
Accelerator Architectures for Machine

Learning (AAML)

Lecture 8: Tensor Core

Tsung Tai Yeh
Department of Computer Science

National Yang-Ming Chiao Tung University

1

Acknowledgements and Disclaimer

● Slides was developed in the reference with

Joel Emer, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, ISCA 2019

tutorial

Efficient Processing of Deep Neural Network, Vivienne Sze, Yu-Hsin

Chen, Tien-Ju Yang, Joel Emer, Morgan and Claypool Publisher, 2020

Yakun Sophia Shao, EE290-2: Hardware for Machine Learning, UC

Berkeley, 2020

CS231n Convolutional Neural Networks for Visual Recognition,

Stanford University, 2020

CS224W: Machine Learning with Graphs, Stanford University, 2021

2

Outline

● GPU hardware basics

● Programming Model

● The SIMT Core

○ Warp Scheduling

○ Functional Unit

○ Operand collector

3

GPU Memory Spaces

● Global memory
○ Device DRAM, shared across blocks

● Local memory
○ Reside in global memory

○ Store variable data consuming too many

registers (register spilling)

● Shared memory
○ On-chip addressable memory

○ Direct mapped

● Constant/Texture memory
○ Read-only memory

● Register File
○ Each thread has its private register space

4

Block (0,0)

Shared memory

Registers

Thread (0,0)

Registers

Thread (1,0)

Local Mem Local Mem

Global Mem

Block (1,0)

Constant Mem

Texture Mem

Global Memory

● Global memory resides in off-chip DRAM

● Global memory is accessed via 32, 64, 128 byte memory transaction

● Misaligned/uncoalescing memory increases # of memory transaction

5

void kernel_copy(float *out, float *in,

int offset)

{

int i = blockIdx.x * blockDim.x +

threadIdx.x + offset;

out[i] = in[i];

}

What’s wrong when offset > 1 ?

Coalesced/aligned memory access

Memory Divergent access

https://docs.nvidia.com/cuda/cuda-c-programming-

guide/index.html

Built-in align variable:

__align__(int mem_byte)

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Memory Coalescing

● Coalesced access

○ If all threads in a warp access locations that fall within a single

L1 data cache block and that block is not present in the cache

○ Only a single request needs to be sent to the lower level

caches

● Un-coalesced access

○ If the threads within a warp access different cache blocks

○ Multiple memory accesses need to be generated

6

Memory Coalescing

● Combining memory access of threads in a warp into fewer

transactions
○ E.g. Each thread in a warp accesses consecutive 4-byte

memory

○ Send one 128-byte request to DRAM (Coalescing)

○ Instead of 32 4-byte requests

● Coalescing reduces the number of transactions between

SIMT cores and DRAM
○ Less work for interconnect, memory partition, and DRAM

7

Memory Coalescing

● Supposed that a 3 x 4 matrix is shown :

● Which one is coalescing access pattern ?

○ Pattern B is coalescing access pattern

8

1 2 3 4

5 6 7 8

9 a b c

Thread 0: 1, 2, 3

Thread 1: 4, 5, 6

Thread 2: 7, 8, 9

Thread 3: a, b, c

Thread 0: 1, 5, 9

Thread 1: 2, 6, a

Thread 2: 3, 7, b

Thread 3: 4, 8, c

Time Time

Pattern A Pattern B

Local Memory

● Off-chip memory

● High latency and low bandwidth as the global

memory

● When will use the local memory ?

○ Large structure or array that use too much register space

○ A kernel uses too many register than available (register

spilling)

9

Data Cache & Shared Memory

● A memory access request is first sent from the load/store unit inside the

instruction pipeline to the L1 cache

10

Shared Memory

● 32 banks organized as 32-bit successive words

● Threads share data in the same thread block

● Programmer-managed on-chip cache

● Bank conflict
○ Two or more threads access words within the

same bank

○ Serialized memory access (low memory bandwidth)

● Which one is bank conflict ?
○ float i_data = shared[base + S * tid]; S = 3

○ float i_data = shared[base + S * tid]; S = 2

○ double i_data = shared[base + tid]

○ char i_data = shared[base + tid]

11

Which one is bank conflict ?

How to Resolve Bank Conflict ?

● Shared memory size is 16 x 16

● Each thread takes charge of each row operation

● Threads in one block access the same location

(each column) -> 16-way bank conflict

● Solution ?
○ memory padding

○ Add one float at the end of each row

○ Changing access pattern

○ __shared__ sData[TILE_SIZE][TILE_SIZE + 1]

12

Memory padding (blue column)

http://cuda-programming.blogspot.com/2013/02/bank-conflicts-in-shared-memory-in-cuda.html

Time

http://cuda-programming.blogspot.com/2013/02/bank-conflicts-in-shared-memory-in-cuda.html

How to Resolve Bank Conflict ?

● Memory padding is one of solution to remove shared memory bank conflict

○ __shared__ a[32][32] -> __shared__ a[32][33]

13

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

tid 0

Bank 3Bank 0

tid 1

tid 4

0 1 2 3 4

0 1 2 3

4 0 1 2

3 4 0 1

2 3 4 0

1 2 3 4

Memory

padding

Shared memory access

● Arbiter

○ Determine whether the

requested addresses

within the warp will

cause bank conflict

○ Split the request into two

parts when the bank

conflicts show

● Accepted request

○ Bypass tag lookup in the

tag unit, since shared

memory is direct mapped
14

Shared memory access

● In the absence of bank conflict

○ The latency of the direct mapped memory

lookup is constant (single-cycle)

○ The tag unit determines which bank each

thread’s request maps to

○ The address cross bar distributes address

to the individual banks within the data array

○ Each bank inside the data array is 32-bits wide

○ Each bank has its own decoder allowing from independent access to

different rows in each bank

○ The data is returned to the appropriate thread’s lane for storage in the

register file via the data crossbar
15

L1 Data Cache Read

● Access to global memory is restricted

to a single cache block per cycle ->

help to reduce tag storage overhead

● The L1 cache block size is 128 bytes,

is further divided into four 32-byte

sectors

● A single access of GDDR5 is 32-byte

● Each 128-byte cache block is composed of 32-bit entries at the same row in

each of the 32 banks

16

L1 Data Cache Read

● 1) The LD/ST unit

○ Computes memory addresses

● 2) The arbiter

○ Requests the instruction pipeline schedule

a writeback to the register file if enough

resources are available

● 3) The tag unit

○ Check whether the access leads to a cache hit or a miss

● 4) Access the appropriate row of the data array

○ In the event of a cache hit

17

L1 Data Cache Read

● 5) Pending request table (PRT)
○ The tag unit determines a cache

miss

○ The arbiter informs the LD/ST unit to

replay the request and sends request

information

● 6) Memory Management Unit (MMU)
○ After an entry is allocated in the PRT

○ Virtual to physical address translation

● 7) Fill unit

○ Use the subid field in the memory request to lookup information about the

request in the PRT

18

Constant Memory

● What is the constant memory ?

○ Optimized when warp of threads read the same location

○ 4 bytes per cycle through broadcasting to threads in a warp

○ Serialized when threads in a warp read in different locations

○ Very slow when constant cache miss (read data from global mem.)

● Where is the constant memory (64KB) ?

○ Data is stored in the device global memory

○ Read data through SM constant cache (8KB)

● Declaration of constant memory

○ __constant__ float c_mem[size];

○ cudaMemcpyToSymbol() // copy host data to constant memory

19

Texture Memory

● What is the texture memory ?

○ Optimized for spatial locality shown among threads in blocks

○ Spatial locality implies threads of the same warp that read

memory addresses are close together

● Where is the texture memory ?

○ 28 – 128 KB texture cache per SM (Nvidia GPU arch. 8.6)

● Declaration of texture memory

○ text1D(texObj, x) // fetch from region of memory with texture object

and coordinate x

○ text2D(texObj, x, y) // 2 D texture object with coordinate x and y

20

L2 Cache Bank

● A unified last level cache shared by all SIMT cores

● L1 cache request cannot span across two L2 cache lines

● What are advantages of write-back policy ?

○ Fast data write speed

● Write-no-allocate

○ The cache doesn’t allocate a cache line on a write miss
21

Local Memory Global Memory

Write Hit Write-back Write-back

Write Miss Write-no-

allocate

Write-no-allocate

GPU Micro-architecture

22http://gpgpu-sim.org/manual/index.php/Main_Page

http://gpgpu-sim.org/manual/index.php/Main_Page

Problems of DNNs on GPU

● DNNs require a large number of matrix computations

● Tensor core tailors for matrix computation on GPUs

23

Zhu

et.al.,

MICRO

2019

Inner Product

● Inner product

○ Each inner product computes

a single element of the product

matrix C

○ High memory transaction in

B[k][n]

■ B[0][j] and B[1][j] may not

stay in a cache line

24

Outer Product

● Outer product

○ Raise k to the outer-most for

loop

○ Multiply (m, 1) and (1, n)

matrix

○ Accumulate k (m, n) matrix

○ Good to do blocked matrix

multiplication. How ?

25

Blocked Outer Product

26

% iterate through blocks

for k = 1: K/K0

for I = 1:I/I0

Ablock = &A(i*I0, k*K0)

for j = 1: J/J0

Cblock = &C(i*I0, j*J0)

Bblock = &B(k*K0, j*J0)

do_block(Ablock, Bblock, Cblock)

void do_block(Ablock, Bblock, Cblock){

for k0 = 1:K0

for i0 = 1:I0

for j0 = 1:J0

Cblock(i0, j0) = Cblock(i0, j0)+ Ablock(i0, k0) *

Bblock(k0, j0) }

Tensor Core

● Each tensor core is a programmable compute unit for matrix-multiply-and

accumulation (MAC) – inner-product-based

● Each tensor can complete a single 4 x 4 MAC each clock cycle

○ Why does tensor core use 4 x 4 matrix ?

● The tensor core has two modes of operation:

○ FP16 mode: reads three 4 x 4 16-bit floating-point matrices as source operands

○ Mixed-precision: reads two 4 x 4 16-bit floating point matrices along with a third

4 x 4 32-bit floating-point accumulation matrix

27

Warp Matrix Function (WMMA) API

● C++ API performs “warp-level matrix multiply and accumulate (WMMA)” on

tensor cores

● CUDA 9.0 supports 16 x 16 x 16 tile size, while later versions have more

flexibility

● Each tile is divided into fragments

○ A fragment is a set of tile elements that are mapped to registers of a

thread

○ Input matrices are distributed across different threads

○ Each thread contains only a portion of a tile

● CUDA WMMA APIs

○ Load_matrix sync, store_matrix_sync, mma_sync

28

Tensor Core PTX instructions

● Matrices A, B, and C are stored in registers ra, rb, and rc

● The “layout” specifies the operand matrix stored in memory with a row-

major or column-major layout

● The “shape” represents the fragment size of operand matrices

● The type indicates the precision of operand matrices

● The “stride” operand indicates the beginning of each row 29

wmma.load.a.sync.layout.shape.type ra, [pa] {stride};

wmma.load.b.sync.layout.shape.type rb, [pb] {stride};

wmma.load.c.sync.layout.shape.type rc,

[pc] {stride};

wmma.mma.sync.alayout.blayout.shape.dtype.ctype rd, ra, rb, rc;

wmma.store.d.sync.layout.shape.type rd, [pd] {stride;}

WMMA Operations on Tensor Core

● Given A, B, C, and D are 16 x 16 matrices

● A warp computes a matrix multiply and accumulate

D= A x B + C

● 32 threads in a warp are divided into “8” threadgroups

● Each threadgroup consists of 4 threads in a warp

30

GPU Tensor Core

31

● GPU tensor core

○ Specialized hardware for the MAC operation

○ Multiple warps work together to complete the WMMA

operation (e.g. 16 x 16 x 16)

GPU Tensor Core

32

● GPU tensor core

○ A WMMA operation breaks into

4 sets of machine-level HMMA

(Half-precision MMA) instructions

at the compile time (why?)

○ Each set of HMMA instructions

compute the product of a 4 x 4

tile of A and a 4 x 8 tile of B

GPU Tensor Core

33

● GPU tensor core

○ 2 octects in a tensor core

○ Inside an octet

■ 8 DPs (Dot Product units)

■ Each DP can compute 4-dim

vector dot product per cycle

■ Operand buffers A, B, C

GPU Tensor Core

34

● GPU tensor core

○ Mapping

■ A worktuple (2 threadgroups)

is mapped to one octet

■ Each threadgroup takes 4

DPs

GPU Tensor Core

35

● GPU tensor core

○ Cycle calculation

■ One threadgroup computes 4 x 8 = 32 dot products in

one set of HMMA instruction

■ 4 DP units compute four 4-dim dot products per cycle

■ At least 32/4 = 8 cycles

to finish a 4 x 8 x 4

matrix multiplication

Tensor Core Microarchitecture

● Each tensor core performs 16 four-element dot products each cycle

● Each warp uses two tensor cores, two octets in a warp access each tensor core

● Matrix A and C, each threadgroup fetches operands to its separate buffer

● Threadgroups fetch matrix B operands to a shared buffer

36

What should we learn from Tensor Core ?

● Parallelism

○ Thread-level Parallelism (TLP) for MMA execution

○ Special functional units for DP calculation

● Data reuse

○ Increase the tiling block reuse through local memory buffer

● ISA Support

○ Need the supports from special ISA (WMMA) in the compiler

● What else ?

37

Sparse Tensor Core

● Improve tensor core utilization in sparse MMA

● Sparse MMA is shown on model compression

● Data encoding + tensor core mapping

● Does this work on graph workloads with dynamic sparsity ?

38

Original Weight Compressed Weight

Encoded

offset

Zhu et.al., MICRO 2019

Sparse Tensor Core in Nvidia A100 GPU

39https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s21730-inside-the-nvidia-ampere-

architecture.pdf

Dual-side sparse tensor core

● Activation sparsity

○ Dynamic sparsity – the zero value was created during the runtime

○ Hard to predict, data dependent

● Dual-side sparse tensor core

○ Support SpCONV and SpGEMM

○ Outer-product-based tensor core

● How to encode dynamic sparsity ?

○ Bitmap encoding

○ Each matrix has a b(bitmap) and a

v(value) matrix

40
Wang et.al., ISCA 2021

Tensor Core Comparison

41

4 x 4 x 4 matrix

multiplication

Sparse inner-

product unit

Dual-side

sparsity unit

Wang et.al., ISCA 2021

Bitmap-encoding outer product

● Outer-product SpGEMM

○ Multiply matrix v

○ Multiply matrix b

○ Merger

■ Fetch updated values from

matrix b

■ Accumulate values in matrix

v

42
Wang et.al., ISCA 2021

Outer product tensor core

● Outer product

tensor core (OTC)
○ The size of matrix

in OTC is 8 x 8

○ The size of A and B

is (32, k) and (k, 32)

○ Two tensor cores do

8 x 16 matrix comp.

○ The data sparsity

decides the rate of

acceleration

43

Wang et.al., ISCA 2021

Two-level Bitmap Encoding

● Two-level bitmap encoding
○ When the size of

matrix is too large

○ Bitmap matrix is

large too

○ Warp bitmap
■ Represent if a tile has

value

○ Element bitmap
■ Represent the location

of non-zero in a tile

44
Wang et.al., ISCA 2021

Outer-product friendly im2col

● The im2col work
○ Rearranges input

feature maps as

an input of GEMM

○ Improperly designed

■ Harm input data reuse

○ Sliding a 1 x 4 window

○ Zig-zag way to scan

over the feature map

45
Wang et.al., ISCA 2021

Takeaway Questions

● How does tensor core accelerate the matrix computation ?

○ (A) Increase the on-chip buffer size

○ (B) Increase the frequency of tensor cores

○ (C) Reduce the data movement

● How to increase the utilization of the tensor core ?

○ (A) Use image to column (Im2col)

○ (B) Lower the data precision (using int8)

○ (C) Increase the number of registers

46

