

Accelerator Architectures for Machine Learning (AAML)

Lecture 6: Digital DNN Accelerator

Tsung Tai Yeh Department of Computer Science National Yang-Ming Chiao Tung University

Acknowledgements and Disclaimer

 Slides was developed in the reference with Joel Emer, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, ISCA 2019 tutorial

Efficient Processing of Deep Neural Network, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, Morgan and Claypool Publisher, 2020 Yakun Sophia Shao, EE290-2: Hardware for Machine Learning, UC Berkeley, 2020

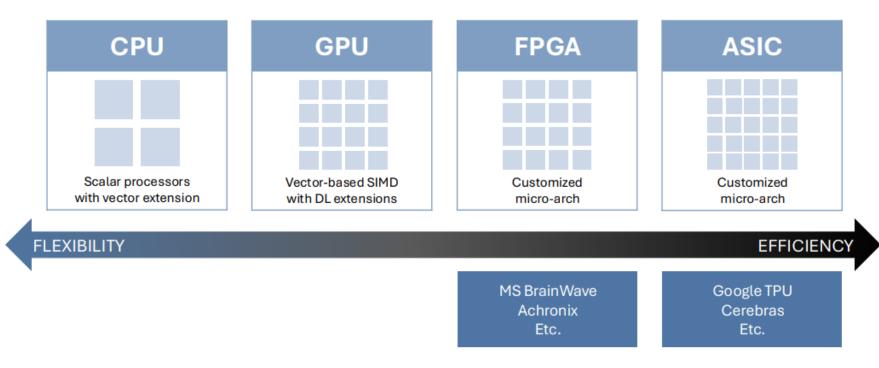
- CS231n Convolutional Neural Networks for Visual Recognition,
- Stanford University, 2020
- CS224W: Machine Learning with Graphs, Stanford University, 2021

Outline

- Reconfigurable Deep Learning Accelerators
 - FPGA
 - SambaNova Reconfigurable Dataflow Unit (RDU)
 - Coarse grained reconfigurable array (CGRA)
 - GraphCore IPU
 - Wafer-scale AI chip -- Cerebras

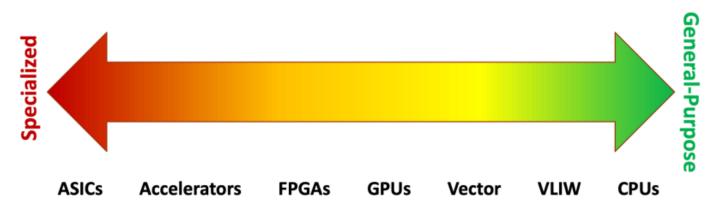
Reconfigurable Deep Learning on FPGA

Spectrum of Architectures for Deep Learning



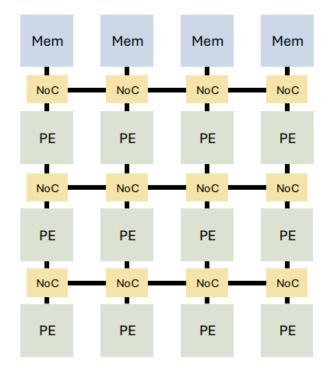
Why Reconfigurable Computing?

- AI accelerators improves 100X performance/energy compared to general-purpose processor
- But new hardware is sophisticated and expensive
 - Especially in cutting-edge manufacturing processes

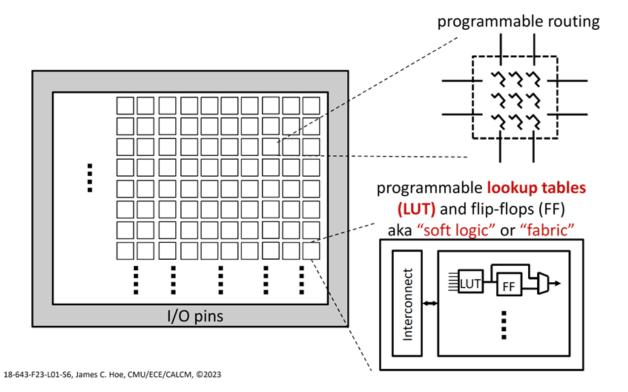


Reconfigurable Computing

- Basic idea
 - A spatial array of processing elements (PEs) & memories with a configurable network
 - Map your computation spatially onto the array
 - Goal: programmable with near ASIC efficiency



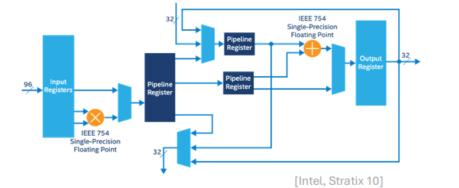
Basic FPGA Design

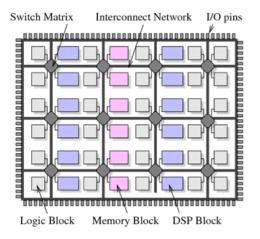


Modern FPGAs

- FPGAs are coarse-grain today
 - Hardened logic in LUTs
 - "DSP blocks" to implement wide add/mul efficiently
 - Dense memories distributed throughout fabric

Mode Name	Mathematical Function
Multiplication Mode	X´Y
Adder or Subtract Mode	(X + Y) or (X-Y)
Multiply-Add/Subtract	(X ´ Y) + Z or (X ´ Y) - Z
Multiply Accumulate Mode	(X ´ Y) + Acc or (X ´ Y) – Acc
Vector One Mode	(X´Y) + Chain In



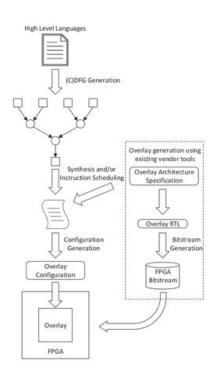


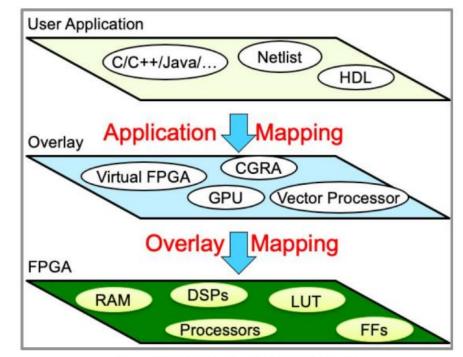
9

FPGA vs GPU

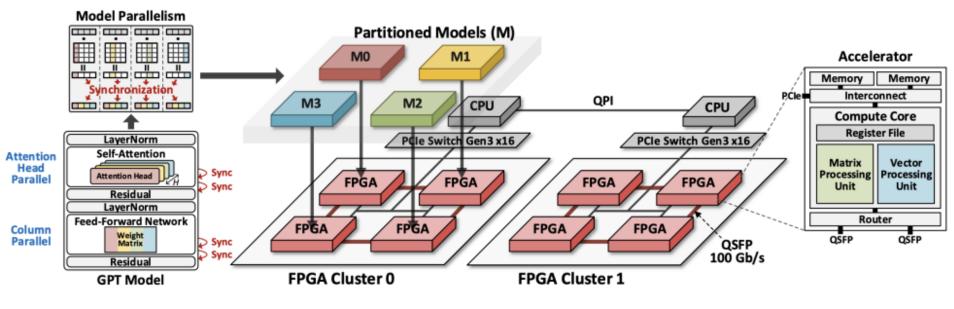
- Prefill stage
 - The latency of FPGAs in the prefill stage increases linearly, while the GPU ones almost remain constant as the model does not fully utilize GPUs
- Decode stage
 - FPGA-based accelerators are more efficient than GPUs

FPGA Overlay



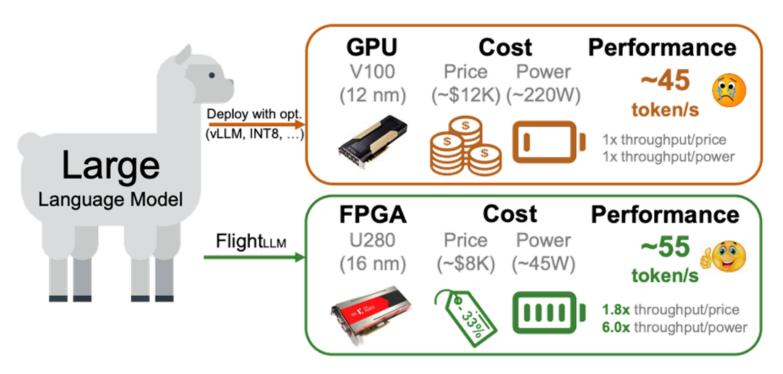


FPGA Overlay



[Hong, MICRO, 2022]

FlightLLM



Challenges of FPGAs on LLM Inference

- Low computation efficiency
 - Hard to efficiently map sparse matrices onto DSP chains
- Underutilized memory bandwidth
 - Repeated off-chip memory accesses for each fine-grained kernel
- Huge instruction storage
 - Store instructions for all possible token lengths

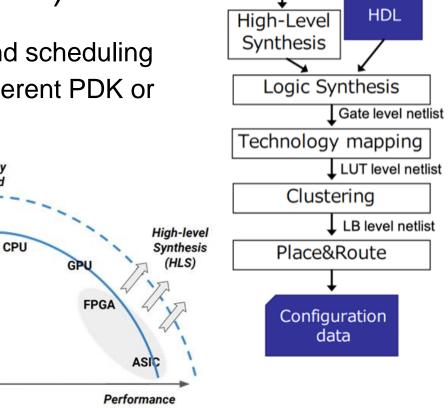
High-Level Synthesis (HLS)

- Automated optimization and scheduling
- High portability against different PDK or PPA requirements

Deploy

Speed

• Short design cycle



C/C++

etc.

Challenges of HLS Accelerator Design

• Time consuming

 Manual architecture and micro-architecture design, manual C/C++ code rewriting

Suboptimal

 Empirical parameter tuning, like parallel factors, buffer sizes, tiling sizes, etc..

Low flexibility

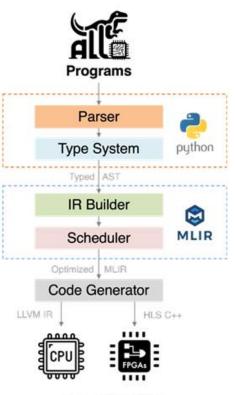
Only support a small set of models

Accelerator Design Languages (ADLs)

- Pythonic
- Maintainability
 - Decoupled hardware customizations

Composability

 All the kernels, primitives, and schedules should be composable to form complex designs



FPGA on AI Accelerators Follows

- FPGA vendors doing what markets want
 - Future "FPGA" not sea-of-gates for RTL netlist
- Purposeful architectures for targeted applications
 - Make things easier/cheaper to do
 - Be very good at what it is intended to do
- Coping with architectural divergence
 - Soft-logic adds malleability to "architecture"
 - 2.5/3D integration allows specialization off a common denominator
 - Push reconvergence of abstraction up the stack

SambaNova Reconfigurable Dataflow Unit (RDU)

Plasticine Architecture

Plasticine architecture

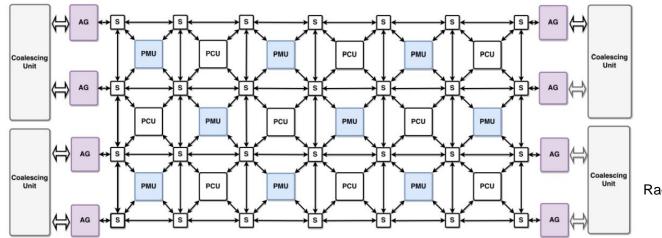
• A reconfigurable architecture for parallel patterns (Raghu, ISCA 2017)

• Pattern Compute Unit (PCU)

- Reconfigurable pipeline with multiple stages of SIMD functional units (FUs)
- Pattern Memory Unit (PMU)
 - A banked scratchpad memory
- The compiler
 - Maps the computation of inner loops to PCUs
 - Most operands are transferred directly between FUs without scratchpad access or inter-PCU communication

Plasticine Architecture Overview

- Data access address calculation occurs while the PCU is working
- Each DRAM channel is accessed using several address generators (AG) on two sides of the chip
- Multiple AGs connect to an address coalescing unit for memory requests

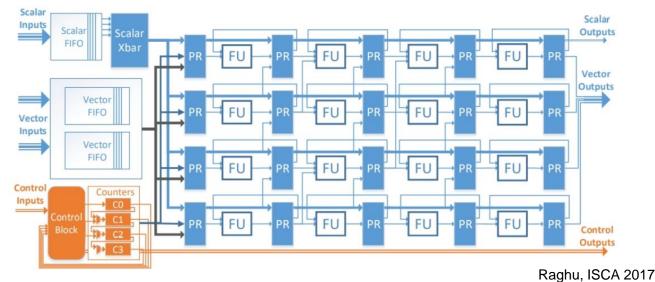


Raghu, ISCA 2017

Plasticine PCU Architecture

Pattern Compute Unit (PCU)

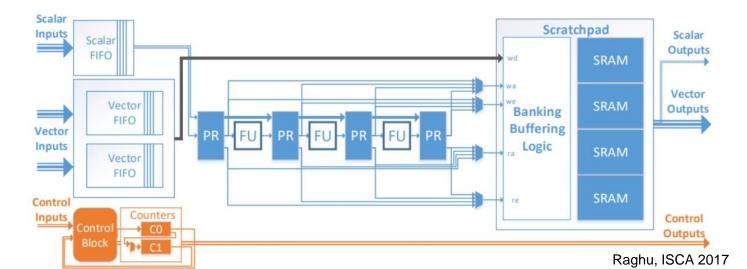
- 1. Scalar: uses to communicate single words of data
- 2. Each **vector** communicates one word per line in the PCU
- **3. Control** signals at the start or end of execution of a PCU
- Each stage's SIMD lane contains a FU and associated pipeline register (PR)



Plasticine PMU Architecture

• Pattern Memory Unit (PMU)

- Contains a scratchpad memory and address calculation
- Calculates address only needs simple scalar math
- Has simpler FUs than ones in PCUs

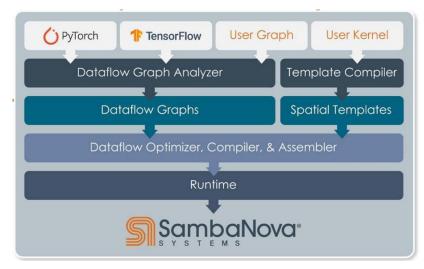


Reconfigurable Dataflow Unit (RDU)

- SambaNova RDU
 - Pattern Compute Units
 - BF16 with FP32 accumulation
 - Support FP32, Int32, Int16, Int8

• Pattern Memory Unit

- Memory transformation
- Dataflow optimization
 - Tiling
 - Nested pipelining
 - Operator parallel streaming



Dataflow Exploits Data Locality / Parallelism

- Software-hardware co-design architecture
 - Dataflow captures data locality and parallelism
 - Flexible time and space scheduling to achieve higher utilization
 - Flexible memory system and interconnect to sustain high compute throughput
 - Custom dataflow pipeline

Chip and Architecture Overview

RDU Tile

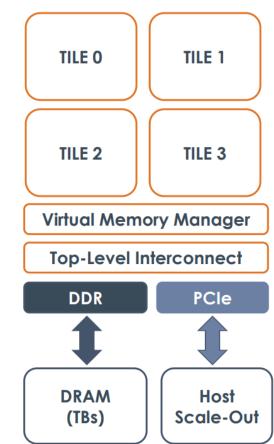
- Compute and memory components
- A programmable interconnect

• Tile resource management

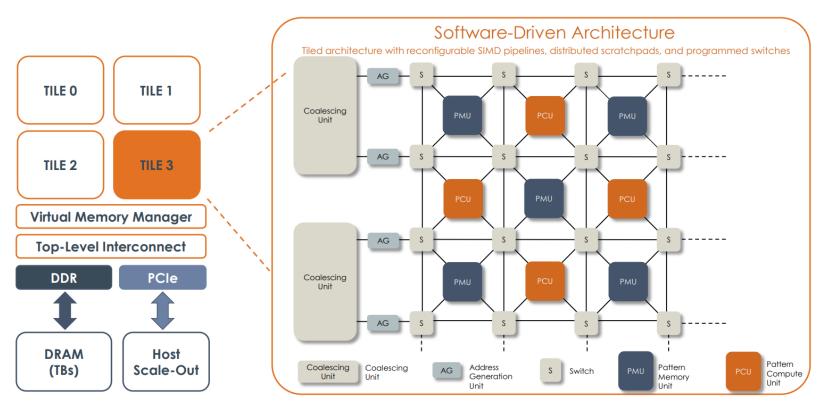
- Combine adjacent tiles to form a larger logical tile
- Each tile controlled independently
- Allow different applications on separate tiles concurrently

Memory access

- Direct access to TBs DDR4 off-chip memory
- Memory-mapped access to host memory

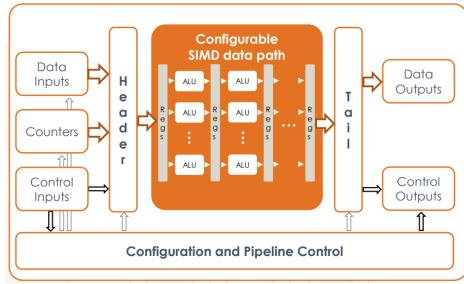


RDU Tile



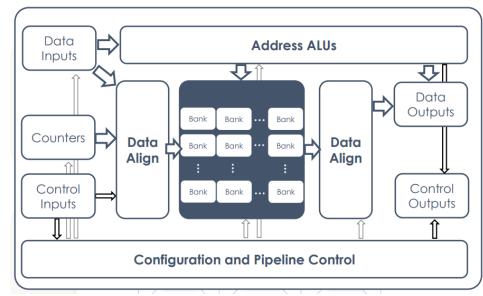
Pattern Compute Unit (PCU)

- Pattern Compute Unit (PCU)
 - Compute engine
- Reconfigurable SIMD data path
 - For dense and sparse tensor algebra in FP32, BF16, and integer data format
- Programmable counters
 - Program loop iterators
- Tail unit
 - Accelerates functions such as exp, sigmoid



Pattern Memory Unit (PMU)

- Pattern Memory Unit (PMU)
 - On-chip memory system
 - Banked SRAM arrays
 - Write and read multiple high bandwidth SIMD data stream concurrently
 - Address ALUs
 - Address calculation for arbitrarily complex accesses
 - Data align
 - Tensor layout transformation



Switch and On-chip Interconnect

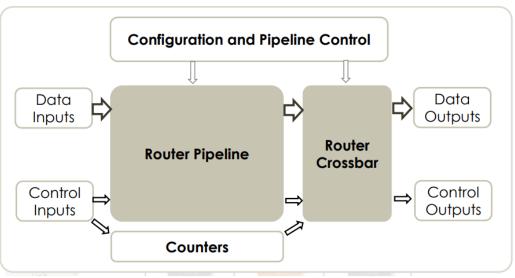
- Switch
 - Programmable packet-switched interconnect fabric

• Independent data and control buses

 Suit different traffic classes

Programmable routing

- Flexible chip bandwidth allocation to concurrent stream
- Programmable counters
 - Outer loop iterators
 - On-chip metric collection

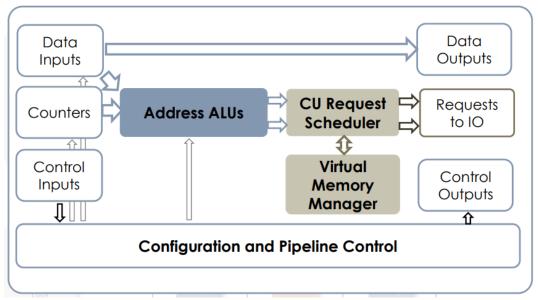


Interface to I/O Subsystem

- Address ALUs
 - Address calculation for arbitrarily complex accesses

Coalescing Units

- Enable transparent access to memories across RDUs and host memory
- Address space manager
 - Programmable, variable length segments



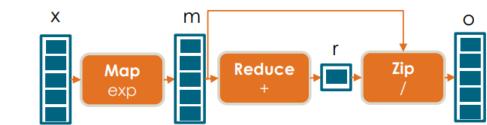
Operator Mapping

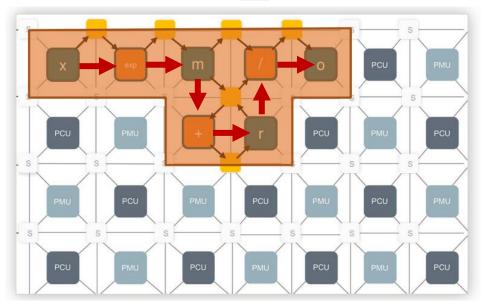


Operator Mapping (Softmax)

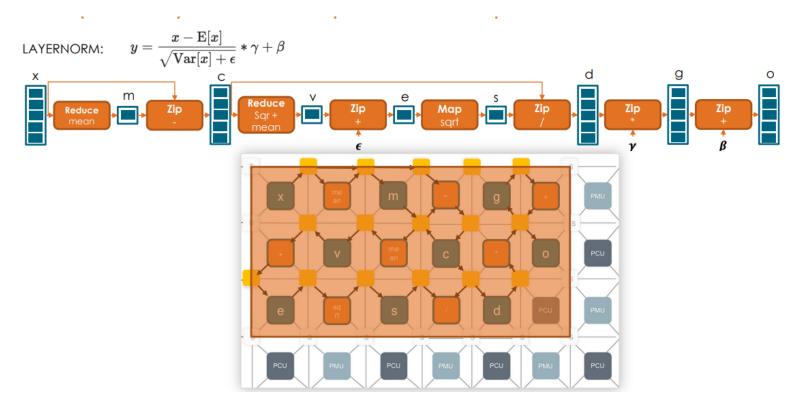
 $ext{Softmax}(x_i) = rac{\exp(x_i)}{\sum_j \exp(x_j)}$

SOFTMAX:

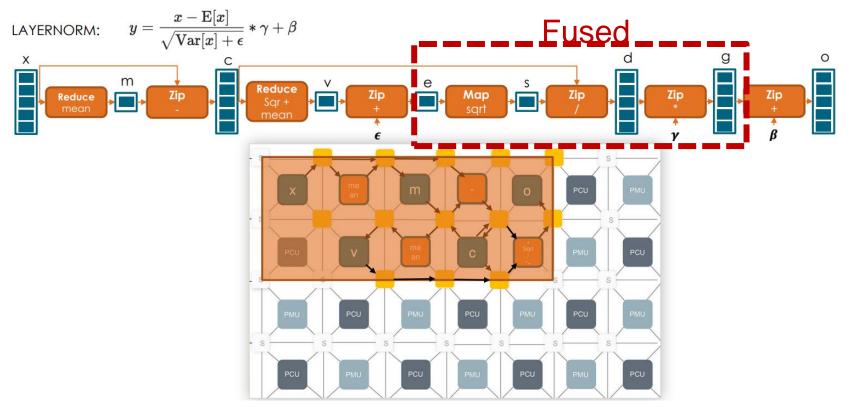




Pipelined in Space

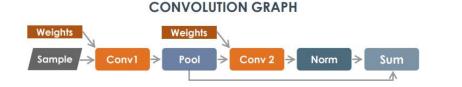


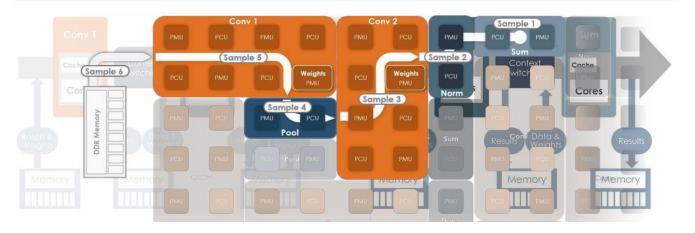
Pipelined in Space + Fused



Spatial Dataflow within an RDU

- The dataflow removes
 - Memory traffic and host communication overhead

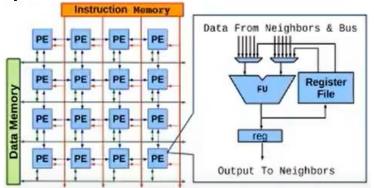




CGRA

Coarse grained reconfigurable array (CGRA)

- Coarse grained reconfigurable array (CGRA)
 - Multiple processing elements (PEs)
 - Each PE has ALU-like functional unit
 - Array configurations vary by
 - Array size
 - Functional units
 - Interconnection network
 - Register file architectures
 - CGRAs can achieve **power-efficiency** of several 10s of GOps/sec per Watt (why?)
 - Samsung SRP processor (embedded and multimedia apps)



Key features of CGRA accelerators

• Software-pipelining execution mapping

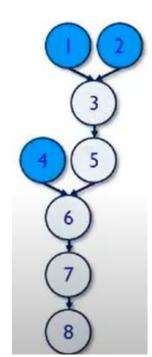
- Accelerate loops with low parallelism
- Loops with loop-carried dependence, loops with high branch divergence

• Avoid von-Neumann architecture bottleneck

- CGRAs are not subjected to dynamic fetch and decoding of instructions
- CGRA instructions are in a pre-decoded form in the instruction memory
- PE transfers data directly among each another
- Without going through a centralized registers and memory

Loop execution on the CGRA

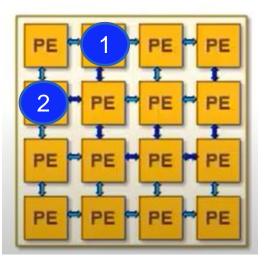
Data dependency graph



Mapping data dependency graph to CGRA

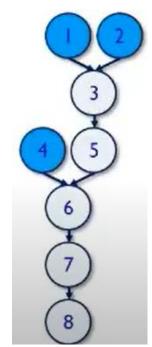
Loop: t1 = (a[i]+b[i]-k)*c[i] d[i] = ~t1 & 0xFFFF

Execution time: 1



Loop execution on the CGRA

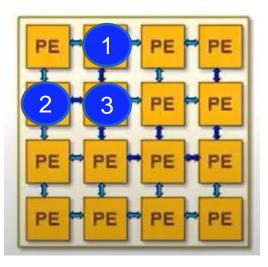
Data dependency graph



Mapping data dependency graph to CGRA

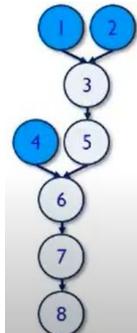
Loop: t1 = (a[i]+b[i]-k)*c[i] d[i] = ~t1 & 0xFFFF

Execution time: 2



Loop execution on the CGRA

Data dependency graph



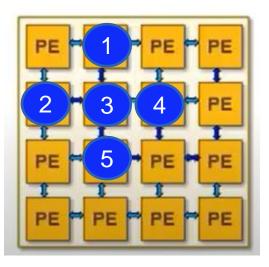
Mapping data dependency graph to CGRA

Execution time: 3

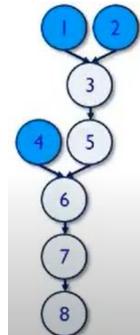
t1 = (a[i]+b[i]-k)*c[i]

d[i] = -t1 & 0xFFFF

Loop:



Loop execution on the CGRA



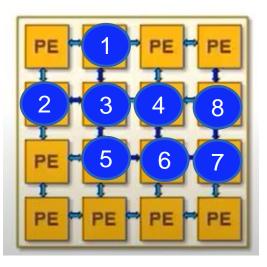
Mapping data dependency graph to CGRA

Execution time: 6

t1 = (a[i]+b[i]-k)*c[i]

 $d[i] = \sim t1 \& 0xFFFF$

Loop:



Takeaway Questions

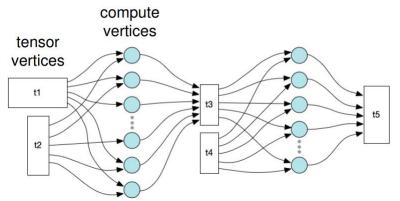
- What are hardware components used by RDU ?
 - (A) Pattern computer unit (PCU)
 - (B) Pattern memory unit (PMU)
 - (C) Interconnect network router
- What are features of CGRAs ?
 - (A) Customized PEs
 - (B) Software-pipelining execution mapping
 - (C) Reconfigurable dataflow

GraphCore IPU

GraphCore IPUs

• GraphCore Intelligent Processing Units (IPUs)

- Unlike GPU that is dedicated to accelerate large dense matrix
- IPUs supports dynamic sparse training and unstructured computation such as path tracing in 3D computer graphics
- Multiple tile processors
- Poplar programming model
 - Dedicated compiler (PopC)
 - Mapping compute graph to tile processors
 - Compute kernels (Codelets)



https://hc33.hotchips.org/assets/program/conference/day2/HC2021.Graphcore.SimonKnowles.v04.pdf

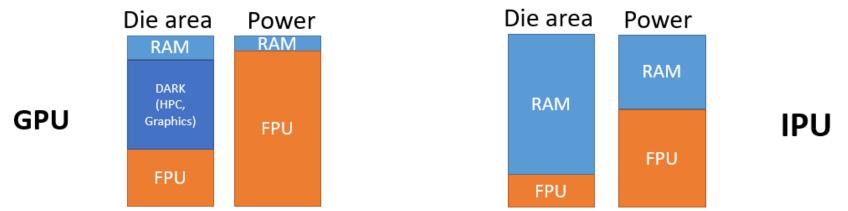
Graphcore IPU Approach

• Post-Dennard, the silicon is power-limited

• We can put more logic on the die than we can power (dark silicon)

• IPU architecture approach

 Replace dark silicon logic with on-chip RAM that has lower power density

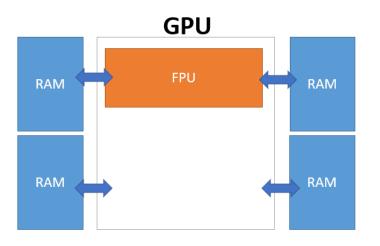


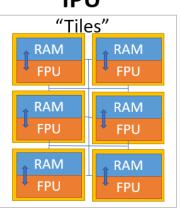
From: Knowles, Simon. Designing Processors for Intelligence. 2017. UC Berkeley EECS Events, https://www.youtube.com/watch?v=7XtBZ4Hsi_M.

47

Graphcore IPU approach

- GPU approach
 - Shared memory model with caches and memory hierarchy to reduce latency
- IPU approach
 - Move as much memory as possible into the chip local to the logic

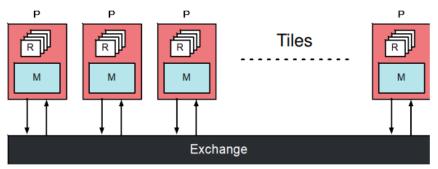




IPU

Graphcore IPU Abstraction

- Tile processors
 - Each tile is a multi-threaded processor and has its local memory
 - Tiles communicate through all-to-all, stateless exchange
- A tensor vertex
 - Can be distributed over many tiles



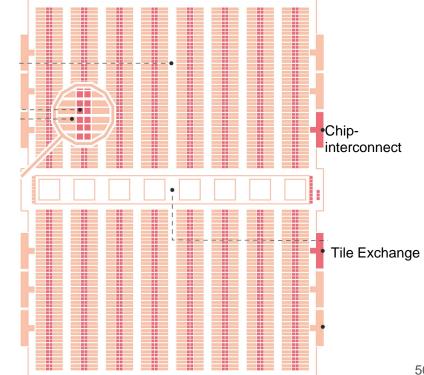
Distributed memory architecture

Tiles

Mem +

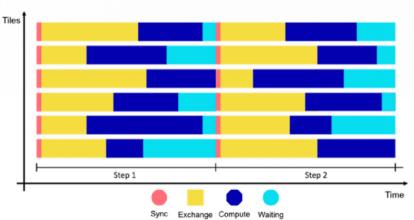
Core

- 1472 tiles with 6 threads sharing 624 KiB of local SRAM
- Total of 896 MiB and 250Tflop/s in 8832 worker threads
- 7.8TB/s exchange between tiles
- Tiles have no shared memory or caches



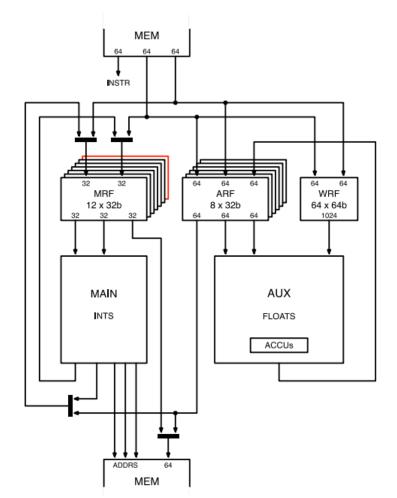
Execution Model

- Tile workers execute instructions independently in parallel (MIMD),
- Wait for sync, followed by all-to-all data exchange phase (hardware implementation of **Bulk Synchronous Parallel (BSP)** Model)
- No concurrency hazards (races, deadlocks etc.)
- Compiler faces hard job of scheduling and *load-balancing* compute-chunks on tile workers



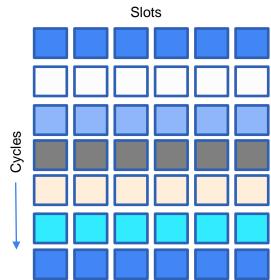
Tile Processor

- 32b instructions, single or dual issue
- Two execution paths:
 - MAIN:
 - Control flow, integer/address arithmetic, load/store to/from either path
 - AUX:
 - Floating-point arithmetic for tensor operations + special instructions like log, tanh, PRNG etc.



Tile Processor

- Fine-grained multithreading that switches between 6 threads on every cycle in round-robin fashion
 - Issued worker programs run in a slot at 1/6 of the clock, so they can't see the pipeline, i.e., mem access, branches etc. all appear to take one cycle per instruction
 - This makes worker execution simple for the compiler to predict for easier load balancing

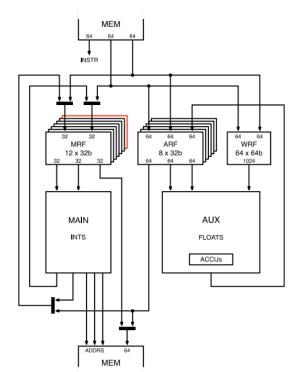


N + 1 barrel threading

- 7 program contexts
- 6 round-robin pipeline slots

• The supervisor program

- A fragment of the control program
- Orchestrating the update of vertices
- Execute in all slots not yielded to workers
- Dispatch workers by RUN instruction
- A worker program is a codelet updating a vertex
 - Execute in 1 slot at 1/6 of clock
 - Returns its slot to the supervisor by **EXIT** instruction



Sparse Load/Store

• Large on-die SRAM memory

- 896 MiB on-die SRAM at 47TB/s (data-side)
- Access arbitrarily-structured data which fits on chip

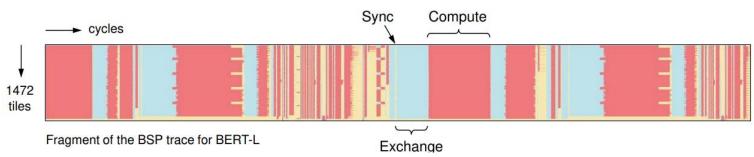
Ld/St instructions

- Support sparse gather in parallel with arithmetic at full speed via compact pointer lists
- 16b absolute offsets to a base
- 4b cumulative delta offsets to a base

Global Program Order

• Tile processors

- Execute asynchronously until they need to exchange data
- Each tile executes a list of atomic codelets in one compute phase
- Bulk Synchronous Parallel
 - Repeat {Sync; Exchange; Compute}
 - Hardware global sync. In ~150 cycles on chip, 15 ns/hop between chips



'Graphcore IPUs'. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.

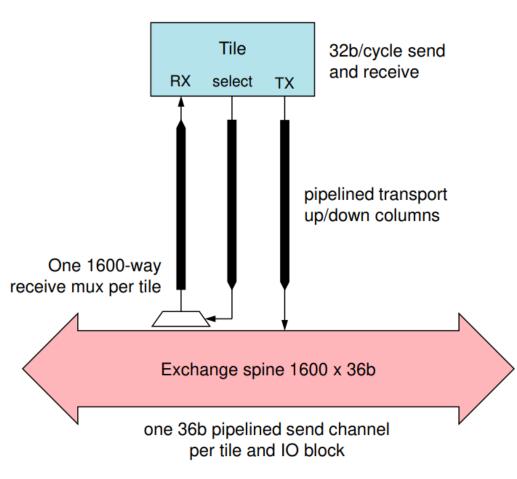
Exchange Mechanics

• IPU POPLAR compiler

- Schedule transmit, receive and select at precise cycles from sync
- Knowing all pipeline delays

Data movement

- At full bandwidth
- No queues, arbiters, or packet overheads

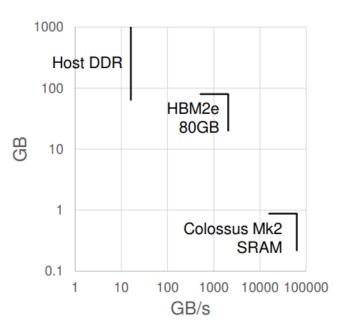


Why no HBM Memory ?

- Memory bandwidth limits how fast AI can complete
- GPU and TPU
 - Solve for bandwidth and capacity using HBM
 - HBM is expensive, capacity-limited, and adds 100W+ to the processor thermal envelope

• IPU

 Solves for bandwidth with SRAM, and for capacity with DDR



IPU hardware helps software

• Simple mechanisms allow software evolution

- Native graph abstraction
- Codelet-level parallelism
- Pipeline-oblivious threads
- BSP removes concurrency hazards
- Stateless all-to-all exchange
- Cacheless, uniform, near/far memory

Takeaway Questions

- Why GraphCore IPU employ large SRAM instead of HBM?
 - (A) Achieve high bandwidth
 - (B) Large memory capacity
 - (C) Save silicon area

Wafer-scale AI chip -- Cerebras

Largest AI chip

- 46,225 mm² silicon
- 1.2 trillion transistors
- 400,000 AI optimized cores
- 18 Gigabytes of on-chip memory
- 9 Pbyte/s memory bandwidth
- 100 Pbit/s fabric bandwidth
- TSMC 16 nm process

Cerebras WSE

21.1 Billion Transistors 815 mm² silicon

Why big chips ?

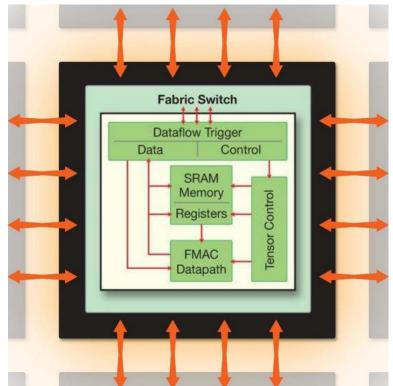
- Big chips process data more quickly
 - Cluster scale performance on a single chip
 - GB of fast memory 1 clock cycle from core
 - On-chip interconnect orders of magnitude faster than offchip
 - Model-parallel, linear performance scaling
 - Training at scale, with any batch size, at full utilization

Cerebras Architecture

- Core optimized for neural network primitives
- Flexible, programmable core
 - NN models are evolving
- Designed for sparse compute
 - Workloads contain fine-grained sparsity (where are these sparsity from ?)
- Local memory
 - reusing weight & activations
- Fast interconnect
 - Layer-to-layer with high bandwidth and low latency

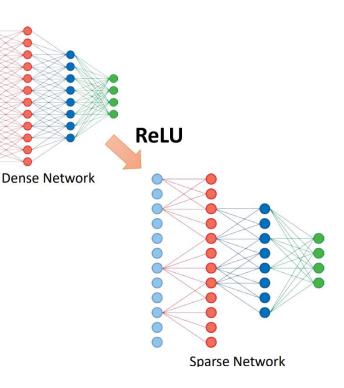
Cerebras programmable core

- Flexible cores optimized for tensor operations
 - General ops for control processing
 - e.g. arithmetic, logical, LD/ST, branch
 - Optimized tensor ops for data processing
 - Tensor operands
 - e.g. fmac [Z] = [Z], [W], a
 3D 3D 2D



Sparse compute engine

- Nonlinear activations naturally create fine-grained sparsity
- Dataflow scheduling in hardware
 - Triggered by data
 - Filters out sparse zero data
 - Skips unnecessary processing
- Fine-grained execution datapaths
 - Small cores with independent instructions
 - Efficiently processes dynamic, non-uniform work



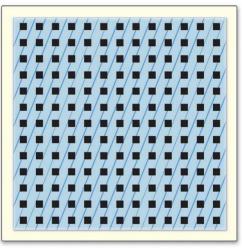
Cerebras memory architecture

Traditional memory designs

- Centralized shared memory is slow & far away
- Requires high data reuse (caching)
- Local weights and activations are local -> low data reuse

Cerebras memory architecture

- All memory is fully distributed along compute
- Datapath has full performance from memory



Memory uniformly distributed across cores

High-bandwidth low-latency interconnect

- 2D mesh topology effective for local communication
 - High bandwidth and low latency for local communication
 - All HW-based communication avoids SW overhead
 - Small single-word message

Challenges of wafer scale

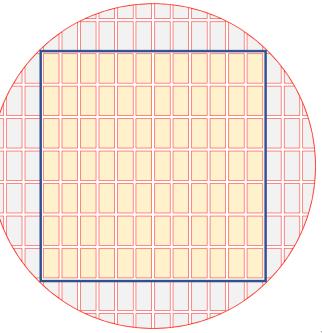
• Building a 46,225 mm², 1.2 trillion transistor chip

Challenges include

- Cross-die connectivity
- Yield
- Thermal expansion
- Package assembly
- Power and cooling

Challenge 1: cross die connectivity

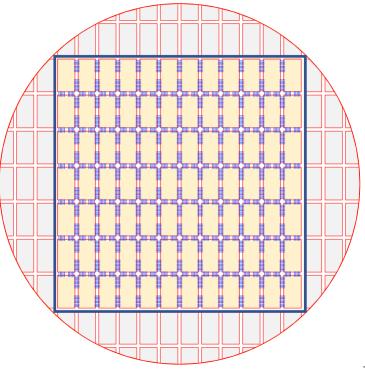
- Standard fabrication process requires die to be independent
- Scribe line separates each die
- Scribe line used as mechanical barrier for die cutting for test structures



.

Cross-die wires

- Add wires across scribe line with TSMC
- Extend 2D mesh across die
- Same connectivity between cores and across scribe lines create a homogeneous array
- Short wires enable ultra high bandwidth with low latency

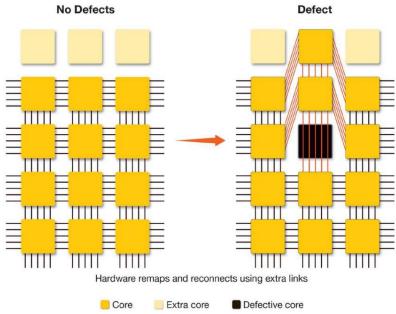


Challenges II: Yield

- Impossible to yield full wafer with zero defects
 - Silicon and process defects are inevitable even in mature process

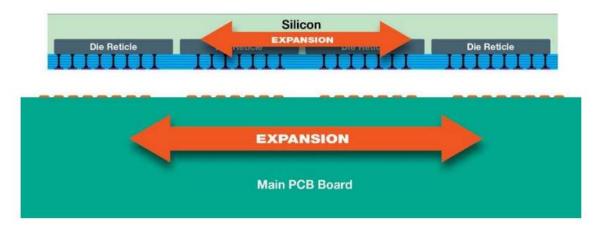
Redundant cores

- Uniform small cores
- Redundant cores and fabric links
- Redundant cores replace defective cores
- Extra links reconnect fabric to restore logical 2D mesh



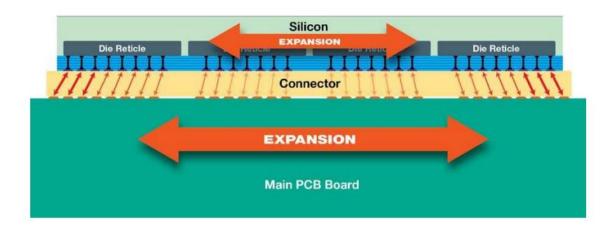
Challenge III: Thermal expansion in package

- Silicon and PCB expand at different rates under temperature
- Size of wafer would result in too much mechanical stress using traditional package technology



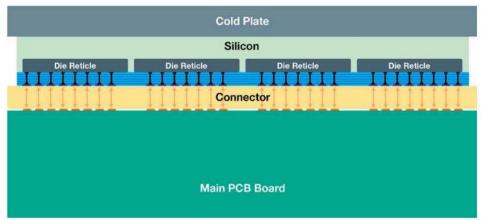
Connecting wafer to PCB

- Developed custom connector to connect wafer to PCB
- Connector absorbs the variation while maintaining connectivity



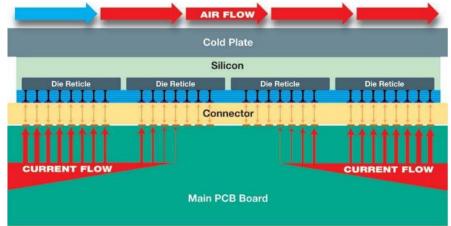
Challenge IV: Package assembly

- Package includes
 - PCB \bigcirc
 - Connector
 - Wafer \bigcirc
 - Cold plate 0
- All components require precise alignment
- Developed custom machines and process



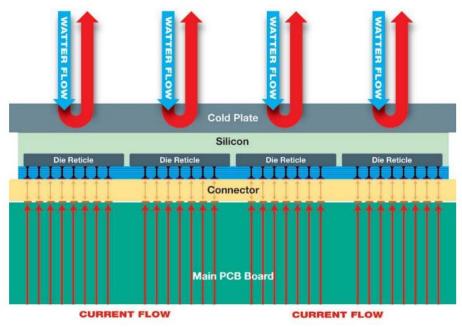
Challenge V: Power and cooling

- Concentrated high density exceeds traditional power & cooling capacities
- Power delivery
 - Current density too high for power plane distribution in PCB
- Heat removal
 - Heat density too high for direct air cooling



Using the 3rd dimension

- Power delivery
 - Current flow distributed in
 3rd dimension perpendicular to water
- Heat removal
 - Water carries heat from wafer through cold plate



Takeaway Questions

- What are challenges to build a large chip for NN applications ?
 - (A) Power and cooling
 - (B) Fault tolerance for defected dies
 - (C) Package assembly
- How does Cerebras tackle the DNN sparsity ?
 - (A) Customized sparse core
 - (B) Data-driven dataflow scheduling
 - (C) Filters out sparse zero data