ter Architecture & System Lab

Accelerator Architectures for Machine
Learning (AAML)

Lecture 7: GPGPU

Tsung Tai Yeh
Department of Computer Science
National Yang-Ming Chiao Tung University

i
Hlat/ Computer Architecture & System Lab

Acknowledgements and Disclaimer

;i? National Yang Ming Chiao Tung University

e Slides was developed in the reference with
Joel Emer, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, ISCA 2019
tutorial
Efficient Processing of Deep Neural Network, Vivienne Sze, Yu-Hsin
Chen, Tien-Ju Yang, Joel Emer, Morgan and Claypool Publisher, 2020
Yakun Sophia Shao, EE290-2: Hardware for Machine Learning, UC
Berkeley, 2020
CS231n Convolutional Neural Networks for Visual Recognition,
Stanford University, 2020
CS224W: Machine Learning with Graphs, Stanford University, 2021

i
Hlat/ Computer Architecture & System Lab

Outline

;i? National Yang Ming Chiao Tung University

« GPU hardware basics
« Programming Model

o« The SIMT Core
o Warp Scheduling
o Functional Unit
o Operand collector

X ,/1 National Yang Ming Chiao Tung University
=XL7\
a4 Computer Architecture & System Lab

e GPU = Graphics Processing Units
e Accelerate computer graphics rendering and rasterization
e Highly programmable (OpenGL, OpenCL, CUDA, HIP etc..)

e Why does GPU use GDDR memory?
o DDR RAM -> low latency access, GDDR RAM -> high bandwidth

System Graphics
Memory Memory CPU GPL
(DDR RAM) (GDDR RAM)
Discrete _ Integrated
GPU CPU GPU GPU
bus Memory

11\

Xtz National Yang Ming Chiao Tung University
~Sa=’} Computer Architecture & System Lab

Discrete GPU

e A (PCle) bus connecting the CPU and GPU
e Separate DRAM memory spaces

O

CPU (system memory) and the GPU (device memory)

e DDR for CPU vs. GDDR for GPU

O

O

CPU DRAM optimizes for
low latency access

GPU DRAM is optimized for
high throughput

Discrete
GPU

System
Memory
(DDR RAM)

Graphics
Memory
(GDDR RAM)

CPU

GPU

bus

National Yang Ming Chiao Tung University

Xtz
%‘.‘:‘I? Computer Architecture & System Lab
Integrated GPU

e Have a single DRAM memory space
e Often found on low-power mobile devices

Ex. AMD APU
Private cache -> cache coherence

(@)

O

GPU

CPU
H Integrated
GPU

Memory

X ,4"\ National Yang Ming Chiao Tung University
Hyt# Computer Architecture & System Lab

CPU vs GPU
Cores | Clock | Memory | Price Speed
Speed
~540 GFLOPs F32

DDR4 RAM $385

CPU (Intel 4 4.2 GHz
Core i7-

7700Kk)

GPU (Nvidia 10496 1.7 GHz DDR6 24 GB $1499 36 TFLOPs F32

RTX 3090 Ti)
CPU: A small number of complex cores, the clock speed of

each core is high, great for sequential tasks
GPU: A large number of simple cores, the clock speed of

each core is low, great for parallel tasks

D3/} National Yang Ming Chiao Tung University https://docs.nvidia.com/cuda/cuda-c-programming-quide/index.htn
Hyt# Computer Architecture & System Lab

Why do we use GPU for computing ?
e What is difference between CPU and GPU?

o GPU uses a large portion of silicon on the computation against CPU
o GPU (2nJ/op) is more energy-efficient than CPU (200 pJ/op) at peak

performance
o Need to map applications on the GPU carefully (Programmers’ duties)
CPU GPU

Core Core

L1 Cache L1 Cache

Core

L1 Cache L1 Cache

L2 Cache L2 Cache

L3 Cache
L2 Cache

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

X g“\ National Yang Ming Chiao Tung University
~ Hyt# Computer Architecture & System Lab

Modern GPU Architecture

e A modern GPU is composed of many cores
o Streaming multiprocessors (SM) (Nvidia) or compute units (CU) (AMD)

[A G PU Single-Instruction, Multiple—Ihreads
o Executes a single-instruction
multiple-thread (SIMT) program Streaming Streaming Streaming
Multiprocessor Multiprocessor Multiprocessor
(kernel)
e A streaming multiprocessor | T
o Threads are interleaving on | ! !
Memory Memory Memory
each SM Partition Partition ©oo Partition
o Has a local scratch memory |
an d data CaCh e GDDR3/GDDRS || GDDR3/GDDR5 | Off-chip DRAM | GDDR3/GDDRS

,/1 National Yang Ming Chiao Tung University
el 1LY
a14 Computer Architecture & System Lab

GPU Thread Hierarchy

X

L)

[

e Thread
The smallest unit of execution in CUDA
All threads execute the same kernel code (a function that runs on

(@)

(@)

the GPU).
Threads can be identified using unique IDs,
accessible through built-in variables like "threadldx".

Has its own set of registers and local memory.

Block (1, 1)

O

o The threads executing on a single core
Can communicate through a scratchpad memory

Synchronize using fast barrier operations

[|
https://docs.nvidia.com/cuda/cuda-c-programming-quide/index.html

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

,/1 National Yang Ming Chiao Tung University
“1\
a14 Computer Architecture & System Lab

GPU Thread Hierarchy

X

L)

[

e Warp
Group threads in a warp (32 threads)

(@)

Execute in lockstep

(@)

Warp buffer stores multiple warps
Interleaving warp execution to hide off-chip

|
memory access latency and reduce the
idle of GPU compute cores

(@]

Block (1, 1)

https://docs.nvidia.com/cuda/cuda-c-programming-quide/index.html

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

National Yang Ming Chiao Tung University

%‘-‘:TP Computer Architecture & System Lab
GPU Thread Hierarchy

A block is a group of threads that execute together on the same Streaming

e Thread Block

O
Multiprocessor (SM)
A thread block contains multiple warps/threads
Specifically, block is a 3D array of threads

Threads within a block can communicate and
synchronize with each other using shared memory and

O
o
s Iy
A Vi
. Block (1, 1)

@)

synchronization primitives like ~__ syncthreads()’
A thread block can have 1024 threads at most

@)

https://docs.nvidia.com/cuda/cuda-c-programming-quide/index.html

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

National Yang Ming Chiao Tung University

224,
~ Hyt# Computer Architecture & System Lab

GPU Thread Hierarchy

e A “grid” can have multiple blocks

A grid is identified using "gridDim™: total number

@]
executing a given kernel.

e How to declare threads/blocks in GPU codes?
Blocks are organized as three dimensional grid of

o

thread block

https://docs.nvidia.com/cuda/cuda-c-programming-quide/index.html

13

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

_‘%ﬂiﬁ\ National Yang Ming Chiao Tung University

‘Tf &T# Computer Architecture & System Lab

Modern GPU Architecture

e Single Instruction Multiple Threading (SIMT)
o Multiple threads execute the same instruction at the same time (like
SIMD), but each thread can take its own path based on its data (like MIMD).

e Highly multithreaded GPU

o Cover the long latency of memory loads and texture fetches from DRAM

o Virtualize the physical processors as threads and thread blocks to provide
transparent scalability

o Support fine-grained parallel graphics shader programming models /
computing programming models

14

X //" National Yang Ming Chiao Tung University
=337

kY
‘,ig-r Computer Architecture & System Lab

SIMT Execution Model

e All threads in warps/wavefront execute the same instruction

e GPU runs warps/wavefront in lockstep on SIMT hardware

e Challenges: How to handle branch operations when different threads in
a warp go to different path through program ?

wl = {2, 4, 8, 10} A
A: v = w[threadldx.x]; 5
B (v <_5)_ Serialize .
C: | v=1 operations in

D: © s\e/ _ 50: different paths D

E: w = bar[threadldx.x] + .

\Y

oWwll

15

X //" National Yang Ming Chiao Tung University
=347\
Hlat/ Computer Architecture & System Lab

Control Divergence « When threads in the same warp
follow different execution paths, we

say that these threads exhibit

« When threads within a warp take different control divergence

control flow paths, SIMT will take multiple
passes through these paths, one pass for
each path.

o For an if-else, some threads in a warp
follow the if-path while others follow the
else path, the hardware will take two
passes.

o During each pass, the threads that follow inactive 2 %%

the other path are not allowed to take ’.
SRR NN
effect.

1 2 23 24 25 31

1

inactive

‘./'\/\ N_/\/\w
3 -\/\/\

it

FIGURE 4.9
Example of a warp diverging at an if-else statement.

16

=X

‘Tf &T# Computer Architecture & System Lab

Control Divergence

X E’/j\ National Yang Ming Chiao Tung University

« When threads in the same warp
follow different execution paths, we
« Thatis, SIMT unit must execute each say that these threads exhibit
paths serially, one after the other, to control divergence
handle all possible outcomes.

o This process is often referred to as AL
"masking" where irrelevant data lanes are % % % s é%
masked out during each pass. .)t {g {4

o Execution resources that are consumed by o é % % éé inactive
the inactive threads in each pass, reducing o
overall efficiency. | inactive % é %

' SRR TR

FIGURE 4.9

Example of a warp diverging at an if-else statement.

17

‘.‘.ﬁ/

National Yang Ming Chiao Tung University

Z
=R [N
1&? Computer Architecture & System Lab

SIMD vs. SIMT

e SIMT vs SIMD

O

o

SIMD: HW pipeline width must be known by SW

SIMT: Pipeline width hidden from SW

/

Common PC

Warp
Scalar Scalar
Thread O Thread 1

Scalar
Thread 31

Warp 7
Warp 9

Warp O

Y

SIMT Pipeline

18

Hlat/ Computer Architecture & System Lab

SIMD vs. SIMT

3 key features that SIMD doesn't have BUT SIMT HAVE:

« Singleinstruction, multiple register sets
o Register Set per Thread: each thread executing under a single
instruction has its own set of registers
o This feature allows each thread to maintain its state and perform
calculations on its own unique data set, leading to a more flexible and
powerful execution model compared to traditional SIMD(work on a
single, shared set of data)
« Single instruction, multiple addresses
o Each thread in a warp can access different memory addresses
o This is in contrast to traditional SIMD, where all elements usually
perform operations on consecutive memory locations

;i?\ National Yang Ming Chiao Tung University

19

X ?\ National Yang Ming Chiao Tung University
~{d/ Computer Architecture & System Lab

SIMD vs. SIMT

3 key features that SIMD doesn't have BUT SIMT HAVE:

« Single instruction, multiple flow paths
o Divergent Execution, if a warp encounters an ‘if-else’ statement,
some threads might execute the ‘if’ block while others execute the
‘else’ block.
o This feature provides a level of flexibility similar to MIMD architectures,
allowing for individual threads to follow different execution paths
based on their data.

20

% National Yang Ming Chiao Tung University

-
ESEZIN

kY
‘,ig-r Computer Architecture & System Lab

Modern GPU Architecture

e The compute core in each stream multiprocessor (SM)
o In-order pipelined ALU
- GPUs fill the pipeline effectively by interleaving instructions from
different warps(32 threads) -> SIMT
- Instruction dependency stalls the warp, because threads in a warp
execute in lockstep

SM SM SM SM SM SM SM SM
oooooo Control Control Control Control Control Control Control

21

X //" National Yang Ming Chiao Tung University
=347\
Hlat/ Computer Architecture & System Lab

Modern GPU Architecture

e GPU Warp Execution

o

O

O

O

Instruction dependency stalls the warp, because threads in a warp execute
in lockstep

GPU mitigates the impact of these stalls by having multiple warps ready
to execute

When one warp stalls, the GPU switches to another warp, helping to fill the
pipeline gaps caused by stalls and maintaining high utilization of the
execution units. o T M sm M sm
Hide off-chip memory access o (e NG O S [T T [
latency -> interleaving warp

execution

Memory Memory Memory Memory Memory Memory Memory Memory

22

National Yang Ming Chiao Tung University

Y
Computer Architecture & System Lab

Modern GPU Architecture
Single-Instruction, Multiple- Threads

e The GPU thread hierarchy
A warp (32 threads) -> a thread block (CTA) (< 32 warps) -> grid

3
f*

O
e Each SM has a shared memory
(16 — 64 KB) and a data cache
© Threads Wlthm a CTA can Streaming Streaming Streaming
communicate With each other via Multiprocessor Multiprocessor ceo Multiprocessor
a per SM shared memory
o The shared memory acts as a | Interconnection Network
! ! !
software controlled cache . Memory e Memory
o Allocate shared memory using Partition Partition Partition
A
GDDR3/GDDRS | | GDDR3/GDDR5 | Off-chip DRAM | GDDR3/GDDRS

__shared___in CUDA

National Yang Ming Chiao Tung University

Computer Architecture & System Lab

Modern GPU Architecture

e Synchronization

Threads within a CTA can synchronize using hardware-supported barrier
Single-Instruction, Multiple—lhreads

O

instructions (__syncthreads())
o Threads in different CTAs can GPU
communicate, but do so through

Streaming

Multiprocessor

a global address space that is
accessible to all threads

Streaming Streaming
Multiprocessor Multiprocessor ooo
‘ Interconnection Network
Memory Memory coo Memory
Partition Partition Partition
Y
GDDR3/GDDRS | | GDDR3/GDDRS5 | Off-chip DRAM | GDDR3/GDDRS

i
Hlat/ Computer Architecture & System Lab

Takeaway Questions

;i? National Yang Ming Chiao Tung University

o What are features of the GPU?

o (A) Large L1 cache
o (B) Needs the memory with high memory bandwidth
o (C) The frequency of SIMT core is high

« How does GPU hide off-chip memory access latency?

o (A) Increase the number of compute units
o (B) Using large L1 data cache
o (C) Interleaving warp execution

25

E\%if/j\ National Yang Ming Chiao Tung University

Hlat/ Computer Architecture & System Lab

The SIMT Core

e SIMT front end

o The instruction fetch: fetch, I-cache, Decode, and I-buffer
o The instruction issue: I-buffer, Scoreboard, Issue, SIMT stack

e SIMD data path

o Operand collector, ALU, Memory

SIMT Front End

— == [-Buffe >
Operand
I-Cachle> Decode ¢ C(')O”ector
> Score N
—>» Board
Done (WID)

GPGPU-Sim, MICRO

X //" National Yang Ming Chiao Tung University
=337

-
1%5 Computer Architecture & System Lab

The Execution in the SIMT core

e In each cycle, the hardware selects a warp for scheduling
o The warp’s program counter is used to access an instruction
memory to find the next instruction to execute for the warp

e An on-chip warp buffer holds multiple warps
fora GPU SM. (Why ?)

Interleave warp execution hides the memory latency

Warp Common PC
Scalar Scalar Scalar
Thread O Thread 1 0o Thread 31

=)

Warp 7/

/l

Warp 9

Warp O

Y

SIMT Pipeline

X //" National Yang Ming Chiao Tung University
=337

kY
‘,ig-r Computer Architecture & System Lab

SIMT Plpellne Sfrlli?;ie Decode ReR%i;tjer Execute Memory | | Writeback

e 5 stage In-Order SIMT pipeline
e Regqister values of all threads stays in core

Done (Warp 1D) |

SIMT Reg
Front End ¥ rie =¥ SIMD Datapath
Fetch
Decode t l
Schedule Memory Subsystem | | Icnt.
Branch ISMem|[L1 D$||Tex $|[Const$| | Network

GPGPU-Sim, MICRO 28

i
Hlat/ Computer Architecture & System Lab

Inside a SIMT Core

;i? National Yang Ming Chiao Tung University

Fetch, Warp Issue, and Operand Schedulers
Scoreboard ->data hazard and SIMT stack->control flow
Large register file

Multiple SIMD functional units

SIMT Front End

i == I-Buffe >
Operand
I-Cach|9 Decode ¢ C(')O”ector
) Score 5
—>»_Board
Done (WID)

GPGPU-Sim, MICRO

®

X%7 % National Yang Ming Chiao Tung University
~{d/ Computer Architecture & System Lab

Fetch + Decode

|I-Cache

O

O

O

Fetch instructions of warps in a round
robin manner

Read-only, set associative

FIFO or LRU replacement

|-Buffer

O

O

O

(©)

Store instructions fetched from I-cache
Each warp has two I-buffer entries

Valid bit indicates non-issued decode
Instructions

Ready bit indicates instructions are ready t
be issued to the execution pipeline

v: valid bit
r. ready bit
core-
/_ PC DeCOdeSBard
Al
_ IR
o B
d | PE
o M5
A [Selection
v A
Issue
valid[L:N], ISSUEARE’
Fetch i

& 5 Valid[LN] Buffe

—
I-Cach+> Decod¢

GPGPU-Sim, MICRO 30

X ?\ National Yang Ming Chiao Tung University
~{d/ Computer Architecture & System Lab

Instruction Issue

e A round-robin arbiter oo .
Iv valid bit :

| r: ready bit | i

o Choose instructions of a warp from |-Buffer to
issue to the rest of the pipeline
o Allow dual issue

e Instruction issue
o Memory instructions are issued to memory pipeline

o SP and SFU pipeline

e [ssue stage
o Barrier operations are executed
o SIMT stack is updated
o Register dependency is tracking (Scoreboard) GPGPU-Sim, MICRO
o Warps wait for barrier (__synthreads()) at issue stage "

-
£

X //" National Yang Ming Chiao Tung University
=347\
&T# Computer Architecture & System Lab

The Execution in the SIMT core

e After fetching an instruction
o The instruction is decoded
o Source operand registers are fetched from the register file
o Determine SIMT execution mask values

e SIMD execution
o Execution proceeds in a single-instruction, multiple-data manner
o Each thread executes on the function unit associated with a lane
provided the SIMT execution set is set

e Function unit

o Special function unit (SFU), load/store unit, floating-point, integer function

unit, Tensor core .

11\

;i? National Yang Ming Chiao Tung University

Hlat/ Computer Architecture & System Lab

ALU Pipelines

e SIMD execution unit

O

O

O

O

O

SP units executes ALU instructions except some special ones
SFU units executes special functional instructions (sine, log ...)
Different types of instructions takes varying execution cycles

A SIMT core has one SP and SFU unit

Each unit has an independent issue port from the operand
collector.

e Writeback

O

O

O

Each pipeline has a result bus for writeback
Except SP and SFU shares a result bus
Time slots on the shared bus is pre-allocated

33

X //" National Yang Ming Chiao Tung University
=XPZ|N
Hlat/ Computer Architecture & System Lab

e Dynamically scheduling instructions so that they can execute out of
order when there are no conflicts and the hardware is available
e Solutions for WAR:
o Stall writeback until registers have been read
o Read registers only during Read Operands stage
e Solution for WAW:
o Detect hazard and stall issue of new instruction until other
instruction completes
e Instructions with hazards -> not ready flag in I-Buffer

34

iﬁ National Yang Ming Chiao Tung University
el [A

X
‘Tf a14 Computer Architecture & System Lab

SIMT Execution Masking

e A control flow graph (CFG) [T
o Initially four threads in the warp 2| tl = tid*N; /1
. . 3 t2 = t1 + 1i;
o A/1111 indicates all four threads are .| t3 = datal[t2]:
executing the code in Basic Block A s | t4 = 0;
6 if(t3 1= t4) {
7 t5 = data2([t2]; //
' e
} Ret./Reconv. PC Next PC Active Mask i e tf o e
5 T ’ e -
TOS — G B 1110 10 ¥ elsa {
(c) Initial State 11 y += 23 //
Ret./Reconv. PC Next PC Active Mask 12 }
[C/1000 | [D/0110| | F/0001 | o (1;:’ uy " } elsa {
(E} 1% éﬂg (('i')) 14 z += 3; T4
TOS — E C 1000 (i) < } '
(d) After Divergent Branch :

GA1L [« Ret/Reconv. PC NextPC Active Mask e Ay /7

- %; (1)(1)(1& 17 | } while(i < N);

(a) Example Program TOS —> G E 1110

(e) After Reconvergence

X g\ National Yang Ming Chiao Tung University
~Sa=’} Computer Architecture & System Lab

SIMT Execution Masking

e SIMT Execution masking
Tackle the nested control flow

O

O

Skipping computation entirely while all threads in a warp avoid a control flow

path

Serialize execution of threads following different paths within a given warp
An arrow with a hollow head indicates the thread is masked off

A B C D E F G A
R - —=|| —» . =
| - g
— — || || >

(b) Re-convergence at Immediate Post-Dominator of B

> Time

36

11\

S_i? National Yang Ming Chiao Tung University

Hlat/ Computer Architecture & System Lab

SIMT Stack

e SIMT stack includes

o A reconvergence program counter (RPC)

o The address of the next instruction to
execute (Next PC)

o An active mask

A
B

w[] = {2, 4, 8, 10};

C:

. v = w[threadldx.x];
HIE(v <_91)_ Serialize
els:e/ = operations in
v = 20: different paths

w = bar[threadldx.x] +

One stack per warp

SIMT Stack
PC | RPC Active Mask
E - 1111
D E 0001
C E 1110

1

awil L

4
-

37

National Yang Ming Chiao Tung University

Computer Architecture & System Lab

SIMT Stack

Top-of-Stack (TOS)

Initial State
Re-converge PC| Next PC Active Mask
- G 1111
G F 0001
TOS —— G B 1110
A/1111 After Divergent Branch
| Re-converge PC | NextPC | Active Mask
B/1110 - G 1111
| —I G F 0001
C/1000 D/0110 F/0001 G E 1110
I | E D 0110
' l' TO0S —— E C 1000
E/1110 After Reconvergence
L Re-converge PC | Next PC Active Mask
G/1111 : G 1111
| G F 0001
TOS — G E 1110

38

X ,/1 National Yang Ming Chiao Tung University
=347\
a4 Computer Architecture & System Lab

SIMT Stack

e Predicate register

o A predicate register is part of the scalar register file that is shared by all
threads in a warp. These reqisters are used as predication registers to
control the activity of each thread within a warp.

o Predicate masks <-> active mask

o Specifically, the compiler utilizes this scalar register file to emulate a SIMT
stack in software when it encounters potentially divergent branches in the
compute kernel.

One stack per warp SIMT Stack
PC | RPC Active Mask
E - 1111

D E 0001

C E 1110 39

National Yang Ming Chiao Tung University

Computer Architecture & System Lab

Independent Thread Scheduling

Pre-Volta GPU

The passes in the presence of “if-else” are executed sequentially

[J
« From the Volta GPU onwards,
The “if-else” passes may be executed concurrently, meaning that the
execution of one pass may be interleaved with the execution of another

This feature is referred to as independent thread scheduling

pass.
TEEELLLEEEEELLE VL

) .
o Allocate per-thread scheduling -
ogram
resources such as program il
counter (PC) and call stack (S) 32 thread warp
L1
MHQH)H/}/&

L
alaééa;z;l;a;;,

L{

lllé

32 thread warp with independent scheduling

(
Y

40

N3# % National Yang Ming Chiao Tung University

RPZNIN

iy -r Computer Architecture & System Lab

Independent Thread Scheduling

« Replace the stack with per warp
convergence barriers
« Scheduler optimizer
o Determines how to group active
threads from the same warp together
into SIMT units

if (threadidx.x < 4) {
Ai

B;

} else {
X3
Y;

}

Z;

if (threadidx.x < 4) {
Aj
B3
} else {
X3
Y;
}
Z;

X5 ¥;

o
an
=
o
=
c
=]
[y
u
[

» Time

Z

Time

Figure 12: Violta independent thread scheduling enables interleaved execution of statements from
divergent branches, This enables execution of fine-grain parallel algorithms where threads within a

warp may EE'HE"‘FCII"I:E and communicate

41

é‘iﬁ‘ National Yang Ming Chiao Tung University

‘Tf a14 Computer Architecture & System Lab

Warp Scheduling

The warp scheduler is responsible for arranging

the execution order of warps on an SM
Warp scheduler selects an instruction
of a warp that is ready to execute
Instruction-level parallelism (ILP)

o Pick instructions of the same warp
Thread-level parallelism (TLP)

o Choose instructions across different warps
Multiple Warp schedulers on a SIMT Core
Impact on the SIMT Core utilization

|I-Cache
¥

|-Buffer

¥
Warp O

Warp 1

Warp Slot

Warp 63
¥

Warp Siheduler

42

X ,/1 National Yang Ming Chiao Tung University
=347\
a4 Computer Architecture & System Lab

Loose Round Robin (LRR) Scheduling

e Scan through warps and select the one ready warp (R)
If warp is not ready (N), skip that one and go to the next one
e Warp all runs on the same chance

Problems
o Potentially all warps reach
memory access phase
together and get stall

Warps

R| [N| [R]|R| |R||N|[R] R

Select Logic

-

Execution Units

43

% National Yang Ming Chiao Tung University

=x}7

X
"'gi';r Computer Architecture & System Lab

Two-Level (TL) Scheduling

Pending Warps

e Warps are divided into two P
groups

P||P||P||P

P

o Pending warps (potentially
waiting for long latency instructions)
o Active warps (ready to execute)
o Warps move between pending
and active warps
o Active warps are issued in LRR

e Overlap warps with

Ms

Al Al A A |A

memory access and ALU

Select Logic

Instructions

-

Execution Units

44

X ,/1 National Yang Ming Chiao Tung University
=347\
a4 Computer Architecture & System Lab

Greedy-Then-Oldest Scheduling

e Select instructions of a single warp until it stalls
e Then pick the oldest warp to the next
e Improve the cache locality of the greedy warp

Warps

R IN|[R]|R|[R]||N

Select

Execution Units

X //" National Yang Ming Chiao Tung University
=347\
Hlat/ Computer Architecture & System Lab

Thread Block (CTA) Scheduling

e A CTA s issued to one SIMT core at a time
e Scans through SIMT cores to issue a CTA to a SIMT core with

available resources at round-robin manner
o Threads (available warp buffer)
o The shared memory space
o The register file
Multiple concurrent kernels
o Different kernels can be executed across SIMT cores

46

X //" National Yang Ming Chiao Tung University
=337

kY
‘,ig-r Computer Architecture & System Lab

Register File

e 256 KB register files on a SIMT core

e How many registers can be used by one thread ?
o Maximum number of warps per SIMT core is 64
o 32 threads per warp
o 256 KB/64/32/32-bit =232
e Need “4 ports” (e.g. FMA) -> increase area greatly
e What is the solution ?
o Banked single ported register file

47

% National Yang Ming Chiao Tung University
\

Xiz
=337
1%(Computer Architecture & System Lab

Operand Collector

e Operand collector aims to increase register file bandwidth
e A valid bit, a register identifier, a ready bit, and operand data
e Arbiter selects operand that don’t conflict on a given cycle

Arbitrator

(from instruction decode stage) ‘l
1)

L mad
> - Bank 0 - | [_”iéj; —
ot N [0

T

> | - oo | [—t» L 1 O
Bank 1 H e

wl} add _

> | - Bank2 o | e | e hiEdhigedee)
i ——
w2 ildd

M| [Bank3 - | [t g 3 e proPE
U___ [

YYY _YYY _'YVWY

GPGPU-Sim, MICRO

Single-Ported
Register File Banks

Crossbar Collector Units

SIMD
Execution Unit

48

11\

Bank

;if National Yang Ming Chiao Tung University

gy Computer Architecture & System Lab Bank O | Bank 1 | Bank 2 | Bank 3
ReQISter Bank COnﬂICt Wilrd | W1xax5 | W16 | W17
_ _ o W1:r0 W1:rl W1:r2 W1:r3
On cycle 4, issue instruction i2 WOord | WOors | Wore | wor7
after a delay due to bank WO:r0 | WOl | WOr2 | Woir3
conflict
Low utilization of register banks Cycle |Warp | Instruction
Solutions ? 0 W3 1I1: mad r2,r5,r4,r6
1 WO i2: add 5, r5, rl
Cycle 4 w1 i2: add r5,r5,r1
1 2 3 4 5 6
0 W3:il:r4
1 W3:i1:r5 WO0:i2:r1 WO0:i2:r5 WO0:i2:r5 W1:i2:r1 W1:i2:r5
2 W3:il:r6 W3:il:r2
3 49

11\

Bank

;if National Yang Ming Chiao Tung University

s Computer Architecture & System Lab Bank O | Bank 1 | Bank 2 | Bank 3
Register Bank Conflict
W17 | Wlrd | W15 | W16
_ _ W1lr3 | W10 | W1l | W12
Swizzle banked register layout Wo'r4 | Wors | wore | wor?
WO:r0 -> bank 0, W1:r0O -> bank 1, WOo0 | wort | wor2 | wora
W2:r0 -> bank 2, W3:r0 -> bank 3
Save 1 cycle against the naive bank [£Y¢l¢ | Warp | Instruction
layout. Could we do better ? 0 W3 fl: mad 12,15 r4, 16
1 WO 12: add r5,r5,rl
Cycle 4 W1 i2: add r5,15,r1
1 2 3 4 5 6
0
1 Wa3:il:r5 | WO:i2:irl WO:i2:r5 | Wa3ilir2 W1:i2:rl
2 W3:il:r6 WO0:i2:r5 | WL1:i2:r5
3 W3:il:r4 50

X

% National Yang Ming Chiao Tung University

=337
‘,ig-r Computer Architecture & System Lab

Takeaway Questions

« How does GPU hide the instruction fetch latency?
o (A) Use SIMT stack
o (B) Use multiple instruction fetcher
o (C) Use instruction buffer

o What is the purpose of the SIMT stack?
o (A) Record the register location
- (B) Handle the branch divergence
> (C) Increase the speed of SIMT execution

51

X i/ National Yang Ming Chiao Tung University

=0
=337

‘Tf &T# Computer Architecture & System Lab

Takeaway Questions

o What are correct descriptions of SIMT execution model?
o (A) Every thread in a warp tackles the same instruction
o (B) Threads within a warp can walk different control paths
concurrently
o (C) Every thread in a warp accesses the shared data

52

X ,/1 National Yang Ming Chiao Tung University
=347\
a14 Computer Architecture & System Lab

GPGPU Programming Model

e CPU offloads “kernels” consisting of multiple threads to GPU

e CPU transfer data to GPU memory (discrete GPU)
Need to transfer result data back to CPU main memory

o
Could GPU spawn kernels
within GPU? (Recursive calls)

Yes, CUDA dynamic
parallelism

Push
kernels ;
Could a GPU execute multiple kernels?
Yes, GPU supports “concurrent
execution” 53

@ National Yang Ming Chiao Tung University

‘Tf &T# Computer Architecture & System Lab

CUDA Programming Syntax

e Declaration Specifiers
Execution on Callable from:

__global__ void vadd(...) Device Host
__device__ void bar(...) Device Device
__host__ void func(...) Host Host
e Syntax for kernel launch

o F00<<<256, 128>>>(...); //256 thread blocks, 128 threads each
e Built in variables for thread identification

o dim3 threadldx.x, threadldx.y, threadldx.z;

o dim3 blockldx.x, blockldx.y, blockldx.z;

o dim3 blockDim.x, blockDim.y, blockDim.z;

54

X ,/1 National Yang Ming Chiao Tung University
=347\
a4 Computer Architecture & System Lab

Example: SAXPY C Code

void saxpy serial (int n, float a, float *x, float *y)
{
for (int 1 = 0; 1 < n; ++1)
yli] = a*x[1] + y[1];

int main () {
// omitted: allocate and initialize memory

saxpy serial(n, 2.0, x, y); // Invoke serial SAXPY
kernel

// omitted: using result

‘%3%:4 National Yang Ming Chiao Tung University
St

Hyt# Computer Architecture & System Lab

SAXPY CUDA Code

__global void saxpy(float A[N] [N], float B[N] [N], float C[N][N]) {
1nt i = blockIdx.x * blockDim.x + threadIdx.x;

f(i<n) yl[i]l=a*x[1i]+yI[1];

int main () {
// omitted: allocate and initialize memory
int nblocks = (n + 255) / 256;
cudaMalloc ((void**) &d x, n);

(
cudaMalloc ((void**) &d y, n);
cudaMemcpy (d_x,h x,n*sizeof (float), cudaMemcpyHostToDevice) ;
cudaMemcpy (d_y,h y,n*sizeof (float), cudaMemcpyHostToDevice) ;
saxpy<<<nblocks, 256>>>(n, 2.0, d x, d y);
cudaMemcpy (h y,d y,n*sizeof (float), cudaMemcpyDeviceToHost) ;
// omitted: using result

X ’1 National Yang Ming Chiao Tung University -
“'gi';r Computer Architecture & System Lab M|Xed mode
_— code
CUDA Program Compilation
Host split Device split
e NVCC compiler separates the host y y r Device
and device codes ost code 4%
> nhvcc abc.cu —o0 abc Clang for
CUDA
e Ptxas !z
o Assembler of CUDA programs _| _
o Output PTX instruction sets Optimizer
e NVProf NngX
o Performance profiler for CUDA programs A 4 Codegen
o Show runtime information of CUDA Host code PT’(
tor [T~
programs géenera Assembly
o nvprof —print-gpu-trace ./a.out v : .
Host compiler
_ L 2
http://llvm.org/devmtq/2015-10/slidesMu-OptimizingLLVMforGPGPU.pdf ~ BINArY

http://llvm.org/devmtg/2015-10/slides/Wu-OptimizingLLVMforGPGPU.pdf

X {1\ National Yang Ming Chiao Tung University
‘Tf &T# Computer Architecture & System Lab
GPU Instruction Sets

e Nvidia
o PTXISAs — virtual ISAs, RISC-like ISAs, a limitless set of virtual registers
o SASS ISAs — actual ISAs supported by the hardware, no fully document

e AMD

o TeraScale->GCN->RDNA ISAs

o Open-source ISAs — specified to AMD GPU architectures
e ARM

o Mali Bifrost, Valhall GPU architecture

o Proprietary ISAs
e Why ISAs matter ?

o Determine the computer architecture (IP) design

58

X //" National Yang Ming Chiao Tung University
=347\
Hlat/ Computer Architecture & System Lab

Parallel Thread Execution (PTX) Instructions

__global __ void vecAdd(double *a, double *b, double *c, int n){
> int id = blockldx.x*blockDim.x+threadldx.x;
if (id <n)
c[id] = a[id] + b[id];

}

|d.param.u64 %rdl, [Z6vecAddPdS S i param_O0]; //load parameter a
|d.param.u64 %rd2, [Z6vecAddPdS S i param_1]; //load parameter b
|d.param.u64 %rd3, [Z6vecAddPdS S i param_2]; //load parameter c
|d.param.u32 %r2, [Z6vecAddPdS_S i param_3]; //load parameter d
mov.u32 %r3, %ctaid.x; // blockldx.x

mov.u32 %r4, %ntid.x; // blockDim.x

mov.u32 %r5, %tid.x; // threadldx.x

mad.l0.s32 %r1, %r4, %r3, %r5; // id = blockldx.x * blockDim.x + threadldx.x
setp.ge.s32 %pl, %rl, %r2; //if (id <n)

@%p1 bra BBO_2;

X //" National Yang Ming Chiao Tung University
=347\
Hlat/ Computer Architecture & System Lab

Parallel Thread Execution (PTX) Instructions

__global __ void vecAdd(double *a, double *b, double *c, int n){
int id = blockldx.x*blockDim.x+threadldx.x;
if (id <n)
c[id] = a[id] + b[id];
}

cvta.to.global.u64 %rd4, %rd1; // convert memory address to generic address, %rd1: a
mul.wide.s32 %rd5, %r1, 8;

add.s64 %rd6, %rd4, %rd5; // calculate memory location of b
cvta.to.global.u64 %rd7, %rd2; // %rd2: b

add.s64 %rd8, %rd7, %rd5; // calculate memory location of a
|d.global.f64 %fd1, [%rd8]; // load a

|d.global.f64 %fd2, [%rd6]; // load b

add.f64 %fd3, %fd2, %fdl; //c=a+Db

cvta.to.global.u64 %rd9, %rd3; // %rd3: c

add.s64 %rd10, %rd9, %rd5; // memory address of c
st.global.f64 [%rd10], %fd3; // store result of c back to memory

i
Hlat/ Computer Architecture & System Lab

Dump out PTX ISA

S_i? National Yang Ming Chiao Tung University

e Dump out an native kernel
o nvcce --ptx [file.cu]
e Dump out kernel of CUDA libraries (cuBLAS, cuDNN etc..)
o cuobjdump --dump-ptx [file.cu] -lcublas_static -IcublasLt_static
-lculibos
o cuobjdump --dump-ptx [file.cu] —lcudnn_static -lcublas_static -
lcublasLt_static -Iculibos
e Dump out native SASS ISAs
o cuobjdump --dump-sass [file.cu]

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html 61

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html

