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Outline

● Systolic Array Architecture

○ Google Tensor Processing Unit (TPU)

● Dataflow

○ Weight-stationary

○ Output-stationary

○ Input-stationary
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Systolic DNN Accelerator
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A Golden Age in Microprocessor Design

● A great leap in microprocessor speed ~106 X faster over 40 years

● Architectural innovations
○ Width: 8->16->32->64 bits (~8X)

○ Instruction level parallelism (ILP)

○ Multicore: 1 processor to 16 cores 

○ Clock rate: 3 – 4000 MHz (~1000 X through technology & architecture)

● IC technology makes it possible
○ Moore’s Law: growth in transistor count (2X every 1.5 years)

○ Dennard Scaling: power/transistor shrinks at the same rate as 

transistors are added

5John Hennessy, “The Future of Microprocessors”, 2017



Current Situation 

● Technology

○ End of Dennard scaling: power becomes the key constraint

○ Slowdown of Moore’s Law: transistor cost

● Architectural Designs

○ Inefficiency to exploit instruction level parallelism in the 

uniprocessor era, 2004

○ Amdahl’s Law and its implications end

6John Hennessy, “The Future of Microprocessors”, 2017



What’s Left ?

● Transistors not getting much better

● Power budget not getting much higher

● One inefficient processor/chip to N efficient 

processors/chip

● Only path left is Domain Specific Architectures

○ Just do a few tasks, but extremely well

7John Hennessy, “The Future of Microprocessors”, 2017



Lessons from DSA

● Logic, wires, SRAM & DRAM 
improve unequally

○ SRAM access improved only 
1.3X – 2.4 X → SRAM density 
is scaling slowly

○ DRAM access improved 6.3X
■ Packaging innovations
■ High Bandwidth Memory (HBM)
■ HBM is more energy-efficient

than GDDR6 or DDR DRAM

○ Logic improves much faster
than wires and SRAM

8Jouppi et al. ISCA, 2021



Lessons from DSA

● Leverage prior compiler optimization
○ Many DSAs rely on VLIW including TPUs

○ XLA (Accelerated Linear Algebra) compiler

○ XLA raises the TPU by 2.2 X

compared to the same compiler

20 months ago

○ C compilers improve general

purpose code 1 – 2% annually

○ Good compilers are critical to

a DSA’s success

9Jouppi et al. ISCA, 2021



Lessons from DSA

● Some inference applications need floating point arithmetic

○ Quantized arithmetic grants area and power savings

○ But may reduce quality, delayed deployment and some apps don’t 

work well when quantized

● Production inference needs multi-tenancy

○ Sharing can lower costs and reduce latency if applications use 

many models

○ Multi-tenancy suggests fast DRAM for DSAs, since all weights can’t 

fit in SRAM

10



Lessons from DSA

● DNN workloads evolve with DNN breakthroughs
○ MLP drops (65% to 25%)

○ BERT appeared in 2018, 

yet its’s already 28% of the

workload

○ A transformer encode + 

LSTM decoder (RNN0) + a 

wave RNN (RNN1) is 29%

○ The importance of 

programmability and 

flexibility for inference DSAs to track DNN progress
11Jouppi et al. ISCA, 2021



Lessons from DSA

● DNNs grow ~1.5X per year in memory and compute

○ DNNs grow as fast as Moore’s Law

○ This rate suggests architects should provide headroom so 

DSAs can remain useful over their full lifetime

12Jouppi et al. ISCA, 2021



Tensor Processing Unit (TPU)

● TPU v1
○ Google’s first DNN DSA

○ Handle inference (serving)

○ The systolic array MXU has 64K 8-bit

integer Multiply Accumulate (MAC) units

○ The CPU exchanges over PCIe
■ Model inputs and outputs

■ instructions

○ Perf/Watt compared to GPUs and CPUs
■ 30 – 80 X higher

13

Jouppi et al. ISCA, 2021



Tensor Processing Unit (TPU)

● TPU v2
○ Addresses training

○ Merge activation storage and the accumulators into a single 

vector memory

○ A more programmable vector unit 

○ Support Bfloat16 with 16 K MAC units (1/4 of the TPUv1’s size)

○ The MXU was attached to the vector unit as a matrix co-

processor

○ High HBM DRAM bandwidth keeps TPUv2 core well utilized

○ TPUv2 fetches its own 322-bit VLIW instructions from a 

local memory rather than the host memory 
14Jouppi et al. ISCA, 2021



Tensor Processing Unit (TPU)

● TPUv2
○ Add a chip-to-chip interconnect

fabric (ICI) enable up to 256 chips

○ Two TensorCores per chip

○ Prevent the excessive latency
■ Two small cores per chip vs.

■ A single large full-chip core

○ TPUv3
■ Has 2X the number of MXUs and 

HBM capacity

■ 1024 chips
15Jouppi et al. ISCA, 2021



Tensor Processing Unit (TPU)

● TPUv4i (i means inference)
○ Add 128 MB common memory

■ A large data structure don’t fit 

in vector memory

○ Tensor DMA engine
■ Fully decode and execute 

TensorCore DMA instructions

■ Enable 512B-granular 4D tensor 

memory transfers between any

pair of architectural memories

■ Unified DMA engine across 

local, remote and host transfer
16Jouppi et al. ISCA, 2021



Tensor Processing Unit (TPU)

● TPUv4i
○ Custom on-chip interconnect (OCI)

■ The increase of memory bandwidth and the number of components

■ A point-to-point approach becomes too expensive -> significant 

routing resources/die area

■ A shared OCI connects all components on the die

○ Wider data path 
■ 512B native access size instead of 64B cache lines

■ HBM bandwidth per core is 1.3X increased over TPUv3

■ NUMA memory system – use (spatial locality and bisection bandwidth)

■ Physically partitioned into four 128B-wide groups to optimize HBM 

accesses

17



Tensor Processing Unit (TPU)

● TPUv4i

○ Arithmetic unit

■ The VLIW instruction needs extra fields to handle the four MXUs and 

CMEM scratchpad memory -> 25% wider than TPUv3

■ Sums groups of four multiplication results together

■ Adds them to previous partial sum with a series of 32 two-input adders

■ A four-input floating point adder

■ Cuts the critical path through the systolic array

■ The four-input adder saves 40% area and 25% power to a series 128 

two-input adders

18



Tensor Processing Unit (TPU)

● TPUv4i
○ The die is < 400 mm2

○ CMEM is 28% of the area

○ OCI blocks are filled the space in 

the abutted floorplan

○ The die dimensions and overall 

layout are dominated by the 

TensorCore, CMEM, and SerDes

19Jouppi et al. ISCA, 2021



Tensor Processing Unit (TPU)

20

Jouppi et al. ISCA, 2021



TPU Instruction Set Architectures

● TPU instruction follows the CISC fashion

● Average clock cycles per instructions > 10

● No program counter and branch instruction

● In-order issue

● SW controls buffer, pipeline synchronization

● A dozen instructions overall, five key ones
○ Read_Host_Memory

○ Read_Weights

○ MatrixMultiply/Convole

○ Activate

○ Write_Host_Memory
21



TPU Microarchitecture 

● 4-stage overlapped execution,

1 instruction type/ stage

● Execute other instructions while

MM is busy

● Read_Weight doesn’t wait for

weights fetched from DRAM

● The MM unit uses not-ready

signal to indicate data aren’t

available in unified and Weight

FIFO buffer 
22

Jouppi et. al, ISCA 2017



TPU Micro-architecture

● Each PE performs Multiply-and 

Accumulate (MAC) operation

● The unified memory buffer is 

decomposed into input, weight, 

and output buffer

● Each weight buffer stores weights

of a filter

● At each cycle, inputs are pushed in 

the PE horizontally

● Partial sums flow vertically

23



Systolic Execution in TPU

● Reading a large SRAM is much more expansive than arithmetic 

● Using systolic execution to reduce R/W of the unified buffer
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Systolic Execution in TPU

● Reuse input values

● Relies on data from different directions arriving at each array at 

regular interval to do the calculation
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Systolic Execution in TPU
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TPU Case Study

● How to map input feature map and filter (weight) to TPU ?

● Suppose the size of the input feature map is 4 x 4, and the size of 

filter is 2 x 2. 

27

a0 a1 a2 a3

a4 a5 a6 a7

a8 a9 a10 a11

a12 a13 a14 a15

W0 W1

W2 W3

C0 C1 C2

C3 C4 C5

C6 C7 C8

* =

m x m

k x k
(m-k+1)(m-k+1)

Input

Filter
Output



TPU Case Study

● How to map input feature map and filter to TPU ?

● How many cycles takes to complete the CONV of one 

feature map with 2 x 2 filter, # of filter = 1 ? 
○ (m - K + 1)2 + K2 – 1 + (# of filter – 1)

28
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TPU Case Study

● The CONV weight stationary data flow

29

Im2col 

transform



TPU Case Study

● In real-world model, a DNN model often has multiple channels 

and filters

● How many ops take to complete a CONV in the systolic array ? 

○ (m – k + 1) x (m – k + 1) x (k x k x iC x oC)

30
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TPU Case Study

● How to map CONV 

to the systolic array ?

● Systolic array contains

multiple PEs

● Each filter element

is placed on the 

local buffer of each 

PE

31
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TPU Case Study

● How many cycles takes to complete a CONV ?

○ Systolic array size: 128 x 128

○ Kernel size: 2 x 2

○ Input channel: 256

○ Input size: 10 x 10

○ The number of filter: 16

32

1. 128 x 128 systolic array can execute floor(128/(2 x 2)) = 32 channels

2. The systolic array needs to take ceil(256/32) = 8 times

3. Each input takes (10 – 2 + 1)2 + (16 - 1) = 96 cycles

4. Total = 96 x 8 + (22 x 32 - 1) =  895 cycles



Takeaway Questions

● How does TPU reduce the energy consumption ?
○ (A) Employ the weight stationery data flow

○ (B) Increase the clock frequency of PEs

○ (C) Increase the number of PEs

● Given a DNN layer with 2 x 2 filter with a single channel, 

how many cycles will take before activate the first row of 

the systolic array? 
○ (A) 3

○ (B) 4

○ (C) 5

33



Dataflow DNN Accelerator
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Design Aspects of Temporal Accelerator (TA)

● Centralized control for ALUs

● ALUs can only fetch data from the 

memory hierarchy

● ALUs “cannot” communicate directly

with each other

● Why TA becomes popular? Parallelism

● Design aspects for DNN workloads
○ Reduce # of multiplication -> increase

throughput

○ Ordered computation (tiling) -> improve

memory subsystem
35



Design Aspects of Spatial Accelerator (SA)

● ALUs

○ Can pass data from one to another directly

○ Can have its own control logics and local 

memory (registers)

● Dataflow processing

○ Programmable -> dynamic vs static graphs

○ Dynamic Mapping -> increase data reuse ->

energy-efficiency

● Why SA are popular on DNN workloads?

○ Consume lower power & high throughput

○ Why? Data reuse -> reduce data movement
36



Spatial Array Architecture

● Spatial array architecture comprises
○ An array of processing elements (PE)
○ Off-chip DRAM
○ Global buffer
○ Network-on-chip (NOC)
○ Register file (RF) in the PE

● Input and output FIFO (i/oFIFO)
○ Use to communicate DRAM, global

buffer, and PE 

● PE FIFO (pFIFO)
○ Control the traffic going in and out

of ALU
37Chen et al, IEEE MICRO, 2018



Spatial Architecture for DNN
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Challenges of Spatial Accelerators

● Memory access is the bottleneck
○ AlexNet has 2896M DRAM accesses

required

○ How to decrease expensive DRAM

accesses ?

○ Intelligent distributed data allocation

● Varying parameters in DNN models
○ Each layer has different computation 

volume

○ Different operations in DNN layers and

models
39



Improve Spatial Accelerator Energy-Efficiency ? 

40



Energy Cost of Memory Access
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Data Reuse on Local Memory

42

How to leverage local memory to reduce the times of remote DRAM 

access on DNN workloads ?

Optimal case: reduce 2896 M to 61 M DRAM accesses on AlexNet



Dataflow Taxonomy

● Output Stationary (OS)

● Weight Stationary (WS)

● Input Stationary (IS)

● Dataflow

○ Indicates the matrix which is “pinned” to a given PE

○ The ordering of the operations

○ Data prioritization across the memory hierarchy and 

compute data paths 

43



Weight Stationary (WS)

● Minimize weight read energy consumption

● Broadcast activations and accumulate psums spatially 

across PEs

● Each weight stays stationary in RF of each PE

● Maximize the reuse of weights from the RF at each PE

44

Global Buffer
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Weight Stationary (WS)

● Each element of the weight matrix is 

uniquely mapped to a given MAC unit

● Every cycle the input elements are 

multiplied with the currently mapped 

weights

● Partial sums are stored within the array

● Reduction takes place by communicating

the partial sums across the MAC units

○ Take multiple cycles

45https://arxiv.org/pdf/1811.02883



Weight Stationary (WS)

● First step in WS data mapping

○ Each column is assigned to a given filter

○ The elements of the assigned filter

matrix are fed in from the top edge

○ After the filter elements are placed, 

the pixels of inputs are then fed in

from the left edge

○ Partial sums for a given output is

generated every cycle

46https://arxiv.org/pdf/1811.02883



Weight Stationary (WS)

● Second step in WS data mapping

○ For a given output, corresponding partial 

sums are distributed over a column

○ Partial sums are reduced over the

given column in next n cycles

○ n is the number of partial sums 

generated for a given pixel

○ Once the mapped weight are done, 

the mapping is replaced with new 

set of weights 47https://arxiv.org/pdf/1811.02883



Weight Stationary (WS)

● Shortcoming of the WS

○ Partial sums corresponding multiple

outputs are required to be kept in the

array until the are reduced

○ Leads to increase in implementation

cost (why?)

48https://arxiv.org/pdf/1811.02883



Latency Analysis of Weight Stationary

● The weight stationary in the systolic array

○ Inputs take (m – k + 1)2 + (k x k x C - 1) cycles to flow in 

the spatial array horizontally 

○ Inputs also need to take F cycles to pass

through each filter

○ Pre-load weights take (k x k x C) cycles

○ Total cycles 

■ (m – k + 1)2 + (k x k x C -1) + (k x k x C) + F

49



Output Stationary (OS)

● Minimize partial sum R/W energy consumption

● Keep the accumulation of psums stationary in the RF

● Stream input activations across PE array

● Broadcast the weights to all PE array from the global buffer

50



Output Stationary (OS)

● Each pixel of output is assigned to a given PE

● All compute necessary for generating the

given output is done on the PE

● The input and weight are streamed in 

every cycle

● Reduction operation is done in place, 

no further communication is needed

● Once one output pixel is generated by a 

given PE, the result is transferred to

the memory, and the PE is assigned

another pixel to compute 51

https://arxiv.org/pdf/1811.02883



Output Stationary (OS)

● In a given column PEs in each row 

○ Generating adjacent output in a single 

channel

○ Each column generates pixels 

corresponding to different

output channels

● Shortcoming of the OS

○ The data transferred overhead of

generated outputs
52

https://arxiv.org/pdf/1811.02883



Latency Analysis of Output Stationary

● The output stationary in the systolic array

○ Inputs and weights are pushed in the systolic

array and takes (k x k x C - 1) + (m – k + 1)2

○ Taking F cycles to pass through outputs

○ Outputs are accumulated in-place

○ Total cycles

■ (k x k x C - 1) + (m – k + 1)2 + F

53



OS Dataflow Example

● Cycle through input fmap and weights (psum of output is stationary)
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OS Dataflow Example

● Cycle through input fmap and weights (psum of output is stationary)
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OS Dataflow Example

● Cycle through input fmap and weights (psum of output is stationary)
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OS Dataflow Example

● Cycle through input fmap and weights (psum of output is stationary)
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OS Dataflow Example
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● Cycle through input fmap and weights (psum of output is stationary)
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Input Stationary (IS)

● Minimize the energy consumption of reading input activations

● Unique filter weights are uni-cast into PEs at each cycle

● Psums are spatially accumulated across PEs 

59



Input Stationary (IS)

● Input feature map (IFMAP) are “pinned” 

with the PEs

● The elements of the weight matrices are

streamed in

● Each column is assigned to a convolution

window

● The convolution window is a set of all the

pixels in the IFMAP which are required to

generated a single OFMAP

60https://arxiv.org/pdf/1811.02883



Input Stationary (IS)

● Once the inputs are fed in, the elements of

the weight matrices are streamed in from

the left edge

● The reduction is performed over a given

column

● The convolution windows are kept around

until all the computations requiring these

elements are done

61https://arxiv.org/pdf/1811.02883



Input Stationary (IS)

● Benefits

○ Lower SRAM bank requirements as

compared to OS

● Shortcoming

○ The cost and runtime compared to 

WS varies by workload

62https://arxiv.org/pdf/1811.02883



Latency Analysis of Input Stationary

● The input stationary in the systolic array

○ Weights stream into the systolic array horizontally and takes (k x k 

x C - 1) + F cycles

○ Weights also take (m – k + 1)2 cycles to 

pass through entire inputs

○ Pre-load inputs takes (k x k x C) cycles

○ Total cycles

■ (k x k x C) + (k x k x C - 1) + F + (m – k + 1)2
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Parameters of CNN Network

64

Parameters

m The width and height of input feature map

K The width and height of filter

F The number of filters

C The number of channels

N The width and height of spatial array



Dataflow Cost Analysis

● OS minimizes output reads (0)

● WS saves # of weight reads (E)

● IS saves # of input reads (E)

65

OS WS IS

MACs E*R E*R E*R

Weight Reads E*R R E*R

Input Reads E*R E*R E

Output Reads 0 E*R E*R

Output Writes E E*R E*R

R: size of filter weight 

E: size of output activations

These dataflows only 

reduce a specific reads. 

Could we do better ?



Row Stationary (RS)

● Minimize data reuse at RF

● Optimize for overall 

data type energy

efficiency

66

Chen et al., ISCA 2017



How does RS work ?

● Keep the row of filter weights 

stationary in RF of a PE

● PE does MACs for each sliding

window of ifmap at a time

● Use only one memory space to 

accumulate Psums

● Overlap ifmap between different

sliding windows -> reuse ifmap

67

Chen et al., ISCA 2017



How does RS work ?

● Ifmap sliding window right

shifts

● Pop the value “a” out of RF

● Accumulate Psum “b”

68

Chen et al., ISCA 2017



How does RS work ?

● Ifmap sliding window continues

to right shift

● Pop out the value “b” in RF

● Accumulate psum “c”

69
Chen et al., ISCA 2017



What do we learn from DNN Dataflow ?

● DNN layer shape and hardware resources provided determine 

the energy efficiency of dataflow mapping

● How can the fixed-size PE array 

accommodate different layer shapes?

● Known DNN layer shapes offline, could

compiler/runtime system guide 

the mapping ?

70



Takeaway Questions

● What are the purposes of dataflow used by DNN applications?

○ (A) Reduce the data movement across off-chip memory

○ (B) Improve the clock frequency of PE

○ (C) Decrease the energy consumption of spatial array accelerator

● What kind of dataflow implemented by the PE on 

the right-hand side?

○ (A) WS

○ (B) IS

○ (C) OS
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