

Accelerator Architectures for Machine Learning (AAML)

Lecture 4: Model Pruning

Tsung Tai Yeh Department of Computer Science National Yang-Ming Chiao Tung University

Acknowledgements and Disclaimer

- Slides was developed in the reference with
 - Joel Emer, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, ISCA 2019 tutorial Efficient Processing of Deep Neural Network, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, Morgan and Claypool Publisher, 2020 Yakun Sophia Shao, EE290-2: Hardware for Machine Learning, UC Berkeley, 2020

CS231n Convolutional Neural Networks for Visual Recognition, Stanford University, 2020

- 6.5940, TinyML and Efficient Deep Learning Computing, MIT
- NVIDIA, Precision and performance: Floating point and IEEE 754 Compliance for NVIDIA GPUs, TB-06711-001_v8.0, 2017

Outline

- Neural Network Pruning
- Pruning granularity
- Pruning criterion
- Pruning ratio
- Fine-tune/train pruned neural network

Pruning Happens in Human Brain

Neural Network Pruning

- Reduce the network connections
- Small weight while maintaining training accuracy
 50 Trillion Synapses
 1000 Trillion Synapses

New born

1 year old

500 Trillion Synapses

Teenager

Christopher A Walsh, Peter Huttenlocher (1931 - 2013). Nature, 502(7470), 2013

Approaches to Reduce Model Sizes

- Weight sharing
 - Trained quantization

Quantization

- Quantizing the weight and activation
- Fine-tune in float format
- Reduce to fixed-point format

What is Neural Network Pruning?

Neural Network Pruning

- Reducing the parameter counts of neural networks
- Decreasing the storage requirements
- Improving computation
 efficiency of neural network

Neural Network Pruning

• Make neural network smaller by removing synapses

Neural Network Pruning

• Make neural network smaller by removing synapses and neurons

Neural Network		MACs		
	Before Pruning	After Pruning	Reduction	Reduction
AlexNet	61 M	6.7 M	9 ×	3 ×
VGG-16	138 M	10.3 M	12 ×	5 ×
GoogleNet	7 M	2.0 M	3.5 ×	5 ×
ResNet50	26 M	7.47 M	3.4 ×	6.3 ×
SqueezeNet	1 M	0.38 M	3.2 ×	3.5 ×

Pruning in the Industry

• Hardware support for sparsity

EIE [Han et al., ISCA 2016]

ESE [Han et al., FPGA 2017]

SpArch [Zhang et al., HPCA 2020] SpAtten [Wang et al., HPCA 2021]

2:4 sparsity in A100 GPU 2X peak performance, 1.5X measured BERT speedup

Neural Network Pruning

In general, we could formulate the pruning as follows:

$$\arg\min_{\mathbf{W}_P} L(\mathbf{x}; \mathbf{W}_P)$$

subject to

 $\|\mathbf{W}_p\|_0 < N$

- L represents the objective function for neural network training;
- x is input, W is original weights, W_P is pruned weights;
- $\|\mathbf{W}_p\|_0$ calculates the #nonzeros in W_p , and N is the target #nonzeros.

Pruning at Different Granularities

• A simple example of 2D weight matrix

Fine-grained/Unstructured

- More flexible pruning index choice
- Hard to accelerate (irregular)

Coarse-grained/Structured

- Less flexible pruning index choice (a subset of the fine-grained case)
- Easy to accelerate (just a smaller matrix!)

Pruning at Different Granularities

The case of convolutional layers

- The weights of convolutional layers have 4 dimensions $[c_o, c_i, k_h, k_w]$:
 - *c_i*: input channels (or channels)
 - c_o: output channels (or filters)
 - k_h : kernel size height
 - k_w : kernel size width
- The 4 dimensions give us more choices to select pruning granularities

Pruning at Different Granularities

The case of convolutional layers

• Some of the commonly used pruning granularities

like Tetris :)

Exploring the granularity of sparsity in convolutional neural networks [Mao et al., CVPR-W]

Pruning at Different Granularities

• Fine-grained pruning

- Flexible pruning indices
- Large compression ratio (flexibly find redundant weight)
- Can deliver speedup on some customized hardware (EIE), but not GPU

Neural Network	#Parameters				
	Before Pruning	After Pruning	Reduction		
AlexNet	61 M	6.7 M	9 ×		
VGG-16	138 M	10.3 M	12 ×		
GoogleNet	7 M	2.0 M	3.5 $ imes$		
ResNet50	26 M	7.47 M	3.4 $ imes$		

Pruning at Different Granularities

• Pattern-based pruning: N:M sparsity

- N:M sparsity means that in each contiguous M elements, N of them is pruned
- A classic case is 2:4 sparsity (50% sparsity)
- It is supported by NVIDIA's Ampere GPU, 2X speedup

Accelerating Inference with Sparsity Using the NVIDIA Ampere Architecture and NVIDIA TensorRT

Pruning at Different Granularities

• Pattern-based pruning: N:M sparsity

Usually maintains accuracy

Network	Data Set	Metric	Dense FP16	Sparse FP16
ResNet-50	ImageNet	Top-1	76.1	76.2
ResNeXt-101_32x8d	ImageNet	Top-1	79.3	79.3
Xception	ImageNet	Top-1	79.2	79.2
SSD-RN50	COCO2017	bbAP	24.8	24.8
MaskRCNN-RN50	COCO2017	bbAP	37.9	37.9
FairSeq Transformer	EN-DE WMT'14	BLEU	28.2	28.5
BERT-Large	SQuAD v1.1	F1	91.9	91.9

Accelerating Inference with Sparsity Using the NVIDIA Ampere Architecture and NVIDIA TensorRT

Pruning at Different Granularities

Channel pruning

- Reduce channel numbers (leading to an neural network with smaller # of channels) -> speedup
- Con: smaller compression ratio

Pruning Criterion

- What synapses and neurons should we prune ?
 - The less important parameters should be removed
 - What is the less important parameter in a neural network?

Example

$$f(\cdot) = \text{ReLU}(\cdot), W = [10, -8, 0.1]$$

- ⇒ $y = \text{ReLU}(10x_0 8x_1 + 0.1x_2)$
- · If one weight will be removed, which one?

Magnitude-based Pruning

Magnitude-based pruning

- Considers weights with **large absolute values** are more important than other weights Importance = |W|
- Remove weights with small magnitudes

fmap

1

1

Magnitude-based Pruning

Without Pruning

Magnitude-based Pruning

• Row-wise pruning

• The L1-norm magnitude can be defined as

Importance =
$$\sum_{i \in S} |w_i|$$
, where $\mathbf{W}^{(S)}$ is the structural set *S* of parameters \mathbf{W}

Example

Learning Both Weights and Connections for Efficient Neural Network [Han et al., NeurIPS 2015]

Magnitude-based Pruning

• A heuristic pruning criterion

• The Lp-norm magnitude can be defined as

$$\|\mathbf{W}^{(S)}\|_{p} = \left(\sum_{i \in S} |w_{i}|^{p}\right)^{\frac{1}{p}}, \text{ where } \mathbf{W}^{(S)} \text{ is a structural set of parameters}$$

Example

Learning Structured Sparsity in Deep Neural Networks [Wen et al., NeurIPS 2016]

Feature-Based Pruning

• Feature-based pruning

- Pruning based on the impact of the output feature map
- Achieve higher accuracy than magnitude-based pruning
- Complex evaluating the impact of the weights

Scaling-based Pruning

A scaling factor

- Associated with each filter in convolutional layers
- Trainable parameter
- The filters/output channels with small scaling factor

Scaling-based Pruning

- A scaling factor
 - The scaling factor can be used from batch normalization

layer

$$\mathbf{z}_o = \gamma \frac{\mathbf{z}_i - \mu_{\mathscr{B}}}{\sqrt{\sigma_{\mathscr{B}}^2 + \epsilon}} + \beta$$

Pruning Neurons

- When removing neurons from a neural network model
 - The less useful neurons are removed

Neuron Pruning in Linear Layer

Ĩ		

Percentage-of-Zero-Based Pruning

- ReLU activation will generate zeros in the output activation
- The Average Percentage of Zero activations (APoZ) can be exploited to measure the importance of the neurons

Network Trimming: A Data-Driven Neuron Pruning Approach towards Efficient Deep Architectures [Hu et al., ArXiv 2017]

Percentage-of-Zero-Based Pruning

- The Average Percentage of Zero activations (APoZ) can be exploited to measure the importance of the neurons
- The neuron with smaller APoZ is more important

Network Trimming: A Data-Driven Neuron Pruning Approach towards Efficient Deep Architectures [Hu et al., ArXiv 2017]

Regression-based Pruning

• Minimize reconstruction error of the corresponding layer's outputs

Regression-based Pruning

• Let

$$\mathbf{Z} = \mathbf{X}\mathbf{W}^T = \sum_{c=0}^{c_i-1} \mathbf{X}_c \mathbf{W}_c^T$$

a 1

• The problem can be formulate as

$$\arg\min_{\mathbf{W},\,\beta} \|\mathbf{Z} - \hat{\mathbf{Z}}\|_F^2 = \|\mathbf{Z} - \sum_{c=0}^{c_i-1} \beta_c \mathbf{X}_c \mathbf{W}_c^T\|_F^2$$

subject to

 $\|\beta\|_0 \le N_c$

- β is coefficient vector of length c_i for channel selection. $\beta_c = 0$ means channel c is pruned.
- N_c is the number of nonzero channels.
- Solve the problem by:
 - Fix W, solve β for channel selection
 - Fix β , solve W to minimize reconstruction error

6

Takeaway Questions

- How does feature-based pruning work?
 - (A) Removing weights with small magnitudes
 - (B) Pruning through complex evaluation
 - (C) Removing inputs with small magnitudes
- What are goals of neural network pruning ?
 - Less number of weights
 - Less number of inputs
 - Less bits per weights

Takeaway Questions

- What are benefits of network pruning ?
 - (A) Reduce the size of input data
 - (B) Small size of filter data
 - (C) Shorten the time to complete the DNN model inference

Pruning Ratio

- How should we find per-layer pruning ratios ?
 - Non-uniform pruning is better than uniform shrinking

Analyze the sensitivity of each layer

- Pruning ratios are varied across different layers
- Some layers are more sensitive (e.g., first layer, why?)
- Some layers are more redundant
- Need to perform sensitivity analysis to determine the per-layer pruning ratio

- The process of Sensitivity Analysis (* VGG-11 on CIFAR-10 dataset)
 - Pick a layer L_i in the model
 - Prune the layer L_i with pruning ratio $r \in \{0, 0.1, 0.2, ..., 0.9\}$ (or other strides)
 - Observe the accuracy degrade ΔAcc_r^i for each pruning ratio

- The process of Sensitivity Analysis (* VGG-11 on CIFAR-10 dataset)
 - Pick a layer L_i in the model
 - Prune the layer L_i with pruning ratio $r \in \{0, 0.1, 0.2, ..., 0.9\}$ (or other strides)
 - Observe the accuracy degrade ΔAcc_r^i for each pruning ratio
 - Repeat the process for all layers

- The process of Sensitivity Analysis (* VGG-11 on CIFAR-10 dataset)
 - Pick a layer L_i in the model
 - Prune the layer L_i with pruning ratio $r \in \{0, 0.1, 0.2, ..., 0.9\}$ (or other strides)
 - Observe the accuracy degrade ΔAcc_r^i for each pruning ratio
 - Repeat the process for all layers

- The process of Sensitivity Analysis (* VGG-11 on CIFAR-10 dataset)
 - Pick a layer L_i in the model
 - Prune the layer L_i with pruning ratio $r \in \{0, 0.1, 0.2, \dots, 0.9\}$ (or other strides)
 - Observe the accuracy degrade ΔAcc_r^i for each pruning ratio
 - Repeat the process for all layers

- The process of Sensitivity Analysis (* VGG-11 on CIFAR-10 dataset)
 - Pick a layer L_i in the model
 - Prune the layer L_i with pruning ratio $r \in \{0, 0.1, 0.2, ..., 0.9\}$ (or other strides)
 - Observe the accuracy degrade ΔAcc_r^i for each pruning ratio
 - Repeat the process for all layers

- The process of Sensitivity Analysis (* VGG-11 on CIFAR-10 dataset)
 - Pick a layer L_i in the model
 - Prune the layer L_i with pruning ratio $r \in \{0, 0.1, 0.2, ..., 0.9\}$ (or other strides)
 - Observe the accuracy degrade ΔAcc_r^i for each pruning ratio
 - · Repeat the process for all layers
 - Pick a degradation threshold T such that the overall pruning rate is desired

Pruning Rate (Percentage of Weights Pruned Away)

- The process of Sensitivity Analysis (* VGG-11 on CIFAR-10 dataset)
 - Pick a layer L_i in the model
 - Prune the layer L_i with pruning ratio $r \in \{0, 0.1, 0.2, ..., 0.9\}$ (or other strides)
 - Observe the accuracy degrade ΔAcc_r^i for each pruning ratio
 - Repeat the process for all layers
 - Pick a degradation threshold T such that the overall pruning rate is desired

Automatic Pruning

- Given an **overall** compression ratio, how do we **choose per-layer** pruning ratios ?
 - Sensitivity analysis ignores the interaction between layers
 - Conventionally, such process relies on human expertise and trails and errors

AMC: <u>AutoML for Model Compression</u>

Pruning as a reinforcement learning problem

AMC: AutoML for Model Compression and Acceleration on Mobile Devices [He et al., ECCV 2018]

AMC: <u>AutoML for Model Compression</u>

- AMC uses the following steps for the reinforcement learning problem
 - State: 11 features (including layer indices, channel numbers, kernel sizes, FLOPs, ...)
 - Action: A continuous number (pruning ratio) $a \in [0,1)$
 - Agent: Deep Deterministic Policy Gradient (DDPG) agent, because it supports continuous action output

• **Reward:**
$$R = \begin{cases} -\text{Error}, & \text{if satisfies constrains} \\ -\infty, & \text{if not} \end{cases}$$

AMC: <u>AutoML for Model Compression</u>

AMC: <u>AutoML for Model Compression</u>

Model	MAC	Top-1	Latency*	Speedup	Memory
1.0 MobileNet	569M	70.6%	119.0ms	1x	20.1MB
AMC (50% FLOPs)	285M	70.5%	64.4ms	1.8x	14.3MB
AMC (50% Time)	272M	70.2%	59.7ms	2.0x	13.2MB
0.75 MobileNet	325M	68.4%	69.5ms	1.7x	14.8MB

* Measured with TF-Lite on Samsung Galaxy S7 Edge, which has Qualcomm Snapdragon SoC Single core, Batch size = 1(mobile, latency oriented)

NetAdapt

• A rule-based iterative/progressive method

- Aim to find a per-layer pruning ratio to meet a global resource constraint (e.g., latency, energy, ...)
- The process is done iteratively

NetAdpt

- For each iteration, we aim to reduce the latency by a certain amount ΔR (manually defined)
 - For each layer L_k (k in A-Z in the figure)
 - Prune the layer s.t. the latency reduction meets ΔR (based on a pre-built lookup table)
 - · Short-term fine-tune model (10k iterations); measure accuracy after fine-tuning
 - · Choose and prune the layer with the highest accuracy
- · Repeat until the total latency reduction satisfies the constraint
- · Long-term fine-tune to recover accuracy

NetAdapt: Platform-Aware Neural Network Adaptation for Mobile Applications [Yang et al., ECCV 2018]

NetAdpt

- The iterative nature allows us to obtain **a serial of** models with different costs
 - # of models = # of iterations

NetAdapt: Platform-Aware Neural Network Adaptation for Mobile Applications [Yang et al., ECCV 2018]

Fine-tuning Pruned Neural Networks

- How to improve performance of sparse (pruned) models ?
 - Fine-tuning the pruned neural networks will help recover the accuracy and push the pruning ratio higher
 - Learning rate for fine-tuning is usually 1/100 or 1/10 of the original learning rate

Iterative Pruning

- Iterative pruning gradually increases the target sparsity in each iteration
 - Iterative pruning and fine-tuning resists to the large pruning ratio

Regularization

- When training neural networks or fine-tuning quantized neural network, regularization is added
 - Penalized non-zero parameters
 - Encourage smaller parameters
- The most common regularization for improving performance of pruning is L1/L2 regularization

L1-Regularization

$$L' = L(\mathbf{x}; \mathbf{W}) + \lambda |\mathbf{W}|$$

L2-Regularization

$$L' = L(\mathbf{x}; \mathbf{W}) + \lambda \|\mathbf{W}\|^2$$

Summary of Neural Network Pruning

- Introduction to pruning
 - What is the purpose of pruning ?
- Determine the pruning granularity
 - Fine-grain, channel-level pruning
- Determine the pruning criterion
 - What synapses/neurons should we prune ?
- Determine the pruning ratio
 - What should target sparsity be for each layer
- Fine-tune/train pruned neural network
 - How to improve performance of pruned models

Takeaway Questions

- How to find prune ratios appropriately ?
 - (A) Randomly guess
 - (B) Sensitivity analysis
 - (C) Refer to the ratio in the batch normalization
- What are potential techniques used by automatic pruning ?
 - (A) Word embedding
 - (B) Iterative training
 - (C) Reinforcement learning