

Accelerator Architectures for Machine Learning (AAML)

Lecture 8: Tensor Core

Tsung Tai Yeh Department of Computer Science National Yang-Ming Chiao Tung University

Acknowledgements and Disclaimer

 Slides was developed in the reference with Joel Emer, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, ISCA 2019 tutorial

Efficient Processing of Deep Neural Network, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, Morgan and Claypool Publisher, 2020 Yakun Sophia Shao, EE290-2: Hardware for Machine Learning, UC Berkeley, 2020

CS231n Convolutional Neural Networks for Visual Recognition,

Stanford University, 2020

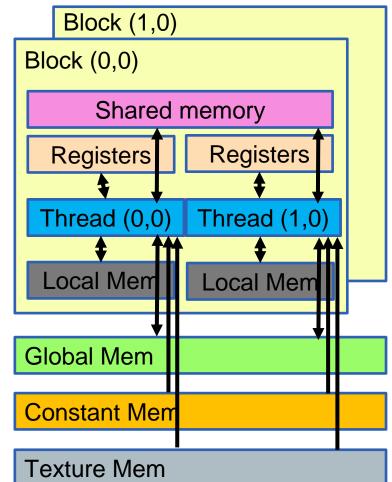
CS224W: Machine Learning with Graphs, Stanford University, 2021

Outline

- GPU hardware basics
- Programming Model
- The SIMT Core
 - Warp Scheduling
 - Functional Unit
 - Operand collector

GPU Memory Spaces

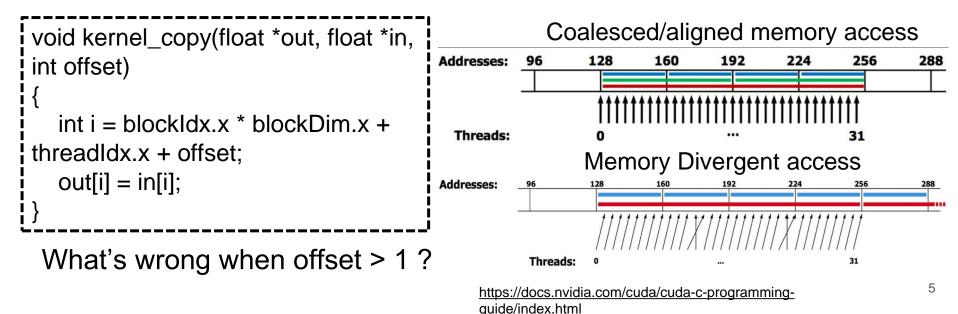
- Global memory
 - Device DRAM, shared across blocks
- Local memory
 - Reside in global memory
 - Store variable data consuming too many registers (register spilling)
- Shared memory
 - On-chip addressable memory
 - Direct mapped
- Constant/Texture memory
 - Read-only memory
- Register File
 - Each thread has its private register space



Global Memory

Built-in align variable: __align__(int mem_byte)

- Global memory resides in off-chip DRAM
- Global memory is accessed via 32, 64, 128 byte memory transaction
- Misaligned/uncoalescing memory increases # of memory transaction



Memory Coalescing

Coalesced access

- If all threads in a warp access locations that fall within a single
 L1 data cache block and that block is not present in the cache
- Only a single request needs to be sent to the lower level caches

Un-coalesced access

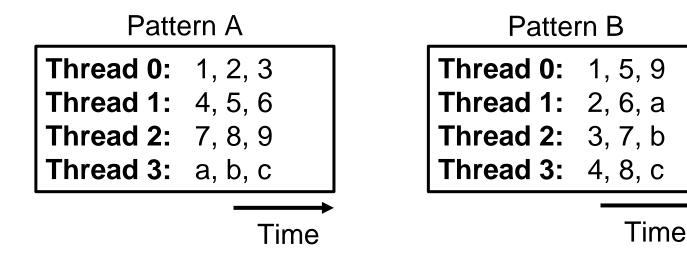
- If the threads within a warp access different cache blocks
- Multiple memory accesses need to be generated

Memory Coalescing

- Combining memory access of threads in a warp into fewer transactions
 - E.g. Each thread in a warp accesses consecutive 4-byte memory
 - Send one 128-byte request to DRAM (Coalescing)
 - Instead of 32 4-byte requests
- Coalescing reduces the number of transactions between SIMT cores and DRAM
 - Less work for interconnect, memory partition, and DRAM

Memory Coalescing

- Supposed that a 3 x 4 matrix is shown : 1 2 3 4
 Which one is coalescing access pattern ? 5 6 7 8 9 a b c
- - Pattern B is coalescing access pattern

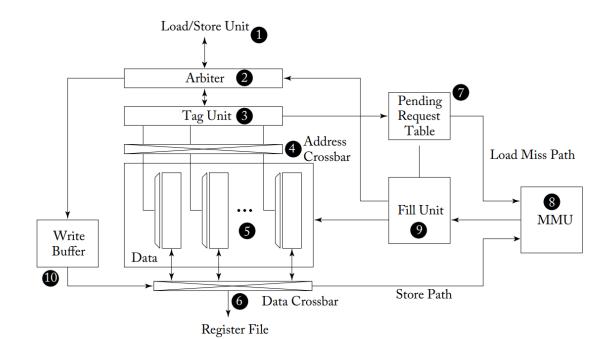


Local Memory

- Off-chip memory
- High latency and low bandwidth as the global memory
- When will use the local memory ?
 - Large structure or array that use too much register space
 - A kernel uses too many register than available (register spilling)

Data Cache & Shared Memory

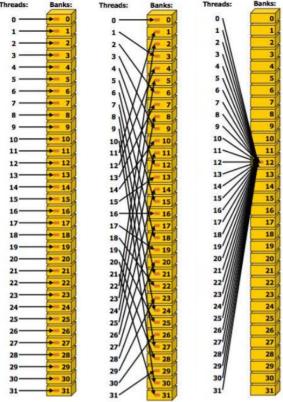
• A memory access request is first sent from the load/store unit inside the instruction pipeline to the L1 cache



Shared Memory

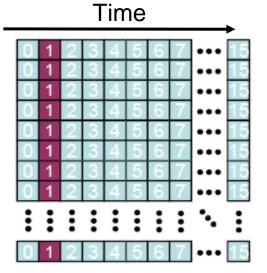
- 32 banks organized as 32-bit successive words
- Threads share data in the same thread block
- Programmer-managed on-chip cache
- Bank conflict
 - Two or more threads access words within the same bank
 - Serialized memory access (low memory bandwidth)
- Which one is bank conflict ?
 - float i_data = shared[base + S * tid]; S = 3
 - float i_data = shared[base + S * tid]; S = 2
 - double i_data = shared[base + tid]
 - o char i_data = shared[base + tid]

Which one is bank conflict?

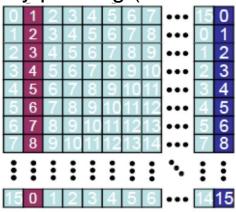


How to Resolve Bank Conflict ?

- Shared memory size is 16 x 16
- Each thread takes charge of each row operation
- Threads in one block access the same location (each column) -> 16-way bank conflict
- Solution ?
 - memory padding
 - Add one float at the end of each row
 - Changing access pattern
 - __shared__sData[TILE_SIZE][TILE_SIZE + 1]



Memory padding (blue column)



12

How to Resolve Bank Conflict ?

- Memory padding is one of solution to remove shared memory bank conflict
 - __shared__ a[32][32] -> __shared__ a[32][33]

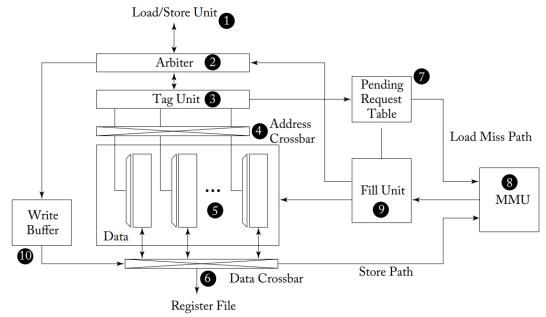
Bank 0				Bank 3		
tid 0→	0	1	2	3	4	
tid 1→	0	1	2	3	4	
	0	1	2	3	4	
	0	1	2	3	4	
tid 4→	0	1	2	3	4	

0	1	2	3	4
	0	1	2	3
4		0	1	2
3	4		0	1
2	3	4		0
1	2	3	4	

Shared memory access

• Arbiter

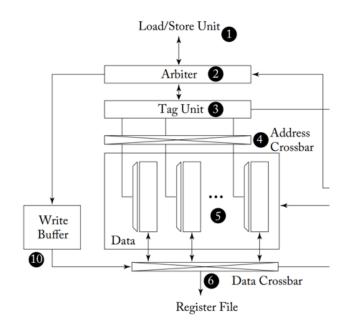
- Determine whether the requested addresses within the warp will cause bank conflict
- Split the request into two parts when the bank conflicts show
- Accepted request
 - Bypass tag lookup in the tag unit, since shared memory is direct mapped



Shared memory access

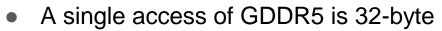
In the absence of bank conflict

- The latency of the direct mapped memory lookup is constant (single-cycle)
- The tag unit determines which bank each thread's request maps to
- The address cross bar distributes address to the individual banks within the data array
- Each bank inside the data array is 32-bits wide
- Each bank has its own decoder allowing from independent access to different rows in each bank
- The data is returned to the appropriate thread's lane for storage in the register file via the data crossbar

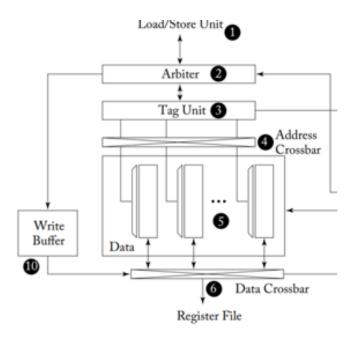


L1 Data Cache Read

- Access to global memory is restricted to a single cache block per cycle -> help to reduce tag storage overhead
- The L1 cache block size is 128 bytes, is further divided into four 32-byte sectors

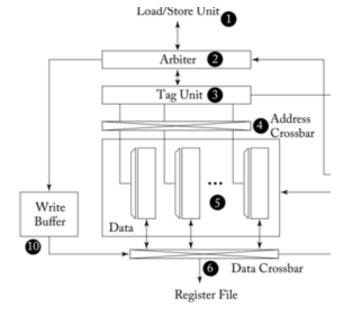


 Each 128-byte cache block is composed of 32-bit entries at the same row in each of the 32 banks



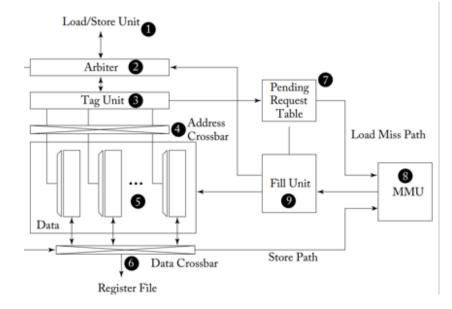
L1 Data Cache Read

- 1) The LD/ST unit
 - Computes memory addresses
- 2) The arbiter
 - Requests the instruction pipeline schedule a writeback to the register file if enough resources are available
- 3) The tag unit
 - Check whether the access leads to a cache hit or a miss
- 4) Access the appropriate row of the data array
 - In the event of a cache hit



L1 Data Cache Read

- 5) Pending request table (PRT)
 - The tag unit determines a cache miss
 - The arbiter informs the LD/ST unit to replay the request and sends request information
- 6) Memory Management Unit (MMU)
 - After an entry is allocated in the PRT
 - Virtual to physical address translation
- 7) Fill unit
 - Use the subid field in the memory request to lookup information about the request in the PRT



Constant Memory

- What is the constant memory ?
 - Optimized when warp of threads read the same location
 - 4 bytes per cycle through broadcasting to threads in a warp
 - Serialized when threads in a warp read in different locations
 - Very slow when constant cache miss (read data from global mem.)
- Where is the constant memory (64KB) ?
 - Data is stored in the device global memory
 - Read data through SM constant cache (8KB)
- Declaration of constant memory
 - __constant__ float c_mem[size];
 - cudaMemcpyToSymbol() // copy host data to constant memory

Texture Memory

- What is the texture memory ?
 - Optimized for spatial locality shown among threads in blocks
 - Spatial locality implies threads of the same warp that read memory addresses are close together
- Where is the texture memory ?
 - 28 128 KB texture cache per SM (Nvidia GPU arch. 8.6)
- Declaration of texture memory
 - text1D(texObj, x) // fetch from region of memory with texture object and coordinate x
 - text2D(texObj, x, y) // 2 D texture object with coordinate x and y

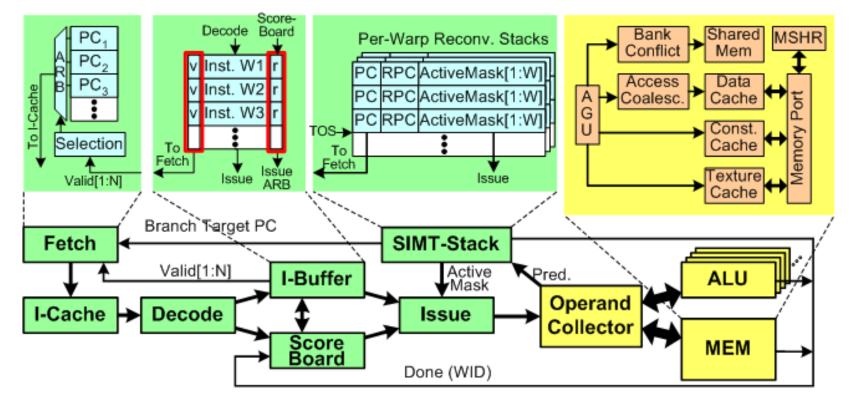
L2 Cache Bank

- A unified last level cache shared by all SIMT cores
- L1 cache request cannot span across two L2 cache lines

	Local Memory	Global Memory
Write Hit	Write-back	Write-back
Write Miss	Write-no- allocate	Write-no-allocate

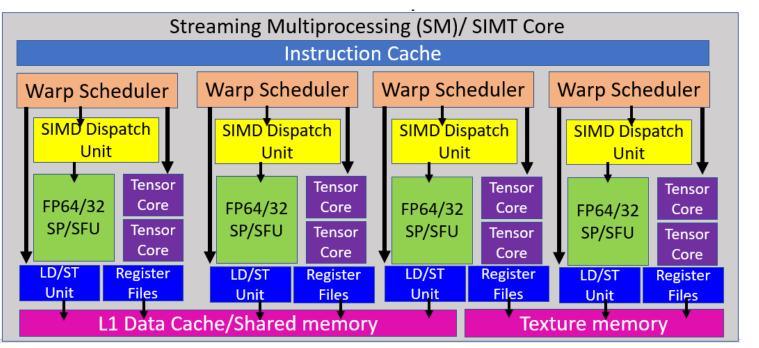
- What are advantages of write-back policy ?
 - Fast data write speed
- Write-no-allocate
 - The cache doesn't allocate a cache line on a write miss

GPU Micro-architecture



Problems of DNNs on GPU

- DNNs require a large number of matrix computations
- Tensor core tailors for matrix computation on GPUs

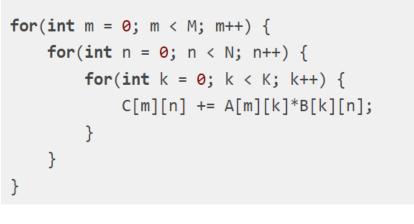


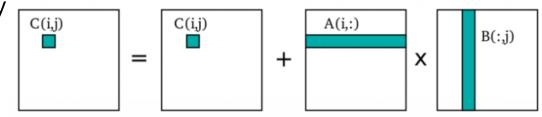
Zhu et.al., MICRO 2019

Inner Product

Inner product

- Each inner product computes a single element of the product matrix C
- High memory transaction in B[k][n]
 - B[0][j] and B[1][j] may stay in a cache line



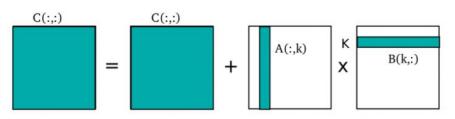


Outer Product

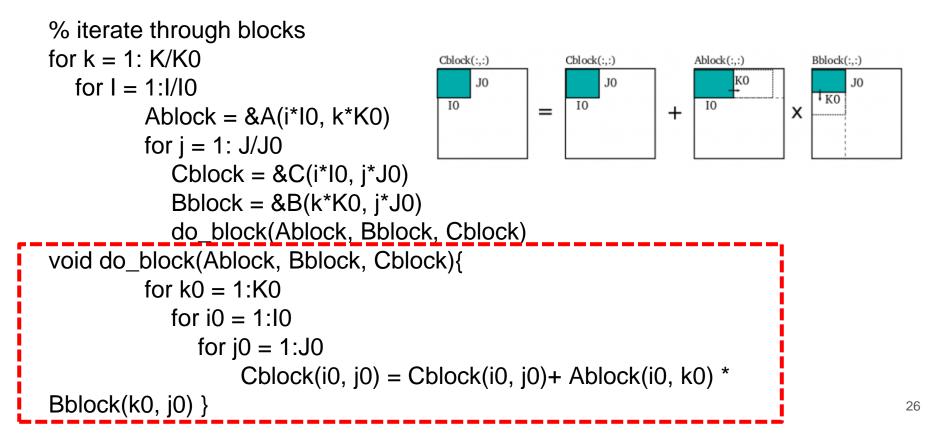
Outer product

- Raise k to the outer-most for loop
- Multiply (m, 1) and (1, n) matrix
- Accumulate k (m, n) matrix
- Good to do blocked matrix multiplication. How ?

```
for(int k = 0; k < K; k++) {
    for(int m = 0; m < M; m++) {
        for(int n = 0; n < N; n++) {
            C[m][n] += A[m][k]*B[k][n];
        }
    }
}</pre>
```

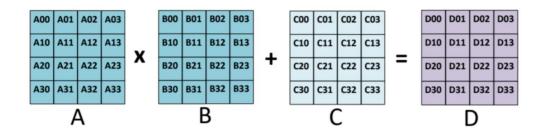


Blocked Outer Product



Tensor Core

- Each tensor core is a programmable compute unit for matrix-multiply-and accumulation (MAC) – inner-product-based
- Each tensor can complete a single 4 x 4 MAC each clock cycle
 - Why does tensor core use 4 x 4 matrix ?
- The tensor core has two modes of operation:
 - **FP16 mode:** reads three 4 x 4 16-bit floating-point matrices as source operands
 - Mixed-precision: reads two 4 x 4 16-bit floating point matrices along with a third 4 x 4 32-bit floating-point accumulation matrix



Warp Matrix Function (WMMA) API

- C++ API performs "warp-level matrix multiply and accumulate (WMMA)" on tensor cores
- CUDA 9.0 supports 16 x 16 x 16 tile size, while later versions have more flexibility
- Each tile is divided into fragments
 - A fragment is a set of tile elements that are mapped to registers of a thread
 - Input matrices are distributed across different threads
 - Each thread contains only a portion of a tile
- CUDA WMMA APIs
 - Load_matrix sync, store_matrix_sync, mma_sync

Tensor Core PTX instructions

wmma.load.a.sync.layout.shape.type	ra, [pa] {stride};
wmma.load.b.sync.layout.shape.type	rb, [pb] {stride};
wmma.load.c.sync.layout.shape.type	rc,
[pc] {stride};	
wmma.mma.sync.alayout.blayout.shape.dtype.ctype	rd, ra, rb, rc;
wmma.store.d.sync.layout.shape.type	rd, [pd] {stride;}

- Matrices A, B, and C are stored in registers ra, rb, and rc
- The "layout" specifies the operand matrix stored in memory with a rowmajor or column-major layout
- The "shape" represents the fragment size of operand matrices
- The type indicates the precision of operand matrices
- The "stride" operand indicates the beginning of each row

WMMA Operations on Tensor Core

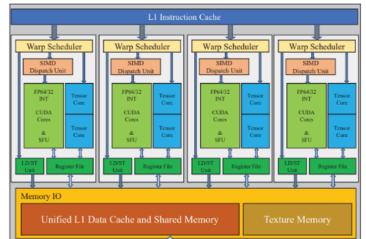
- Given A, B, C, and D are 16 x 16 matrices
- A warp computes a matrix multiply and accumulate
 D= A x B + C
- 32 threads in a warp are divided into "8" threadgroups
- Each threadgroup consists of 4 threads in a warp

GPU Tensor Core

GPU tensor core

- Specialized hardware for the MAC operation
- Multiple warps work together to complete the WMMA operation (e.g. 16 x 16 x 16)

$$A_{16\times16} \times B_{16\times16} + C_{16\times16}$$

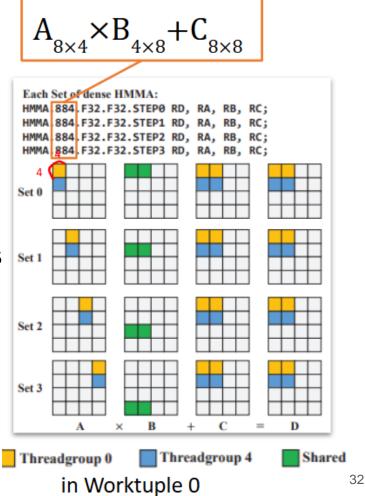


GPU Tensor Core

GPU tensor core

- A WMMA operation breaks into
 4 sets of machine-level HMMA
 (Half-precision MMA) instructions
 at the compile time (why?)
- Each set of HMMA instructions compute the product of a 4 x 4 tile of A and a 4 x 8 tile of B
 - The tiles processed by each set of dense HMMA instructions in Worktuple 0

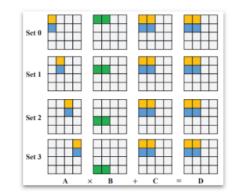
MMA dimension



GPU Tensor Core

GPU tensor core

- 2 octects in a tensor core
- Inside an octet
 - 8 DPs (Dot Product units)
 - Each DP can compute 4-dim vector dot product per cycle
 - Operand buffers A, B, C



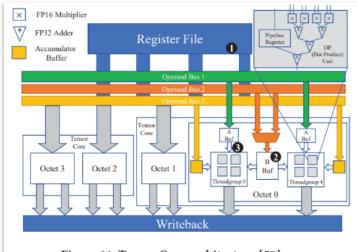
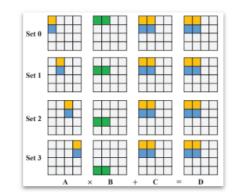


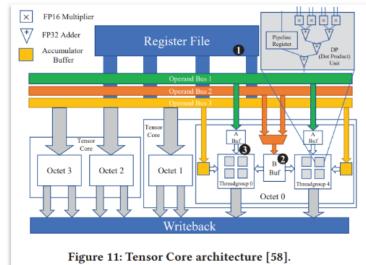
Figure 11: Tensor Core architecture [58].

Tensor Core architecture

GPU Tensor Core

- GPU tensor core
 - Mapping
 - A worktuple (2 threadgroups) is mapped to one octet
 - Each threadgroup takes 4
 DPs



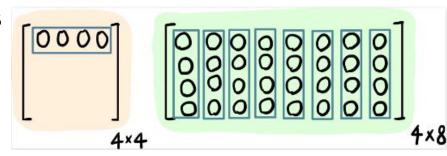


Tensor Core architecture

GPU Tensor Core

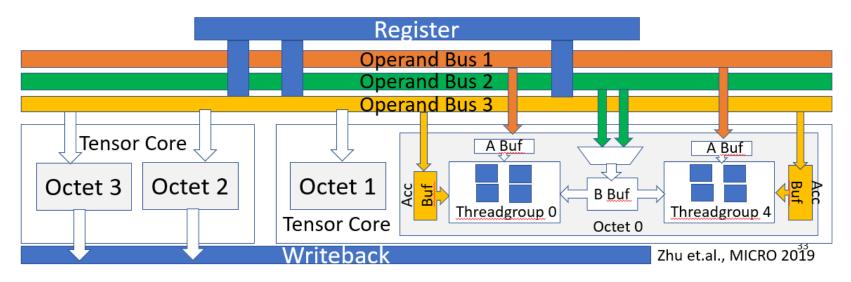
GPU tensor core

- Cycle calculation
 - One threadgroup computes 4 x 8 = 32 dot products in one set of HMMA instruction
 - 4 DP units compute four 4-dim dot products per cycle
 - At least 32/4 = 8 cycles to finish a 4 x 8 x 4 matrix multiplication



Tensor Core Microarchitecture

- Each tensor core performs 16 four-element dot products each cycle
- Each warp uses two tensor cores, two octets in a warp access each tensor core
- Matrix A and C, each threadgroup fetches operands to its separate buffer
- Threadgroups fetch matrix B operands to a shared buffer

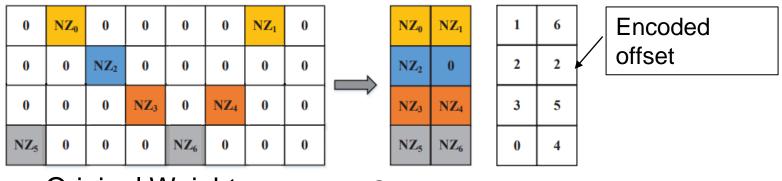


What should we learn from Tensor Core ?

- Parallelism
 - Thread-level Parallelism (TLP) for MMA execution
 - Special functional units for DP calculation
- Data reuse
 - Increase the tiling block reuse through local memory buffer
- ISA Support
 - Need the supports from special ISA (WMMA) in the compiler
- What else ?

Sparse Tensor Core

- Improve tensor core utilization in sparse MMA
- Sparse MMA is shown on model compression
- Data encoding + tensor core mapping
- Does this work on graph workloads with dynamic sparsity ?

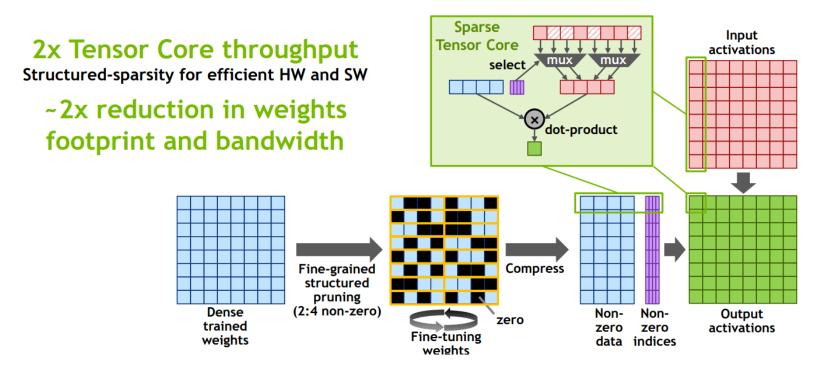


Compressed Weight

Original Weight

Zhu et.al., MICRO 2019

Sparse Tensor Core in Nvidia A100 GPU



https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s21730-inside-the-nvidia-amperearchitecture.pdf

Dual-side sparse tensor core

• Activation sparsity

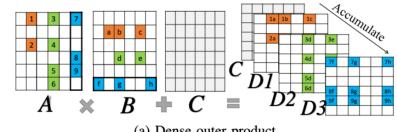
- Dynamic sparsity the zero value was created during the runtime
- Hard to predict, data dependent

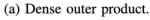
Dual-side sparse tensor core

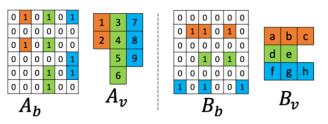
- Support SpCONV and SpGEMM
- Outer-product-based tensor core

• How to encode dynamic sparsity ?

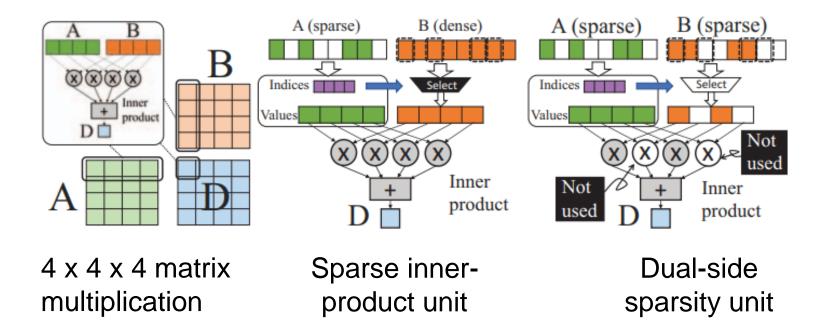
- Bitmap encoding
- Each matrix has a b(bitmap) and a v(value) matrix







Tensor Core Comparison

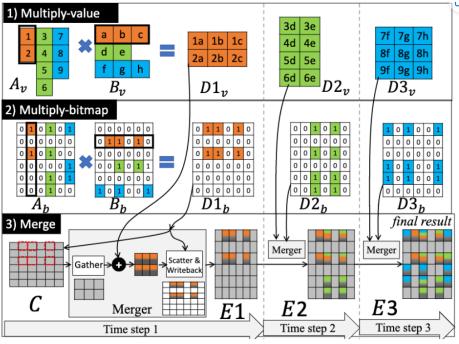


Bitmap-encoding outer product

- Outer-product SpGEMM
 - Multiply matrix v
 - Multiply matrix b

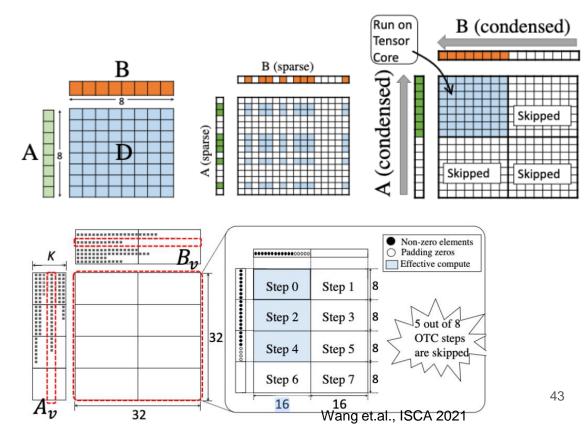
V

- Merger
 - Fetch updated values from matrix b
 - Accumulate values in matrix
- in matrix



Outer product tensor core

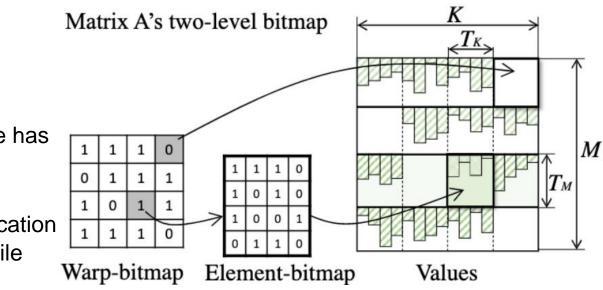
- Outer product tensor core (OTC)
 - The size of matrix in OTC is 8 x 8
 - The size of A and B is (32, k) and (k, 32)
 - Two tensor cores do 8 x 16 matrix comp.
 - The data sparsity decides the rate of acceleration



Two-level Bitmap Encoding

Two-level bitmap encoding

- When the size of matrix is too large
- Bitmap matrix is large too
- Warp bitmap
 - Represent if a tile has value
- Element bitmap
 - Represent the location of non-zero in a tile

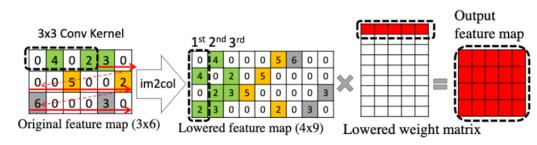


Outer-product friendly im2col

• The im2col work

- Rearranges input feature maps as an input of GEMM
- Improperly designed
 - Harm input data reuse
- Sliding a 1 x 4 window
- Zig-zag way to scan over the feature map

(a) Inner product friendly im2col.



Takeaway Questions

- How does tensor core accelerate the matrix computation ?
 - (A) Increase the on-chip buffer size
 - (B) Increase the frequency of tensor cores
 - (C) Reduce the data movement
- How to increase the utilization of the tensor core ?
 - (A) Use image to column (Im2col)
 - (B) Lower the data precision (using int8)
 - (C) Increase the number of registers