
Accelerator Architectures for Machine

Learning (AAML)

Lecture 6: Digital DNN Accelerator

Tsung Tai Yeh
Department of Computer Science

National Yang-Ming Chiao Tung University

1

Acknowledgements and Disclaimer

● Slides was developed in the reference with

Joel Emer, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, ISCA 2019

tutorial

Efficient Processing of Deep Neural Network, Vivienne Sze, Yu-Hsin

Chen, Tien-Ju Yang, Joel Emer, Morgan and Claypool Publisher, 2020

Yakun Sophia Shao, EE290-2: Hardware for Machine Learning, UC

Berkeley, 2020

CS231n Convolutional Neural Networks for Visual Recognition,

Stanford University, 2020

CS224W: Machine Learning with Graphs, Stanford University, 2021

2

Outline

● Reconfigurable Deep Learning Accelerators

○ FPGA

○ SambaNova Reconfigurable Dataflow Unit (RDU)

○ Coarse grained reconfigurable array (CGRA)

○ GraphCore IPU

○ Wafer-scale AI chip -- Cerebras

3

Reconfigurable Deep Learning on FPGA

4

Spectrum of Architectures for Deep Learning

5

Why Reconfigurable Computing?

● AI accelerators improves 100X performance/energy compared

to general-purpose processor

● But new hardware is sophisticated and expensive

○ Especially in cutting-edge manufacturing processes

6

Reconfigurable Computing

● Basic idea

○ A spatial array of processing

elements (PEs) & memories with

a configurable network

○ Map your computation spatially

onto the array

○ Goal: programmable with near

ASIC efficiency

7

Basic FPGA Design

8

Modern FPGAs

● FPGAs are coarse-grain today

○ Hardened logic in LUTs

○ “DSP blocks” to implement wide add/mul

efficiently

○ Dense memories distributed throughout fabric

9

FPGA vs GPU

● Prefill stage

○ The latency of FPGAs in the prefill stage increases linearly,

while the GPU ones almost remain constant as the model

does not fully utilize GPUs

● Decode stage

○ FPGA-based accelerators are more efficient than GPUs

10

FPGA Overlay

11

FPGA Overlay

12

FlightLLM

13

Challenges of FPGAs on LLM Inference

● Low computation efficiency

○ Hard to efficiently map sparse matrices onto DSP chains

● Underutilized memory bandwidth

○ Repeated off-chip memory accesses for each fine-grained

kernel

● Huge instruction storage

○ Store instructions for all possible token lengths

14

High-Level Synthesis (HLS)

● Automated optimization and scheduling

● High portability against different PDK or

PPA requirements

● Short design cycle

15

Challenges of HLS Accelerator Design

● Time consuming

○ Manual architecture and micro-architecture design, manual

C/C++ code rewriting

● Suboptimal

○ Empirical parameter tuning, like parallel factors, buffer sizes,

tiling sizes, etc..

● Low flexibility

○ Only support a small set of models

16

Accelerator Design Languages (ADLs)

● Pythonic

● Maintainability

○ Decoupled hardware customizations

● Composability

○ All the kernels, primitives, and schedules

should be composable to form complex

designs

17

FPGA on AI Accelerators Follows

● FPGA vendors doing what markets want

○ Future “FPGA” not sea-of-gates for RTL netlist

● Purposeful architectures for targeted applications

○ Make things easier/cheaper to do

○ Be very good at what it is intended to do

● Coping with architectural divergence

○ Soft-logic adds malleability to “architecture”

○ 2.5/3D integration allows specialization off a common

denominator

○ Push reconvergence of abstraction up the stack 18

SambaNova Reconfigurable Dataflow

Unit (RDU)

19

Plasticine Architecture

● Plasticine architecture
○ A reconfigurable architecture for parallel patterns (Raghu, ISCA 2017)

○ Pattern Compute Unit (PCU)
■ Reconfigurable pipeline with multiple stages of SIMD functional units

(FUs)

○ Pattern Memory Unit (PMU)
■ A banked scratchpad memory

○ The compiler
■ Maps the computation of inner loops to PCUs

■ Most operands are transferred directly between FUs without scratchpad

access or inter-PCU communication

20

Plasticine Architecture Overview

● Data access address calculation occurs while the PCU is working

● Each DRAM channel is accessed using several address generators

(AG) on two sides of the chip

● Multiple AGs connect to an address coalescing unit for memory

requests

21

Raghu, ISCA 2017

Plasticine PCU Architecture

● Pattern Compute Unit (PCU)

○ Each stage’s SIMD lane contains a FU and associated pipeline

register (PR)

22

1. Scalar: uses to communicate

single words of data

2. Each vector communicates

one word per line in the PCU

3. Control signals at the start or

end of execution of a PCU

Raghu, ISCA 2017

Plasticine PMU Architecture

● Pattern Memory Unit (PMU)

○ Contains a scratchpad memory and address calculation

○ Calculates address only needs simple scalar math

○ Has simpler FUs than ones in PCUs

23

Raghu, ISCA 2017

Reconfigurable Dataflow Unit (RDU)

● SambaNova RDU

○ Pattern Compute Units
■ BF16 with FP32 accumulation

■ Support FP32, Int32, Int16, Int8

○ Pattern Memory Unit
■ Memory transformation

○ Dataflow optimization
■ Tiling

■ Nested pipelining

■ Operator parallel streaming

24

Dataflow Exploits Data Locality / Parallelism

● Software-hardware co-design architecture

○ Dataflow captures data locality and parallelism

○ Flexible time and space scheduling to achieve higher utilization

○ Flexible memory system and interconnect to sustain high compute

throughput

○ Custom dataflow pipeline

25

Chip and Architecture Overview

● RDU Tile
○ Compute and memory components
○ A programmable interconnect

● Tile resource management
○ Combine adjacent tiles to form a

larger logical tile
○ Each tile controlled independently
○ Allow different applications on separate

tiles concurrently

● Memory access
○ Direct access to TBs DDR4 off-chip memory
○ Memory-mapped access to host memory

26

RDU Tile

27

Pattern Compute Unit (PCU)

● Pattern Compute Unit (PCU)
○ Compute engine

● Reconfigurable SIMD data
path

○ For dense and sparse tensor
algebra in FP32, BF16, and
integer data format

● Programmable counters
○ Program loop iterators

● Tail unit
○ Accelerates functions such as

exp, sigmoid

28

Pattern Memory Unit (PMU)

● Pattern Memory Unit (PMU)

○ On-chip memory system

○ Banked SRAM arrays
■ Write and read multiple

high bandwidth SIMD data

stream concurrently

○ Address ALUs
■ Address calculation for

arbitrarily complex accesses

○ Data align
■ Tensor layout

transformation

29

Switch and On-chip Interconnect

● Switch
○ Programmable packet-switched interconnect fabric

● Independent data and control buses
○ Suit different traffic

classes

● Programmable routing
○ Flexible chip bandwidth

allocation to concurrent
stream

● Programmable counters
○ Outer loop iterators
○ On-chip metric collection

30

Interface to I/O Subsystem

● Address ALUs

○ Address calculation for arbitrarily complex accesses

● Coalescing Units

○ Enable transparent

access to memories

across RDUs and host

memory

● Address space manager

○ Programmable, variable

length segments

31

Operator Mapping

32

Operator Mapping (Softmax)

33

Pipelined in Space

34

Pipelined in Space + Fused

35

Fused

Spatial Dataflow within an RDU

● The dataflow removes

○ Memory traffic and host communication overhead

36

CGRA

37

Coarse grained reconfigurable array (CGRA)

● Coarse grained reconfigurable array (CGRA)
○ Multiple processing elements (PEs)
○ Each PE has ALU-like functional

unit
○ Array configurations vary by

■ Array size
■ Functional units
■ Interconnection network
■ Register file architectures

○ CGRAs can achieve power-efficiency of several 10s of
GOps/sec per Watt (why?)

■ Samsung SRP processor (embedded and multimedia apps)

38

Key features of CGRA accelerators

● Software-pipelining execution mapping
○ Accelerate loops with low parallelism
○ Loops with loop-carried dependence, loops with high branch

divergence

● Avoid von-Neumann architecture bottleneck
○ CGRAs are not subjected to dynamic fetch and decoding of

instructions
○ CGRA instructions are in a pre-decoded form in the

instruction memory
○ PE transfers data directly among each another
○ Without going through a centralized registers and memory

39

Loop execution on the CGRA

40

Loop:

t1 = (a[i]+b[i]-k)*c[i]

d[i] = ~t1 & 0xFFFFData dependency graph

Execution time: 1

1

2

Mapping data

dependency

graph to CGRA

Loop execution on the CGRA

41

Loop:

t1 = (a[i]+b[i]-k)*c[i]

d[i] = ~t1 & 0xFFFF
Data dependency graph

Execution time: 2

1

2

Mapping data

dependency

graph to CGRA
3

Loop execution on the CGRA

42

Loop:

t1 = (a[i]+b[i]-k)*c[i]

d[i] = ~t1 & 0xFFFF

Data dependency graph

Execution time: 3

1

2

Mapping data

dependency

graph to CGRA
3 4

5

Loop execution on the CGRA

43

Loop:

t1 = (a[i]+b[i]-k)*c[i]

d[i] = ~t1 & 0xFFFF

Data dependency graph

Execution time: 6

1

2

Mapping data

dependency

graph to CGRA
3 4

5 6 7

8

Takeaway Questions

● What are hardware components used by RDU ?

○ (A) Pattern computer unit (PCU)

○ (B) Pattern memory unit (PMU)

○ (C) Interconnect network router

● What are features of CGRAs ?

○ (A) Customized PEs

○ (B) Software-pipelining execution mapping

○ (C) Reconfigurable dataflow

44

GraphCore IPU

45

GraphCore IPUs

● GraphCore Intelligent Processing Units (IPUs)
○ Unlike GPU that is dedicated to accelerate large dense matrix

○ IPUs supports dynamic sparse training and unstructured

computation such as path tracing in 3D computer graphics

○ Multiple tile processors

○ Poplar programming model
■ Dedicated compiler (PopC)

■ Mapping compute graph to

tile processors

■ Compute kernels (Codelets)

46
https://hc33.hotchips.org/assets/program/conference/day2/HC2021.Graphcore.SimonKnowles.v04.pdf

Graphcore IPU Approach

● Post-Dennard, the silicon is power-limited

○ We can put more logic on the die than we can power (dark silicon)

● IPU architecture approach

○ Replace dark silicon logic with on-chip RAM that has lower power

density

From: Knowles, Simon. Designing Processors for Intelligence. 2017. UC Berkeley EECS Events, https://www.youtube.com/watch?v=7XtBZ4Hsi_M.

47

Graphcore IPU approach

● GPU approach
○ Shared memory model with caches and memory hierarchy to reduce

latency

● IPU approach
○ Move as much memory as possible into the chip local to the logic

48

Graphcore IPU Abstraction

● Tile processors

○ Each tile is a multi-threaded processor and has its local memory

○ Tiles communicate through all-to-all, stateless exchange

● A tensor vertex

○ Can be distributed over many tiles

49‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.

Distributed memory architecture

● 1472 tiles with 6 threads

sharing 624 KiB of local SRAM

● Total of 896 MiB and

250Tflop/s in 8832 worker

threads

● 7.8TB/s exchange between

tiles

● Tiles have no shared memory

or caches

Tiles

Mem +

Core
Chip-

interconnect

Tile Exchange

Graphcore Architecture White paper, https://www.graphcore.ai/products/ipu 50

Execution Model

● Tile workers execute instructions independently in parallel (MIMD),

● Wait for sync, followed by all-to-all data exchange phase (hardware

implementation of Bulk Synchronous Parallel (BSP) Model)

● No concurrency hazards (races, deadlocks etc.)

● Compiler faces hard job of scheduling

and load-balancing compute-chunks

on tile workers

Jia, Zhe, et al. ‘Dissecting the Graphcore IPU Architecture via Microbenchmarking’. ArXiv:1912.03413, Dec. 2019. arXiv.org, http://arxiv.org/abs/1912.03413.
51

Tile Processor

● 32b instructions, single or dual issue

● Two execution paths:

○ MAIN:

■ Control flow, integer/address

arithmetic, load/store to/from

either path

○ AUX:

■ Floating-point arithmetic for tensor

operations + special instructions

like log, tanh, PRNG etc.

52‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.

Tile Processor

● Fine-grained multithreading that switches

between 6 threads on every cycle in

round-robin fashion

○ Issued worker programs run in a slot at 1/6 of

the clock, so they can’t see the pipeline, i.e.,

mem access, branches etc. all appear to take one cycle per

instruction

○ This makes worker execution simple for the compiler to predict for

easier load balancing

53

Slots

C
y
c
le

s

‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.

N + 1 barrel threading

● 7 program contexts

● 6 round-robin pipeline slots

● The supervisor program
○ A fragment of the control program

○ Orchestrating the update of vertices

○ Execute in all slots not yielded to workers

○ Dispatch workers by RUN instruction

● A worker program is a codelet updating a vertex
○ Execute in 1 slot at 1/6 of clock

○ Returns its slot to the supervisor by EXIT instruction

54‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.

Sparse Load/Store

● Large on-die SRAM memory

○ 896 MiB on-die SRAM at 47TB/s (data-side)

○ Access arbitrarily-structured data which fits on chip

● Ld/St instructions

○ Support sparse gather in parallel with arithmetic at full speed via compact

pointer lists

○ 16b absolute offsets to a base

○ 4b cumulative delta offsets to a base

55‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.

Global Program Order
● Tile processors

○ Execute asynchronously until they need to exchange data

○ Each tile executes a list of atomic codelets in one compute

phase

● Bulk Synchronous Parallel

○ Repeat {Sync; Exchange; Compute}

○ Hardware global sync. In ~150 cycles on chip, 15 ns/hop between chips

56

‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.

Exchange Mechanics

● IPU POPLAR compiler

○ Schedule transmit, receive

and select at precise cycles

from sync

○ Knowing all pipeline delays

● Data movement

○ At full bandwidth

○ No queues, arbiters, or

packet overheads

57‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.

Why no HBM Memory ?

● Memory bandwidth limits how fast

AI can complete

● GPU and TPU
○ Solve for bandwidth and capacity using

HBM

○ HBM is expensive, capacity-limited, and

adds 100W+ to the processor thermal

envelope

● IPU
○ Solves for bandwidth with SRAM, and

for capacity with DDR

58‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.

IPU hardware helps software

● Simple mechanisms allow software evolution

○ Native graph abstraction

○ Codelet-level parallelism

○ Pipeline-oblivious threads

○ BSP removes concurrency hazards

○ Stateless all-to-all exchange

○ Cacheless, uniform, near/far memory

59‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.

Takeaway Questions

● Why GraphCore IPU employ large SRAM instead of

HBM?

○ (A) Achieve high bandwidth

○ (B) Large memory capacity

○ (C) Save silicon area

60

Wafer-scale AI chip -- Cerebras

61

Largest AI chip

● 46,225 mm2 silicon

● 1.2 trillion transistors

● 400,000 AI optimized cores

● 18 Gigabytes of on-chip memory

● 9 Pbyte/s memory bandwidth

● 100 Pbit/s fabric bandwidth

● TSMC 16 nm process

62

Cerebras WSE

GPU

21.1 Billion

Transistors

815 mm2 silicon

Why big chips ?

● Big chips process data more quickly

○ Cluster scale performance on a single chip

○ GB of fast memory 1 clock cycle from core

○ On-chip interconnect orders of magnitude faster than off-

chip

○ Model-parallel, linear performance scaling

○ Training at scale, with any batch size, at full utilization

63

Cerebras Architecture

● Core optimized for neural network primitives
● Flexible, programmable core

○ NN models are evolving

● Designed for sparse compute
○ Workloads contain fine-grained sparsity (where are these

sparsity from ?)

● Local memory
○ reusing weight & activations

● Fast interconnect
○ Layer-to-layer with high bandwidth and low latency

64

Cerebras programmable core

● Flexible cores optimized for

tensor operations

○ General ops for control processing

○ e.g. arithmetic, logical, LD/ST,

branch

○ Optimized tensor ops for data

processing

○ Tensor operands

○ e.g. fmac [Z] = [Z], [W], a

3D 3D 2D

65

Sparse compute engine

● Nonlinear activations naturally

create fine-grained sparsity

● Dataflow scheduling in hardware

○ Triggered by data

○ Filters out sparse zero data

○ Skips unnecessary processing

● Fine-grained execution datapaths

○ Small cores with independent instructions

○ Efficiently processes dynamic, non-uniform work

66

Cerebras memory architecture

● Traditional memory designs
○ Centralized shared memory is slow & far

away

○ Requires high data reuse (caching)

○ Local weights and activations are local ->

low data reuse

● Cerebras memory architecture
○ All memory is fully distributed along compute

○ Datapath has full performance from memory

67

High-bandwidth low-latency interconnect

● 2D mesh topology effective for local communication

○ High bandwidth and low latency for local communication

○ All HW-based communication avoids SW overhead

○ Small single-word message

68

Challenges of wafer scale

● Building a 46,225 mm2, 1.2 trillion transistor chip

● Challenges include

○ Cross-die connectivity

○ Yield

○ Thermal expansion

○ Package assembly

○ Power and cooling

69

Challenge 1: cross die connectivity

● Standard fabrication process requires

die to be independent

● Scribe line separates each die

● Scribe line used as mechanical

barrier for die cutting for test

structures

70

Cross-die wires

● Add wires across scribe line with

TSMC

● Extend 2D mesh across die

● Same connectivity between cores

and across scribe lines create a

homogeneous array

● Short wires enable ultra high

bandwidth with low latency

71

Challenges II: Yield

● Impossible to yield full wafer with
zero defects

○ Silicon and process defects are
inevitable even in mature process

● Redundant cores
○ Uniform small cores
○ Redundant cores and fabric links
○ Redundant cores replace defective

cores
○ Extra links reconnect fabric to

restore logical 2D mesh

72

Challenge III: Thermal expansion in package

● Silicon and PCB expand at different rates under temperature

● Size of wafer would result in too much mechanical stress using

traditional package technology

73

Connecting wafer to PCB

● Developed custom connector to connect wafer to PCB

● Connector absorbs the variation while maintaining connectivity

74

Challenge IV: Package assembly

● Package includes
○ PCB

○ Connector

○ Wafer

○ Cold plate

● All components require

precise alignment

● Developed custom machines and process

75

Challenge V: Power and cooling

● Concentrated high density exceeds traditional power &

cooling capacities

● Power delivery
○ Current density too high

for power plane

distribution in PCB

● Heat removal
○ Heat density too high for

direct air cooling

76

Using the 3rd dimension

● Power delivery

○ Current flow distributed in

3rd dimension perpendicular

to water

● Heat removal

○ Water carries heat from

wafer through cold plate

77

Takeaway Questions

● What are challenges to build a large chip for NN

applications ?
○ (A) Power and cooling

○ (B) Fault tolerance for defected dies

○ (C) Package assembly

● How does Cerebras tackle the DNN sparsity ?
○ (A) Customized sparse core

○ (B) Data-driven dataflow scheduling

○ (C) Filters out sparse zero data

78

