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Outline

● Reconfigurable Deep Learning Accelerators

○ FPGA

○ SambaNova Reconfigurable Dataflow Unit (RDU)

○ Coarse grained reconfigurable array (CGRA)

○ GraphCore IPU

○ Wafer-scale AI chip -- Cerebras
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Reconfigurable Deep Learning on FPGA
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Spectrum of Architectures for Deep Learning
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Why Reconfigurable Computing?

● AI accelerators improves 100X performance/energy compared 

to general-purpose processor

● But new hardware is sophisticated and expensive

○ Especially in cutting-edge manufacturing processes
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Reconfigurable Computing

● Basic idea

○ A spatial array of processing 

elements (PEs) & memories with 

a configurable network

○ Map your computation spatially

onto the array

○ Goal: programmable with near

ASIC efficiency
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Basic FPGA Design
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Modern FPGAs

● FPGAs are coarse-grain today

○ Hardened logic in LUTs

○ “DSP blocks” to implement wide add/mul

efficiently

○ Dense memories distributed throughout fabric
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FPGA vs GPU

● Prefill stage

○ The latency of FPGAs in the prefill stage increases linearly, 

while the GPU ones almost remain constant as the model 

does not fully utilize GPUs

● Decode stage

○ FPGA-based accelerators are more efficient than GPUs

10



FPGA Overlay
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FPGA Overlay
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FlightLLM
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Challenges of FPGAs on LLM Inference

● Low computation efficiency

○ Hard to efficiently map sparse matrices onto DSP chains

● Underutilized memory bandwidth

○ Repeated off-chip memory accesses for each fine-grained 

kernel

● Huge instruction storage

○ Store instructions for all possible token lengths
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High-Level Synthesis (HLS)

● Automated optimization and scheduling

● High portability against different PDK or

PPA requirements

● Short design cycle

15



Challenges of HLS Accelerator Design

● Time consuming

○ Manual architecture and micro-architecture design, manual 

C/C++ code rewriting

● Suboptimal

○ Empirical parameter tuning, like parallel factors, buffer sizes, 

tiling sizes, etc..

● Low flexibility

○ Only support a small set of models
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Accelerator Design Languages (ADLs)

● Pythonic

● Maintainability

○ Decoupled hardware customizations

● Composability

○ All the kernels, primitives, and schedules

should be composable to form complex

designs
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FPGA on AI Accelerators Follows

● FPGA vendors doing what markets want

○ Future “FPGA” not sea-of-gates for RTL netlist

● Purposeful architectures for targeted applications

○ Make things easier/cheaper to do

○ Be very good at what it is intended to do

● Coping with architectural divergence

○ Soft-logic adds malleability to “architecture”

○ 2.5/3D integration allows specialization off a common 

denominator

○ Push reconvergence of abstraction up the stack 18



SambaNova Reconfigurable Dataflow 

Unit (RDU)
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Plasticine Architecture

● Plasticine architecture
○ A reconfigurable architecture for parallel patterns (Raghu, ISCA 2017)

○ Pattern Compute Unit (PCU)
■ Reconfigurable pipeline with multiple stages of SIMD functional units 

(FUs)

○ Pattern Memory Unit (PMU)
■ A banked scratchpad memory

○ The compiler
■ Maps the computation of inner loops to PCUs

■ Most operands are transferred directly between FUs without scratchpad 

access or inter-PCU communication
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Plasticine Architecture Overview

● Data access address calculation occurs while the PCU is working

● Each DRAM channel is accessed using several address generators 

(AG) on two sides of the chip

● Multiple AGs connect to an address coalescing unit for memory 

requests

21
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Plasticine PCU Architecture

● Pattern Compute Unit (PCU)

○ Each stage’s SIMD lane contains a FU and associated pipeline 

register (PR)
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1. Scalar: uses to communicate 

single words of data

2. Each vector communicates 

one word per line in the PCU

3. Control signals at the start or 

end of execution of a PCU

Raghu, ISCA 2017



Plasticine PMU Architecture

● Pattern Memory Unit (PMU)

○ Contains a scratchpad memory and address calculation

○ Calculates address only needs simple scalar math

○ Has simpler FUs than ones in PCUs
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Reconfigurable Dataflow Unit (RDU)

● SambaNova RDU

○ Pattern Compute Units
■ BF16 with FP32 accumulation

■ Support FP32, Int32, Int16, Int8

○ Pattern Memory Unit
■ Memory transformation

○ Dataflow optimization
■ Tiling

■ Nested pipelining

■ Operator parallel streaming
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Dataflow Exploits Data Locality / Parallelism

● Software-hardware co-design architecture

○ Dataflow captures data locality and parallelism 

○ Flexible time and space scheduling to achieve higher utilization

○ Flexible memory system and interconnect to sustain high compute 

throughput

○ Custom dataflow pipeline
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Chip and Architecture Overview

● RDU Tile
○ Compute and memory components
○ A programmable interconnect

● Tile resource management
○ Combine adjacent tiles to form a 

larger logical tile
○ Each tile controlled independently
○ Allow different applications on separate

tiles concurrently

● Memory access
○ Direct access to TBs DDR4 off-chip memory
○ Memory-mapped access to host memory
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RDU Tile
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Pattern Compute Unit (PCU)

● Pattern Compute Unit (PCU)
○ Compute engine

● Reconfigurable SIMD data 
path

○ For dense and sparse tensor
algebra in FP32, BF16, and
integer data format

● Programmable counters
○ Program loop iterators

● Tail unit
○ Accelerates functions such as

exp, sigmoid
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Pattern Memory Unit (PMU)

● Pattern Memory Unit (PMU)

○ On-chip memory system

○ Banked SRAM arrays
■ Write and read multiple

high bandwidth SIMD data

stream concurrently

○ Address ALUs
■ Address calculation for 

arbitrarily complex accesses

○ Data align
■ Tensor layout 

transformation
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Switch and On-chip Interconnect

● Switch
○ Programmable packet-switched interconnect fabric

● Independent data and control buses
○ Suit different traffic 

classes 

● Programmable routing
○ Flexible chip bandwidth

allocation to concurrent
stream

● Programmable counters
○ Outer loop iterators
○ On-chip metric collection
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Interface to I/O Subsystem

● Address ALUs

○ Address calculation for arbitrarily complex accesses

● Coalescing Units

○ Enable transparent

access to memories 

across RDUs and host

memory

● Address space manager

○ Programmable, variable

length segments
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Operator Mapping
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Operator Mapping (Softmax)
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Pipelined in Space 
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Pipelined in Space + Fused
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Fused



Spatial Dataflow within an RDU

● The dataflow removes 

○ Memory traffic and host communication overhead
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CGRA
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Coarse grained reconfigurable array (CGRA)

● Coarse grained reconfigurable array (CGRA)
○ Multiple processing elements (PEs)
○ Each PE has ALU-like functional

unit
○ Array configurations vary by

■ Array size
■ Functional units
■ Interconnection network
■ Register file architectures

○ CGRAs can achieve power-efficiency of several 10s of 
GOps/sec per Watt (why?)

■ Samsung SRP processor (embedded and multimedia apps)
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Key features of CGRA accelerators

● Software-pipelining execution mapping
○ Accelerate loops with low parallelism
○ Loops with loop-carried dependence, loops with high branch 

divergence

● Avoid von-Neumann architecture bottleneck
○ CGRAs are not subjected to dynamic fetch and decoding of 

instructions
○ CGRA instructions are in a pre-decoded form in the 

instruction memory
○ PE transfers data directly among each another
○ Without going through a centralized registers and memory
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Loop execution on the CGRA 
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Loop:

t1 = (a[i]+b[i]-k)*c[i]

d[i] = ~t1 & 0xFFFFData dependency graph

Execution time: 1

1

2

Mapping data 

dependency 

graph to CGRA



Loop execution on the CGRA 
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Loop:

t1 = (a[i]+b[i]-k)*c[i]

d[i] = ~t1 & 0xFFFF
Data dependency graph

Execution time: 2

1

2

Mapping data 

dependency 

graph to CGRA
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Loop execution on the CGRA 
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Loop:

t1 = (a[i]+b[i]-k)*c[i]

d[i] = ~t1 & 0xFFFF

Data dependency graph

Execution time: 3
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Mapping data 

dependency 

graph to CGRA
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Loop execution on the CGRA 
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Loop:

t1 = (a[i]+b[i]-k)*c[i]

d[i] = ~t1 & 0xFFFF

Data dependency graph

Execution time: 6

1

2

Mapping data 

dependency 

graph to CGRA
3 4

5 6 7
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Takeaway Questions

● What are hardware components used by RDU ?

○ (A) Pattern computer unit (PCU)

○ (B) Pattern memory unit (PMU)

○ (C) Interconnect network router

● What are features of CGRAs ?

○ (A) Customized PEs

○ (B) Software-pipelining execution mapping

○ (C) Reconfigurable dataflow
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GraphCore IPU
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GraphCore IPUs

● GraphCore Intelligent Processing Units (IPUs)
○ Unlike GPU that is dedicated to accelerate large dense matrix

○ IPUs supports dynamic sparse training and unstructured 

computation such as path tracing in 3D computer graphics

○ Multiple tile processors

○ Poplar programming model
■ Dedicated compiler (PopC)

■ Mapping compute graph to 

tile processors

■ Compute kernels (Codelets)

46
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Graphcore IPU Approach

● Post-Dennard, the silicon is power-limited

○ We can put more logic on the die than we can power (dark silicon)

● IPU architecture approach

○ Replace dark silicon logic with on-chip RAM that has lower power 

density

From: Knowles, Simon. Designing Processors for Intelligence. 2017. UC Berkeley EECS Events, https://www.youtube.com/watch?v=7XtBZ4Hsi_M.
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Graphcore IPU approach

● GPU approach
○ Shared memory model with caches and memory hierarchy to reduce 

latency

● IPU approach
○ Move as much memory as possible into the chip local to the logic
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Graphcore IPU Abstraction 

● Tile processors

○ Each tile is a multi-threaded processor and has its local memory

○ Tiles communicate through all-to-all, stateless exchange

● A tensor vertex

○ Can be distributed over many tiles

49‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.



Distributed memory architecture

● 1472 tiles with 6 threads 

sharing 624 KiB of local SRAM

● Total of 896 MiB and 

250Tflop/s in 8832 worker 

threads

● 7.8TB/s exchange between 

tiles

● Tiles have no shared memory 

or caches

Tiles

Mem +

Core
Chip-

interconnect

Tile Exchange

Graphcore Architecture White paper, https://www.graphcore.ai/products/ipu 50



Execution Model

● Tile workers execute instructions independently in parallel (MIMD), 

● Wait for sync, followed by all-to-all data exchange phase (hardware 

implementation of Bulk Synchronous Parallel (BSP) Model)

● No concurrency hazards (races, deadlocks etc.)

● Compiler faces hard job of scheduling 

and load-balancing compute-chunks 

on tile workers

Jia, Zhe, et al. ‘Dissecting the Graphcore IPU Architecture via Microbenchmarking’. ArXiv:1912.03413, Dec. 2019. arXiv.org, http://arxiv.org/abs/1912.03413.
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Tile Processor

● 32b instructions, single or dual issue

● Two execution paths:

○ MAIN:

■ Control flow, integer/address 

arithmetic, load/store to/from 

either path

○ AUX: 

■ Floating-point arithmetic for tensor 

operations + special instructions 

like log, tanh, PRNG etc.

52‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.



Tile Processor

● Fine-grained multithreading that switches 

between 6 threads on every cycle in 

round-robin fashion

○ Issued worker programs run in a slot at 1/6 of 

the clock, so they can’t see the pipeline, i.e., 

mem access, branches etc. all appear to take one cycle per 

instruction

○ This makes worker execution simple for the compiler to predict for 

easier load balancing
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‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.



N + 1 barrel threading

● 7 program contexts

● 6 round-robin pipeline slots

● The supervisor program
○ A fragment of the control program

○ Orchestrating the update of vertices

○ Execute in all slots not yielded to workers

○ Dispatch workers by RUN instruction

● A worker program is a codelet updating a vertex
○ Execute in 1 slot at 1/6 of clock

○ Returns its slot to the supervisor by EXIT instruction

54‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.



Sparse Load/Store

● Large on-die SRAM memory

○ 896 MiB on-die SRAM at 47TB/s (data-side)

○ Access arbitrarily-structured data which fits on chip

● Ld/St instructions

○ Support sparse gather in parallel with arithmetic at full speed via compact 

pointer lists

○ 16b absolute offsets to a base

○ 4b cumulative delta offsets to a base

55‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.



Global Program Order
● Tile processors

○ Execute asynchronously until they need to exchange data

○ Each tile executes a list of atomic codelets in one compute 

phase

● Bulk Synchronous Parallel

○ Repeat {Sync; Exchange; Compute}

○ Hardware global sync. In ~150 cycles on chip, 15 ns/hop between chips

56

‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.



Exchange Mechanics

● IPU POPLAR compiler

○ Schedule transmit, receive

and select at precise cycles

from sync

○ Knowing all pipeline delays

● Data movement

○ At full bandwidth

○ No queues, arbiters, or

packet overheads

57‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.



Why no HBM Memory ?

● Memory bandwidth limits how fast

AI can complete

● GPU and TPU
○ Solve for bandwidth and capacity using

HBM

○ HBM is expensive, capacity-limited, and 

adds 100W+ to the processor thermal

envelope

● IPU
○ Solves for bandwidth with SRAM, and 

for capacity with DDR

58‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.



IPU hardware helps software

● Simple mechanisms allow software evolution

○ Native graph abstraction

○ Codelet-level parallelism

○ Pipeline-oblivious threads

○ BSP removes concurrency hazards

○ Stateless all-to-all exchange

○ Cacheless, uniform, near/far memory

59‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.



Takeaway Questions

● Why GraphCore IPU employ large SRAM instead of 

HBM?

○ (A) Achieve high bandwidth

○ (B) Large memory capacity

○ (C) Save silicon area
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Wafer-scale AI chip -- Cerebras
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Largest AI chip

● 46,225 mm2 silicon

● 1.2 trillion transistors

● 400,000 AI optimized cores

● 18 Gigabytes of on-chip memory

● 9 Pbyte/s memory bandwidth

● 100 Pbit/s fabric bandwidth

● TSMC 16 nm process
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Cerebras WSE

GPU

21.1 Billion 

Transistors

815 mm2 silicon



Why big chips ?

● Big chips process data more quickly 

○ Cluster scale performance on a single chip

○ GB of fast memory 1 clock cycle from core

○ On-chip interconnect orders of magnitude faster than off-

chip

○ Model-parallel, linear performance scaling

○ Training at scale, with any batch size, at full utilization
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Cerebras Architecture

● Core optimized for neural network primitives
● Flexible, programmable core

○ NN models are evolving

● Designed for sparse compute
○ Workloads contain fine-grained sparsity (where are these 

sparsity from ?)

● Local memory 
○ reusing weight & activations

● Fast interconnect
○ Layer-to-layer with high bandwidth and low latency
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Cerebras programmable core

● Flexible cores optimized for 

tensor operations

○ General ops for control processing

○ e.g. arithmetic, logical, LD/ST, 

branch

○ Optimized tensor ops for data

processing

○ Tensor operands

○ e.g. fmac [Z] = [Z], [W], a

3D   3D 2D
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Sparse compute engine

● Nonlinear activations naturally 

create fine-grained sparsity

● Dataflow scheduling in hardware

○ Triggered by data

○ Filters out sparse zero data

○ Skips unnecessary processing

● Fine-grained execution datapaths

○ Small cores with independent instructions

○ Efficiently processes dynamic, non-uniform work
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Cerebras memory architecture

● Traditional memory designs
○ Centralized shared memory is slow & far 

away

○ Requires high data reuse (caching)

○ Local weights and activations are local ->

low data reuse

● Cerebras memory architecture
○ All memory is fully distributed along compute

○ Datapath has full performance from memory
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High-bandwidth low-latency interconnect

● 2D mesh topology effective for local communication

○ High bandwidth and low latency for local communication

○ All HW-based communication avoids SW overhead

○ Small single-word message
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Challenges of wafer scale

● Building a 46,225 mm2, 1.2 trillion transistor chip

● Challenges include

○ Cross-die connectivity

○ Yield

○ Thermal expansion

○ Package assembly

○ Power and cooling
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Challenge 1: cross die connectivity

● Standard fabrication process requires

die to be independent

● Scribe line separates each die

● Scribe line used as mechanical 

barrier for die cutting for test

structures

70



Cross-die wires

● Add wires across scribe line with 

TSMC

● Extend 2D mesh across die

● Same connectivity between cores

and across scribe lines create a 

homogeneous array

● Short wires enable ultra high

bandwidth with low latency
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Challenges II: Yield

● Impossible to yield full wafer with
zero defects

○ Silicon and process defects are 
inevitable even in mature process

● Redundant cores
○ Uniform small cores
○ Redundant cores and fabric links
○ Redundant cores replace defective

cores
○ Extra links reconnect fabric to 

restore logical 2D mesh
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Challenge III: Thermal expansion in package

● Silicon and PCB expand at different rates under temperature 

● Size of wafer would result in too much mechanical stress using 

traditional package technology
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Connecting wafer to PCB

● Developed custom connector to connect wafer to PCB

● Connector absorbs the variation while maintaining connectivity
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Challenge IV: Package assembly

● Package includes
○ PCB

○ Connector

○ Wafer

○ Cold plate

● All components require

precise alignment

● Developed custom machines and process
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Challenge V: Power and cooling

● Concentrated high density exceeds traditional power & 

cooling capacities

● Power delivery
○ Current density too high

for power plane 

distribution in PCB

● Heat removal
○ Heat density too high for

direct air cooling
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Using the 3rd dimension

● Power delivery

○ Current flow distributed in 

3rd dimension perpendicular

to water

● Heat removal

○ Water carries heat from

wafer through cold plate
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Takeaway Questions

● What are challenges to build a large chip for NN 

applications ?
○ (A) Power and cooling

○ (B) Fault tolerance for defected dies 

○ (C) Package assembly

● How does Cerebras tackle the DNN sparsity ?
○ (A) Customized sparse core

○ (B) Data-driven dataflow scheduling

○ (C) Filters out sparse zero data
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