 threads in a warp are divided into “8” threadgroups
Each threadgroup consists of 4 threads in a warp

30

X ?“\ National Yang Ming Chiao Tung University
~ Hyt# Computer Architecture & System Lab

GPU Tensor Core

e GPU tensor core

o Specialized hardware for the MAC operation
o Multiple warps work together to complete the WMMA

operation (e.g. 16 x 16 x 16)

lex1ée

16xX16

lex1é6

I Warp Scheduler I I Warp Scheduler |

[warp Scheduter ||| [Warp Scheduler |

31

s3~#% National Yang Ming Chiao Tung Universit i i
@ ational Yang Ming Chiao Tung University M MA dlmen5|0n
Ic

a14 Computer Architecture & System Lab

A, xB +4+C
8x4 4x8 8x8
GPU Tensor Core e

HMMA[884] F32.F32.STEP@ RD, RA, RB, RC;

HMMA| 884} F32.F32.STEP1 RD, RA, RB, RC;

° GPU tensor core HMMA| 884 F32.F32.STEP2 RD, RA, RB, RC;

HMMA | BB4ALF32.F32.5TEP3 RD, RA, RB, RC;

e

o A WMMA operation breaks into _*§HH M
4 sets of machine-level HMMA
o CEC e
1

(Half-precision MMA) instructions
at the compile time (why?) e
o Each set of HMMA instructions >
compute the productofa4 x4 [B H e
tile of Aand a 4 x 8tile of B .

A x B + C = D

o

B HH

The tiles processed by each set of dense Bl Threadgroup0 [l Threadgroup 4 [Shared
HMMA instructions in Worktuple O in Worktuple 0 32

X g“\ National Yang Ming Chiao Tung University
~ Hyt# Computer Architecture & System Lab Seti)

GPU Tensor Core o P P R

e GPU tensor core

o 2 octects in a tensor core s
o Inside an octet W

m 8 DPs (Dot Product units)
m Each DP can compute 4-dim

vector dot product per cycle
m Operand buffers A, B, C o

Figure 11: Tensor Core architecture [58].

Tensor Core architecture

33

X ?h National Yang Ming Chiao Tung University

=3

Hyt# Computer Architecture & System Lab

GPU Tensor Core

e GPU tensor core
o Mapping

m A worktuple (2 threadgroups) ™

IS mapped to one octet
m Each threadgroup takes 4
DPs

FP16 Multiplicr
W FP32 Adder

Figure 11: Tensor Core architecture [58].

Tensor Core architecture

34

% National Yang Ming Chiao Tung University

3
=371
1%5 Computer Architecture & System Lab

GPU Tensor Core

« GPU tensor core
o Cycle calculation
m One threadgroup computes 4 x 8 = 32 dot products In
one set of HMMA instruction
m 4 DP units compute four 4-dim dot products per cycle
m Atleast 32/4 = 8 cycles

to finisha 4 x 8 x 4 - .' 5 8
matrix multiplication 8 : : oo 8

44 $x8

35

X g“\ National Yang Ming Chiao Tung University
~ Hyt# Computer Architecture & System Lab

Tensor Core Microarchitecture

e Each tensor core performs 16 four-element dot products each cycle

e Each warp uses two tensor cores, two octets in a warp access each tensor core
e Matrix A and C, each threadgroup fetches operands to its separate buffer

e Threadgroups fetch matrix B operands to a shared buffer

Tensor Core b iy -A B;
Octet 3 | | Octet 2 Octet1 |3 5 N %
<| m
Threadgroup 4
Tensor Core Octet 0

Writebac Zhu et.al., MICRO 2019 36

i
Hlat/ Computer Architecture & System Lab

What should we learn from Tensor Core ?

;i? National Yang Ming Chiao Tung University

e Parallelism

o Thread-level Parallelism (TLP) for MMA execution

o Special functional units for DP calculation
e Data reuse

o Increase the tiling block reuse through local memory buffer
e [SA Support

o Need the supports from special ISA (WMMA) in the compiler
e What else ?

37

National Yang Ming Chiao Tung University

~ Hyt# Computer Architecture & System Lab

Sparse Tensor Core

e Improve tensor core utilization in sparse MMA
e Sparse MMA is shown on model compression

e Data encoding + tensor core mapping
e Does this work on graph workloads with dynamic sparsity ?
Encoded

0 [NZo| 0 | 0o | 0o | 0o [Nz 0 NZ, | Nz,
0| o oo | of o] o 2 | 2 / offset
0| 0| o 0 0 | o 3| s
NZs| o | o | o [NzZe| o | o | o NZs | NZg 0| 4
Compressed Welght Zhu et.al., MICRO 2019

Original Weight

X ,/1 National Yang Ming Chiao Tung University
=347\
Hyt# Computer Architecture & System Lab

Sparse Tensor Core in Nvidia A100 GPU

sparse T T T Input
Tensor Core ! activations
select

/

2x Tensor Core throughput
Structured-sparsity for efficient HW and SW

~2Xx reduction in weights
footprint and bandwidth

dot-product

|
2 |
P

Fine-grained ||
structured I | [
pruning HE AR
Dense (2:4 non-zero) N Non- Non- Output
h zero A
trained ; - Zero zero activations
Fine-tuning data indices
weights

weights

https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s21730-inside-the-nvidia-ampere-

architecture.pdf

X ,/1 National Yang Ming Chiao Tung University
=347\
Hyt# Computer Architecture & System Lab

Dual-side sparse tensor core

e Activation sparsity
Dynamic sparsity — the zero value was created during the runtime

(@)

(@)

Hard to predict, data dependent

Dual-side sparse tensor core

@)

@)

How to encode dynamic sparsity ?

(@)

(@)

Support SpCONV and SpGEMM
Outer-product-based tensor core

Bitmap encoding
Each matrix has a b(bitmap) and a
v(value) matrix

H

fui

B

[LLI]

d

w

H

A

B+ C = UBE%

(a) Dense outer product.

oj|lo|o
o

ocl|lo|lo
o
o|lo|lo(o|o|O

Plrlo|r|o|r
o|lo|lo|o|o|o

0

Ap

b a
A,

Wang et.al., ISCA 2021 40

§£ ?“\ National Yang Ming Chiao Tung University

Hyt# Computer Architecture & System Lab

Tensor Core Comparison

A B
I T T

WYX
et
pa

B

I

=l

< 1L
-L.‘.'H_-'

l

A

)I_

4 X 4 x 4 matrix
multiplication

A (sparse) B (dense) A I:Spﬂ s ll‘) B (SPHTSL‘}

e
Indices [N

Indices [N N Select /

¥

!

Inner
D l__._| product
Sparse inner- Dual-side
product unit sparsity unit

Wang et.al., ISCA 2021 4l

X7 National Yang Ming Chiao Tung University

L)

Y
Hyt# Computer Architecture & System Lab

Bitmap-encoding outer product

e Outer-product SpGEMM e
- Multiply matrix v : x e
o Multiply matrix b 4, o B, D1, #%lp2, D3,
o Merger 2) Multiply-bitmap
= Fetch updated values from %22@8“ S IO 22'2 :H
matrix b 3;;13! a[ofafolafo j
= Accumulate values in matrix py M;e Dz, . ﬁl,fj‘;em,,
v
v el B
Gather, -)\os\'cr?tt;;;fk > Al
HH -t T
C Merger H-HH E]_ E2 E3 I\
| Time step 1 ’\/{ Time step 2 . Time step 3 A
42

Wang et.al., ISCA 2021

Xtz National Yang Ming Chiao Tung University

L)

Y
Hyt# Computer Architecture & System Lab

Outer product tensor core

B (condensed)

Run on
e Outer product _— <—:I[:|:|:|:1:1
tensor core (OTC) S x S1E IS

o The size of matrix | i R g [Skipped
iINOTCis8x8 A s) g}. 'g

o The size of A and B < i—’* Skipped 1] kipped
is (32, k) and (k, 32) +H B

o Two tensor cores do Ve 5?:5:;;‘:;‘;:1;:‘““\

[] Effective compute

8 x 16 matrix comp.
o The data sparsity

decides the rate of

acceleration H |

” | StepO | Step1 ||8

Step 2 Step3 ||8

Soutof 8
OTC steps
are skippe

32

Step4 | Step5 ||8

Step 6 Step7 ||8

£ < 16 16
Ay 32 s Wang et.al., ISCA 2021 B

F Sl

=x}7

X i'f National Yang Ming Chiao Tung University

‘Tf a14 Computer Architecture & System Lab

®

Two-level Bitmap Encoding

e Two-level bitmap encoding

O

O

O

O

When the size of
maitrix is too large
Bitmap matrix is
large too
Warp bitmap
= Representif atile has
value

Element bitmap
= Represent the location
of non-zero in a tile

Matrix A’s two-level bitmap

N

Tk

N
N

T
/_ (A 5 R
= :

EE K

11|10
A
o111 ol [l B -LUJ L i
1{o]1f1 all il il s ;
| __>11|o0fo0]|1 _ﬂﬂj:{_u‘
1(1|1]0 :
o|j1|11|0 ' ' \
Warp-bitmap Element-bitmap Values
44

Wang et.al., ISCA 2021

X ,/1 National Yang Ming Chiao Tung University
=347\
Hyt# Computer Architecture & System Lab

Outer-product friendly im2col

e The im2col work

Output
© Rearranges inlet 3x3 Conv Kernel o _ fe_a‘ture map
[ofa] o j23] o I\ iofalololo]selo]o i_H
feature maps as 510 Bl o 8 im2col» L S TEI O To T -
aninpUtOfGEMM ololo 8]0 " a8 o o [o 2o [Bll o

Original feature map (3x6) Lowered feature map (4x9) Lowered weight matrix

o Improperly designed

. a) Inner product friendly im2col.
= Harm input data reuse (#) Inner p d

Slidingalx4wndow e Output
?) g 3x3 Conv Kernel 15t 2nd 3d fE} feitllze_rllzp
© Zlg-zag Way to Scan :z] -ﬂ T_] 213 0 | !; 4|0{0|0|5|6|0]|0
over the feature map 04-0%0__'_? ima2col 1 e oo o T3] 2% x
640/0/0[3 V" s oo o2l oo

Original f 3x6 e
riginal feature map (3x6) | owered feature map (4x9) Lowered weight matrix

Wang et.al., ISCA 2021 45

X i/ National Yang Ming Chiao Tung University

=0
=337

‘Tf &T# Computer Architecture & System Lab

Takeaway Questions

« How does tensor core accelerate the matrix computation ?
o (A) Increase the on-chip buffer size
> (B) Increase the frequency of tensor cores
o (C) Reduce the data movement

e How to increase the utilization of the tensor core ?

o (A) Use image to column (Im2col)
- (B) Lower the data precision (using int8)
> (C) Increase the number of registers

46

