

# Accelerator Architectures for Machine Learning (AAML)

Lecture 3: Quantization

Tsung Tai Yeh

Department of Computer Science

National Yang-Ming Chiao Tung University

## Acknowledgements and Disclaimer

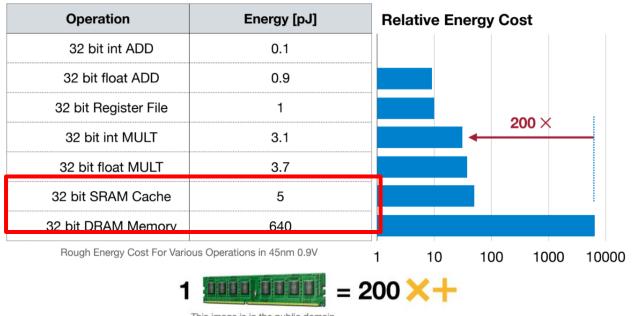
- Slides was developed in the reference with
  Joel Emer, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, ISCA 2019 tutorial
  Efficient Processing of Deep Neural Network, Vivienne Sze, Yu-Hsin Chen,
  Tien-Ju Yang, Joel Emer, Morgan and Claypool Publisher, 2020
  Yakun Sophia Shao, EE290-2: Hardware for Machine Learning, UC
  Berkeley, 2020
  CS231n Convolutional Neural Networks for Visual Recognition, Stanford
  University, 2020
- 6.5940, TinyML and Efficient Deep Learning Computing, MIT
- NVIDIA, Precision and performance: Floating point and IEEE 754
   Compliance for NVIDIA GPUs, TB-06711-001\_v8.0, 2017

## **Outline**

- K-Means-based Quantization
- Linear Quantization
- Binary and Ternary Quantization

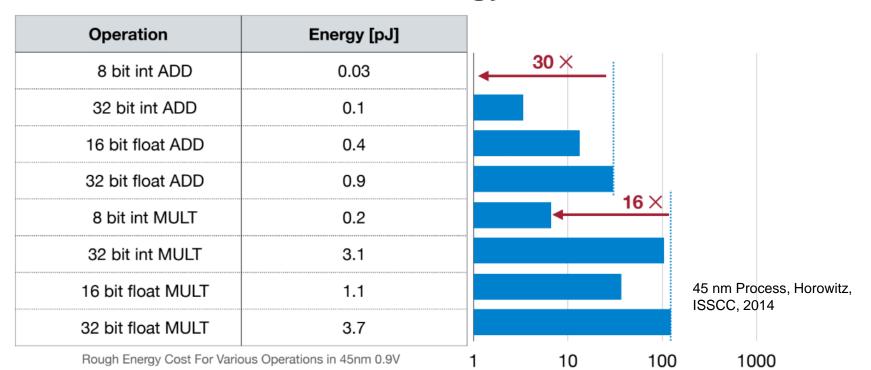
# Memory is Expensive !!

Data movement -> Move memory reference -> More energy



# Low Bit-Width Operations are Cheap

## Less Bit-Width -> Less energy





# **Energy and Area Cost**

Could we make the deep learning efficient by lowering the precision of data?

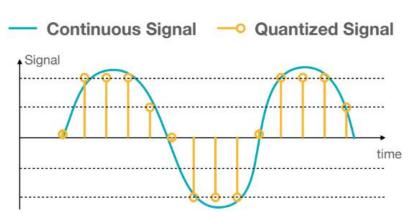
| Operation              | Energy (pJ) | Area(um²)                     |
|------------------------|-------------|-------------------------------|
| 8b Add                 | 0.03        | 36                            |
| 16b Add                | 0.05        | 67                            |
| 32b Add                | 0.1         | 137                           |
| 16b FP Add             | 0.4         | 1360                          |
| 32b FP Add             | 0.9         | 4184                          |
| 16b FP Mult            | 1.1         | 1640                          |
| 32b FP Mult            | 3.7         | 7700 <b>4.7</b> X             |
| 32b SRAM Read<br>(8KB) | 5           |                               |
| 32b DRAM Read          | 640 45 nm P | rocess, Horowitz, ISSCC, 2014 |

173X

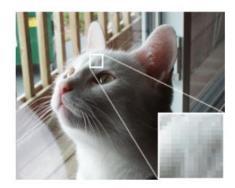
## What is Quantization?

#### Quantization

 The process of constraining an input from a continuous or large set of values to a discrete set



**Original Image** 



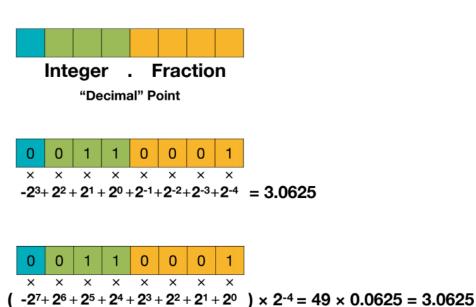
16-Color Image



Images are in the public domain.

# Numeric Data Types

Fixed-point number



# IEEE 765 Single Precision Float Point

- Sign determines the sign of the number
- Exponent (8 bit) represent -127 (all 0s) and +128 (all 1s)
- **Significand** (23 fraction bits), total precision is 24 bits (23 + 1 implicit leading bit)  $\log_{10}(2^{24}) \approx 7.225$  digital bit

$$value = (-1)^{sign} \times 2^{(e-127)} \times (1 + \sum_{i=1}^{23} b_{(23-i)} 2^{-i})$$

# IEEE 765 FP32 Case Study 1

Sign Exponent (8 bits) Mantissa/Fraction (23 bits) 
$$value = (-1)^{sign} \times 2^{(e-127)} \times (1 + \sum_{i=1}^{23} b_{(23-i)} 2^{-i})$$
 Sign = b31 = 0 ; (-1)<sup>0</sup> = 1 e =120;  $2^{(120-127)} = 2^{-7}$ 

$$1.b_{22}b_{21}...b_0 = \left(1 + \sum_{i=1}^{n} b_{(23-i)}2^{-i}\right) = 1 + 2^{-2} = 1.25$$

Value =  $1 \times 2^{-7} \times 1.25 = 0.009765625$ 

# Numeric Data Type

Question: What is the decimal "11.375" in FP32 format?

```
11.375

= 11 + 0.375

= (1011)<sub>2</sub> + (0.011)<sub>2</sub>

= (1.011011)<sub>2</sub> x 2<sup>3</sup>

0.375 x 2 = 0.750 = 0 + 0.750 => b<sub>-1</sub> = 0

0.750 x 2 = 1.500 = 1 + 0.500 => b<sub>-2</sub> = 1

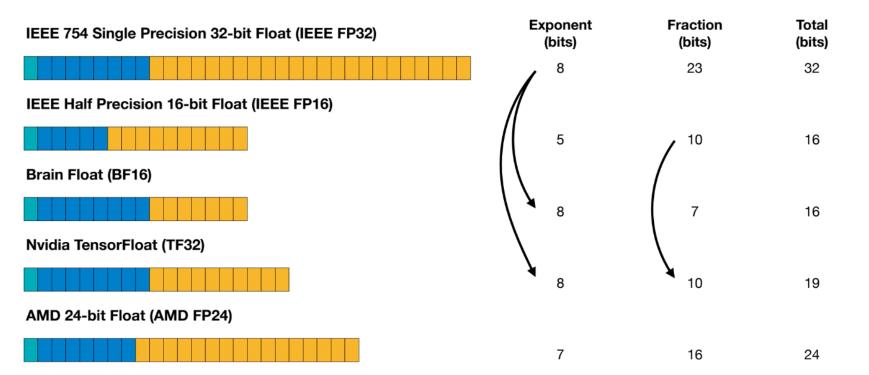
0.500 x 2 = 1.000 = 1 + 0.000 => b<sub>-3</sub> = 1
```

The exponent is 3 and biased form

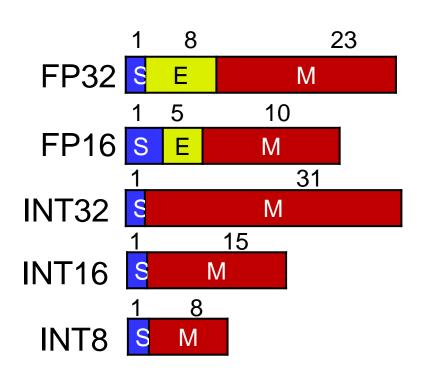
$$= (3 + 127) = 130 = 1000 0010$$

# Floating-Point Number

Exponent Width -> Range; Fraction Width-> Precision



# Number Representation



## Range

1.2E-38 to 3.4E+38

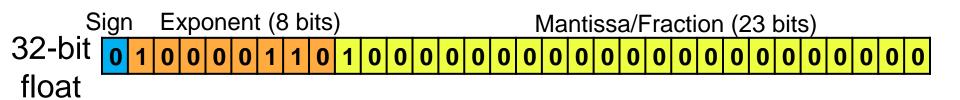
6.1E-5 to 6.6E+4

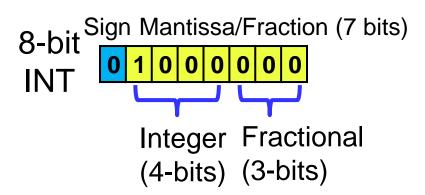
2147483648 to 2147483647

-32,768 to 32,767

-128 ~ 127

## Reduced Bit Width





#### FP32 vs FP16 vs BF16

#### FP32 – single precision

With 6-9 significant decimal digits precision

#### FP16 – half precision

- Uses in some neural network applications
- With 4 significant decimal digits precision

#### BF16

- A truncated FP32
- Allow for fast conversion to and from an FP32
- With 3 significant decimal digits

(c) bfloat16: Brain Floating Point Format

Range: ~1e<sup>-38</sup> to ~3e<sup>38</sup>

Exponent: 8 bits Mantissa (Significand): 7 bits

Exponent: 5 bits \_\_\_ Mantissa (Significand): 10 bits

| Format | Bits | Exponent | Fraction |
|--------|------|----------|----------|
| FP32   | 32   | 8        | 23       |
| FP16   | 16   | 5        | 10       |
| BF16   | 16   | 8        | 7        |

https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus

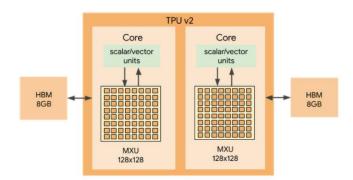
# Choosing bFloat16

#### Motivation

- The physical size of a hardware multiplier scales with the square of the mantissa width
- Mantissa bit length FP32: 23, FP16: 10, BF16: 7

#### BF16

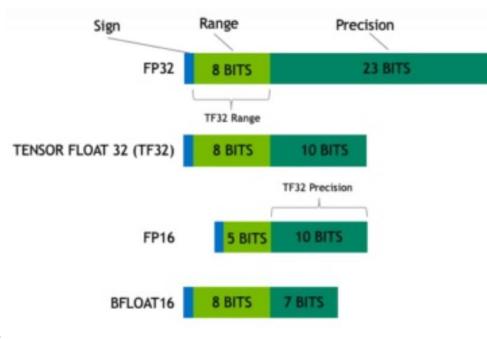
- 8 X smaller than an FP32 multiplier
- Has the same exponent size as FP32
- No require special handling (loss scaling) in the FP16 conversion
- XLA compiler's automatic format conversion
- In side the MXU, multiplications are performed in BF16 format
- Accumulations are performed in full FP32 precision



#### Nvidia's TF32

#### Nvidia's TF32

- 19-bit (BF19)
- 1-bit sign, 8-bit exponent10-bit fraction
- Fuse BF16 and FP16
  - BF16: 8-bit exponent +
  - FP16: 10-bit fraction
- Nvidia A100 Tensor Core
  - TF32: 156 TFLOPS
  - FP16/BF16: 312 TFLOPS

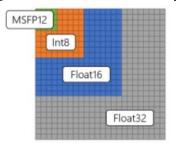


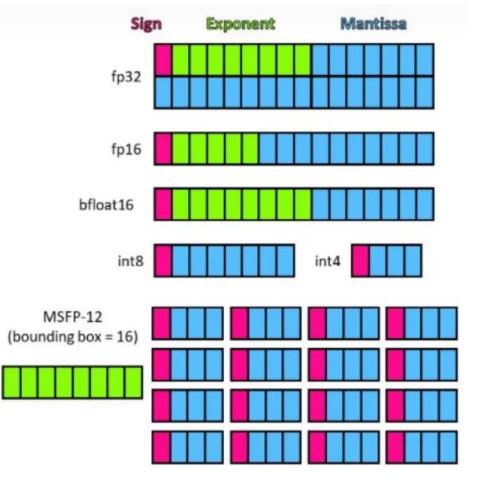
https://zhuanlan.zhihu.com/p/449857213

## Microsoft MSFP

#### Microsoft MSFP

- Used in Brainwave FPGA
- 8-bit shared exponent
- 1-bit sign, 3-bit fraction
- A group of INT4 vector shares 8-bit exponent





## FP8 and Tesla CFloat

- FP8 (1-5-2)
  - Large loss in MobileNet v2
  - Hybrid FP8 (HFP8)
    - Use FP(1-4-3) in forward
    - Use FP(1-5-2) in backward

| c. Trans-precision Inference Accuracy of FP32 models in FP8 1-5-2 precision |          |           |  |
|-----------------------------------------------------------------------------|----------|-----------|--|
| FP32 Model                                                                  | Baseline | FP8 1-5-2 |  |
| MobileNet_v2<br>ImageNet                                                    | 71.81    | 52.51     |  |
| ResNet50<br>ImageNet                                                        | 76.44    | 75.31     |  |
| DensetNet121<br>ImageNet                                                    | 74.76    | 73.64     |  |
| MaskRCNN                                                                    | 33.58    | 32.83     |  |
| COCO <sup>†</sup>                                                           | 29.27    | 28.65     |  |
| † Box and Mask average precision                                            |          |           |  |

## Tesla Dojo Cfloat (configurable float)

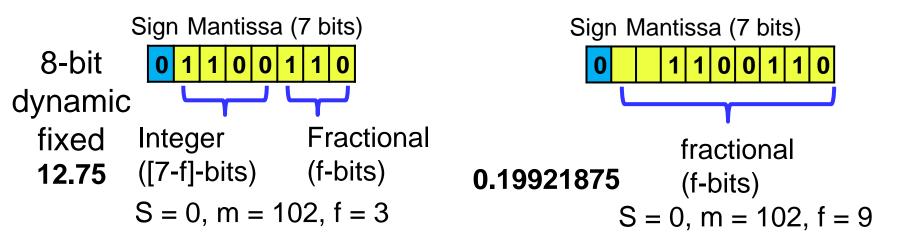
- Configurable exponent and mantissa
- Use software to choose appropriate Cfloat format
  - CF16
  - CF8 (1-4-3), CF8 (1-5-2)

## How to Determine Bit Width on DNN?

- For accuracy, DNN operations decide bit width to achieve sufficient precision
- Which DNN operations affect the accuracy?
  - For inference: weights, activations, and partial sums
  - For training: weights, activations, partial sums, gradients, and weight update

# Dynamic Fixed Point

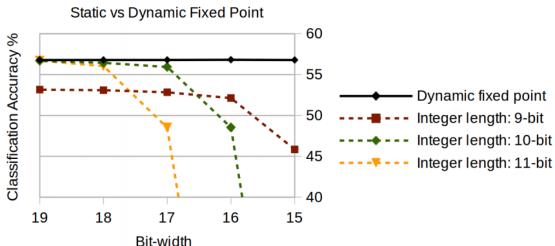
- Allow "f" to vary based on data type and layer
- In large layers, the outputs are the result of many accumulations
- The value of network parameters are much smaller than layer output -> varying bit widths on parameters and outputs



# Impact on Accuracy

- The accuracy drops in the small bit width when using static fixed point
- Stable accuracy variation is shown in dynamic fixed point (why ?)

Top-1 accuracy of CaffeNet on ImageNet



# Impact on Accuracy

 Small bit width cannot adapt to every DNN models very well (training)

|               | Layer outputs | CONV parameters | FC parameters | Fixed point accuracy |
|---------------|---------------|-----------------|---------------|----------------------|
| LeNet (Exp 1) | 4-bit         | 4-bit           | 4-bit         | 99.0%                |
| LeNet (Exp 2) | 4-bit         | 2-bit           | 2-bit         | 98.8%                |
| SqueezeNet    | 8-bit         | 8-bit           | 8-bit         | 57.1%                |
| CaffeNet      | 8-bit         | 8-bit           | 8-bit         | 56.0%                |
| GoogleNet     | 8-bit         | 8-bit           | 8-bit         | 66.6%                |

# Precision Varies from Layer to Layer

- Accuracy varies with the different bit widths in layers
- How to find out the best bit width in each layer while maintaining high accuracy?

#### **AlexNet**

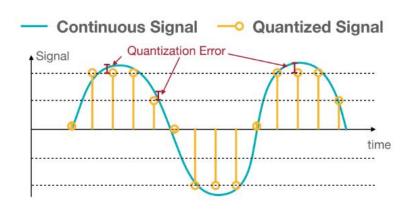
| Error rate | Bit per layer    |
|------------|------------------|
| 1%         | 10-8-8-8-8-6-4   |
| 2%         | 10-8-8-8-8-5-4   |
| 5%         | 10-8-8-8-7-7-5-3 |
| 10%        | 9-8-8-7-7-5-3    |

# **Takeaway Questions**

- What are advantages to use BF16 instead of FP16?
  - (A) Fast conversion from FP32
  - (B) Get more precise value
  - (C) Represent few different values
- What are benefits to use lower precision data type on neural network?
  - (A) Reduce the latency of DNN models
  - (B) Save the memory space
  - (C) Lower the power consumption of the accelerator

## What is Quantization?

 Quantization is the process of constraining an input from a continuous or large set of values to a discrete set



**Original Image** 



16-Color Image



Images are in the public domain.

"Palettization"

The difference between an input value and its quantized value is referred to as quantization error.

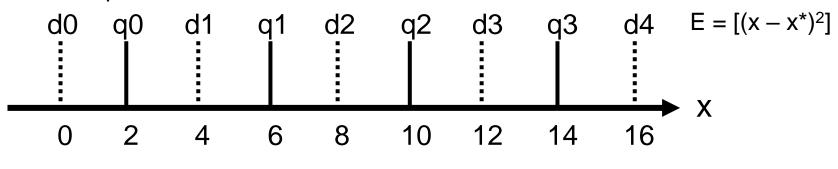
## **Data Quantization**

#### Quantization

Maps data from a full precision to reduced one

#### Quantization error

 Measures the average difference between the original full precision and quantized values

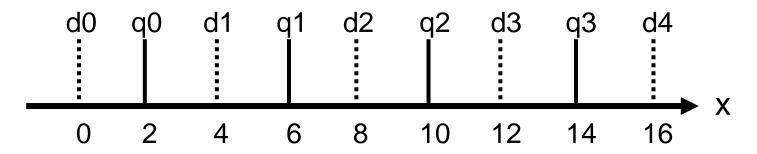


$$x = 1, 3, 7, 8, 15$$
 Uniform Quantization  $x^* = 2, 2, 6, 8, 14$ 

# Types of Quantization

#### Uniform Quantization

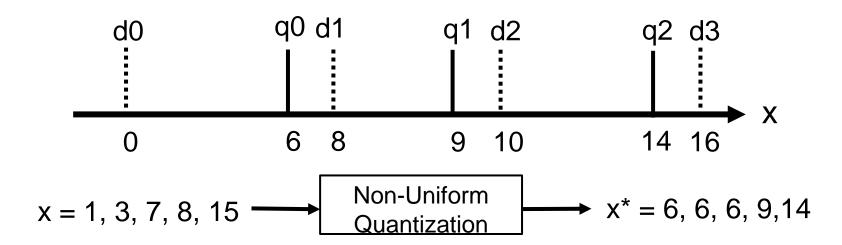
- Quantized values are equally spaced out
- x\* can take on are {2, 6, 10, 14} with level = 4
- Decision boundaries di are used to decide the quantization value that x should be mapped to



# Types of Quantization

#### Non-uniform quantization

- Spacing can be computed e.g. logarithmic or with look-up-table
- Fewer unique values can make weight sharing and compression



#### Storage

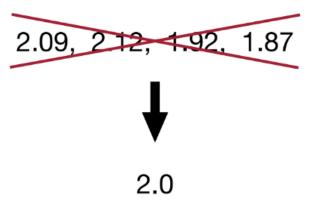
Integer Weights; Floating-Point Codebook

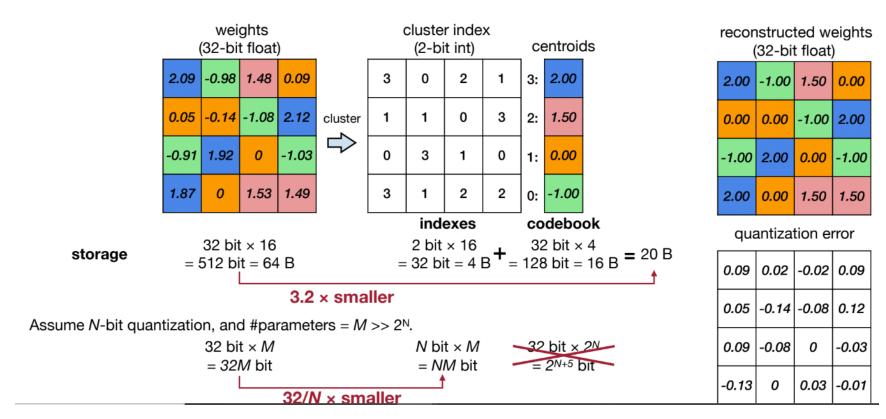
#### Computation

Floating-Point Arithmetic

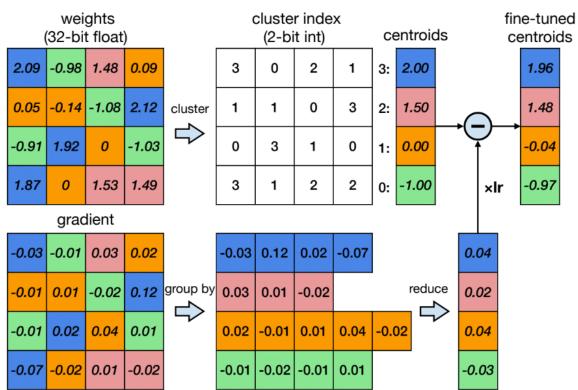
weights (32-bit float)

| (02 011 11041) |       |       |       |
|----------------|-------|-------|-------|
| 2.09           | -0.98 | 1.48  | 0.09  |
| 0.05           | -0.14 | -1.08 | 2.12  |
| -0.91          | 1.92  | 0     | -1.03 |
| 1.87           | 0     | 1.53  | 1.49  |

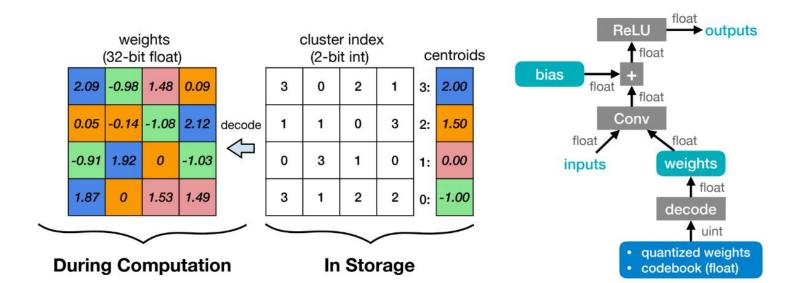




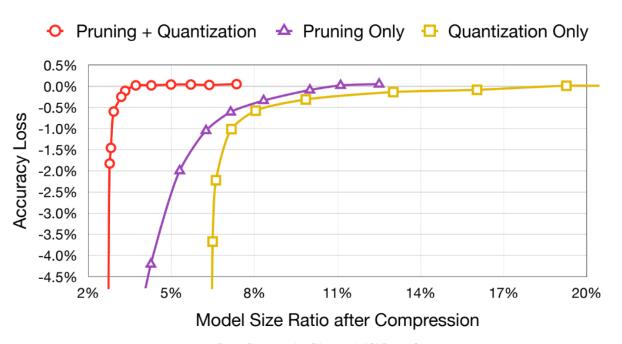
Fine-tuningQuantized Weights



- Weights are decompressed using a lookup table during runtime inference
- Only saves storage cost of a neural network model
- All the computation and memory access are still floating-point

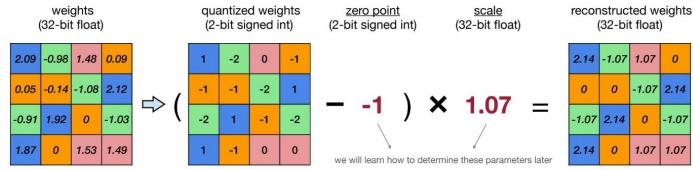


Accuracy vs. compression rate for AlexNet on ImageNet dataset



## What is Linear Quantization?

- An affine mapping of integers to real numbers
- Storage: Integer Weights; Computation: Integer Arithmetic



| Binary | Decimal |
|--------|---------|
| 01     | 1       |
| 00     | 0       |
| 11     | -1      |
| 10     | -2      |

quantization error

| 0.05 | 0.09  | 0.41  | 0.09  |
|------|-------|-------|-------|
| 0.05 | -0.14 | -0.01 | -0.02 |
| 0.16 | -0.22 | 0     | 0.04  |
| 0.27 | 0     | 0.46  | 0.42  |

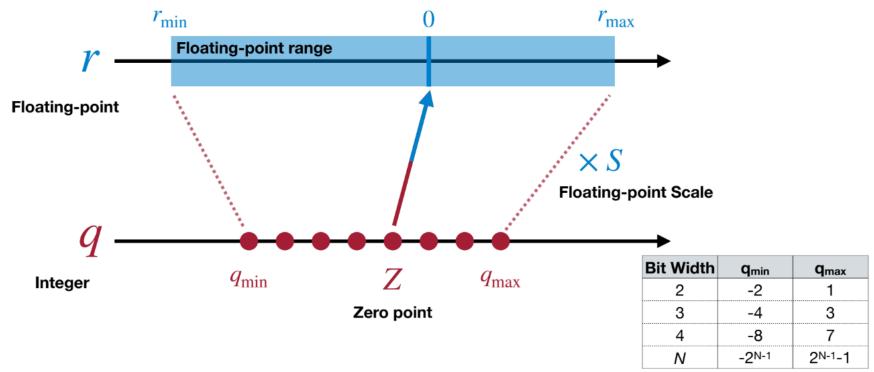
#### **Linear Quantization**

An affine mapping of integers to real numbers (r = S(q - Z))



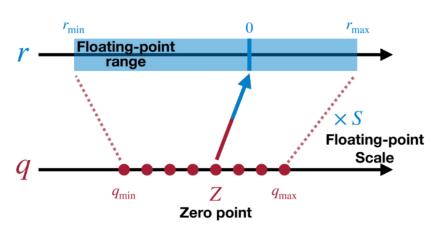
### **Linear Quantization**

An affine mapping of integers to real numbers (r = S(q - Z))



### Scale of Linear Quantization

An affine mapping of integers to real numbers (r = S(q - Z))



$$r_{\text{max}} = S \left( q_{\text{max}} - Z \right)$$

$$r_{\text{min}} = S \left( q_{\text{min}} - Z \right)$$

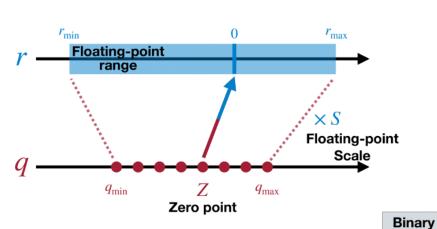
$$\downarrow$$

$$r_{\text{max}} - r_{\text{min}} = S \left( q_{\text{max}} - q_{\text{min}} \right)$$

$$S = \frac{r_{\text{max}} - r_{\text{min}}}{q_{\text{max}} - q_{\text{min}}}$$

### Scale of Linear Quantization

An affine mapping of integers to real numbers (r = S(q - Z))



|              |              | Γ |
|--------------|--------------|---|
| $q_{ m min}$ | $q_{ m max}$ | ŀ |
|              | <b>•••</b>   | - |
| -2 - 1       | 0 1          |   |

| 2.09  | -0.98 | 1.48  | 0.09  |
|-------|-------|-------|-------|
| 0.05  | -0.14 | -1.08 | 2.12  |
| -0.91 | 1.92  | 0     | -1.03 |
| 1.87  | 0     | 1.53  | 1.49  |

$$S = \frac{r_{\text{max}} - r_{\text{min}}}{q_{\text{max}} - q_{\text{min}}}$$

**Decimal** 

0

-2

01

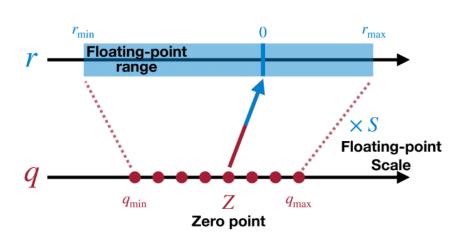
11

10

$$= \frac{2.12 - (-1.08)}{1 - (-2)}$$
$$= 1.07$$

### Zero Point of Linear Quantization

An affine mapping of integers to real numbers (r = S(q - Z))



$$r_{\min} = S \left( q_{\min} - Z \right)$$

$$\downarrow$$

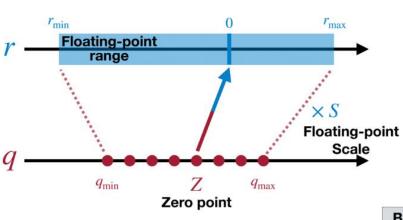
$$Z = q_{\min} - \frac{r_{\min}}{S}$$

$$\downarrow$$

$$Z = \text{round} \left( q_{\min} - \frac{r_{\min}}{S} \right)$$

### Zero Point of Linear Quantization

An affine mapping of integers to real numbers (r = S(q - Z))



|                       |          | Binary | Decimal |
|-----------------------|----------|--------|---------|
|                       |          | 01     | 1       |
| $q_{\min}$ $q_{\max}$ |          | 00     | 0       |
| <del></del>           | <b>→</b> | 11     | -1      |
| $-2 - 1 \ 0 \ 1$      |          | 10     | -2      |

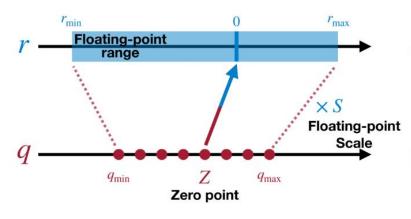
| 2.09  | -0.98 | 1.48  | 0.09  |
|-------|-------|-------|-------|
| 0.05  | -0.14 | -1.08 | 2.12  |
| -0.91 | 1.92  | 0     | -1.03 |
| 1.87  | 0     | 1.53  | 1.49  |

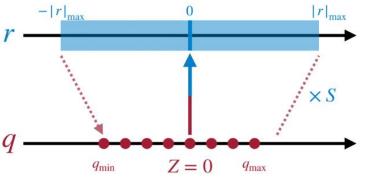
$$Z = q_{\min} - \frac{r_{\min}}{S}$$

$$= round(-2 - \frac{-1.08}{1.07})$$
$$= -1$$

# Symmetric Linear Quantization

### Full range mode





| Bit Width | q <sub>min</sub> | Qmax   |
|-----------|------------------|--------|
| 2         | -2               | 1      |
| 3         | -4               | 3      |
| 4         | -8               | 7      |
| N         | -2N-1            | 2N-1-1 |

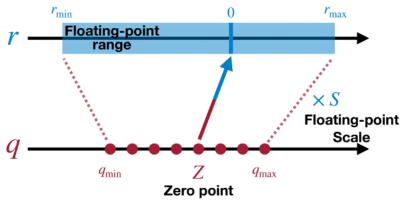
$$S = \frac{r_{\text{max}} - r_{\text{min}}}{q_{\text{max}} - q_{\text{min}}}$$

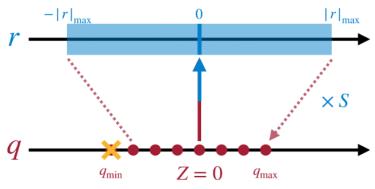
$$S = \frac{r_{\min}}{q_{\min} - Z} = \frac{-|r|_{\max}}{q_{\min}} = \frac{|r|_{\max}}{2^{N-1}}$$

- use full range of quantized integers
- example: PyTorch's native quantization, ONNX

# Symmetric Linear Quantization

### Restricted range mode





$$S = \frac{r_{\text{max}} - r_{\text{min}}}{q_{\text{max}} - q_{\text{min}}}$$

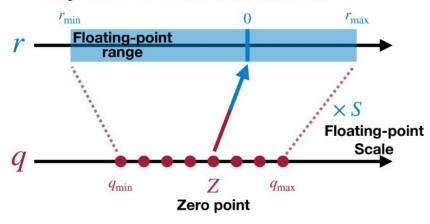
$$S = \frac{r_{\text{max}}}{q_{\text{max}} - Z} = \frac{|r|_{\text{max}}}{q_{\text{max}}} = \frac{|r|_{\text{max}}}{2^{N-1} - 1}$$

| Bit Width | <b>q</b> min | <b>q</b> max        |
|-----------|--------------|---------------------|
| 2         | -2           | 1                   |
| 3         | -4           | 3                   |
| 4         | -8           | 7                   |
| N         | -2N-1        | 2 <sup>N-1</sup> -1 |

 example: TensorFlow, NVIDIA TensorRT, Intel DNNL

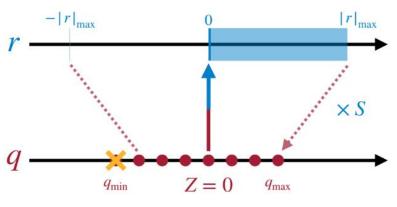
# Asymmetric vs. Symmetric

#### **Asymmetric Linear Quantization**



- The quantized range is fully used.
- The implementation is more complex, and zero points require additional logic in hardware.

#### **Symmetric Linear Quantization**



- The quantized range will be wasted for biased float range.
  - Activation tensor is non-negative after ReLU, and thus symmetric quantization will lose 1 bit effectively.
- The implementation is much simpler.

An affine mapping of integers to real numbers (r = S(q - Z))

$$Y = WX$$

$$S_{Y} (\mathbf{q}_{Y} - Z_{Y}) = S_{W} (\mathbf{q}_{W} - Z_{W}) \cdot S_{X} (\mathbf{q}_{X} - Z_{X})$$

$$\mathbf{q}_{Y} = \frac{S_{W}S_{X}}{S_{Y}} (\mathbf{q}_{W} - Z_{W}) (\mathbf{q}_{X} - Z_{X}) + Z_{Y}$$

$$\mathbf{q}_{Y} = \frac{S_{W}S_{X}}{S_{Y}} (\mathbf{q}_{W}\mathbf{q}_{X} - Z_{W}\mathbf{q}_{X} - Z_{X}\mathbf{q}_{W} + Z_{W}Z_{X}) + Z_{Y}$$

- An affine mapping of integers to real numbers (r = S(q Z))
  - Consider the following matrix multiplication

$$\mathbf{Y} = \mathbf{WX}$$
 
$$\mathbf{q_Y} = \underbrace{\frac{S_\mathbf{W} S_\mathbf{X}}{S_\mathbf{Y}}}_{\text{Rescale to}} \underbrace{\left(\mathbf{q_W} \mathbf{q_X} - Z_\mathbf{W} \mathbf{q_X} - Z_\mathbf{X} \mathbf{q_W} + Z_\mathbf{W} Z_\mathbf{X}\right)}_{\text{N-bit Integer}} + \underbrace{Z_\mathbf{Y}}_{\text{N-bit Integer Addition}}_{\text{N-bit Integer Addition/Subtraction}} \underbrace{N\text{-bit Integer Addition}}_{\text{N-bit Integer Addition}}$$

Consider the following matrix multiplication.

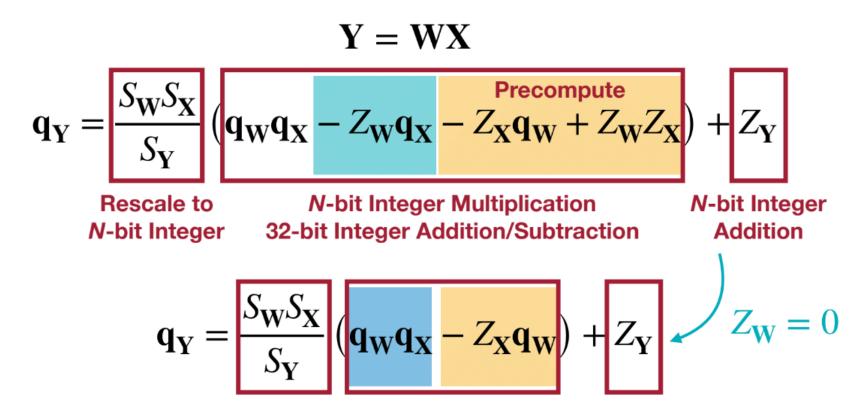
$$\mathbf{Y} = \mathbf{WX}$$

$$\mathbf{q_Y} = \frac{S_{\mathbf{W}}S_{\mathbf{X}}}{S_{\mathbf{Y}}} \left( \mathbf{q_W}\mathbf{q_X} - Z_{\mathbf{W}}\mathbf{q_X} - Z_{\mathbf{X}}\mathbf{q_W} + Z_{\mathbf{W}}Z_{\mathbf{X}} \right) + Z_{\mathbf{Y}}$$

Empirically, the scale  $\frac{S_{\mathbf{W}}S_{\mathbf{X}}}{S_{\mathbf{Y}}}$  is always in the interval (0, 1).

$$\frac{S_{\mathbf{W}}S_{\mathbf{X}}}{S_{\mathbf{Y}}} = 2^{-n}M_0$$
, where  $M_0 \in [0.5,1)$ 

**Bit Shift** 



- An affine mapping of integers to real numbers (r = S(q Z))
  - Now, we consider the following fully-connected layer with bias

$$Y = WX + b$$

$$S_{\mathbf{Y}} (\mathbf{q}_{\mathbf{Y}} - Z_{\mathbf{Y}}) = S_{\mathbf{W}} (\mathbf{q}_{\mathbf{W}} - Z_{\mathbf{W}}) \cdot S_{\mathbf{X}} (\mathbf{q}_{\mathbf{X}} - Z_{\mathbf{X}}) + S_{\mathbf{b}} (\mathbf{q}_{\mathbf{b}} - Z_{\mathbf{b}})$$

$$\downarrow Z_{\mathbf{W}} = 0$$

$$S_{\mathbf{Y}} (\mathbf{q}_{\mathbf{Y}} - Z_{\mathbf{Y}}) = S_{\mathbf{W}} S_{\mathbf{X}} (\mathbf{q}_{\mathbf{W}} \mathbf{q}_{\mathbf{X}} - Z_{\mathbf{X}} \mathbf{q}_{\mathbf{W}}) + S_{\mathbf{b}} (\mathbf{q}_{\mathbf{b}} - Z_{\mathbf{b}})$$

- An affine mapping of integers to real numbers (r = S(q Z))
  - Now, we consider the following fully-connected layer with bias

$$Y = WX + b$$

$$S_{\mathbf{Y}} (\mathbf{q}_{\mathbf{Y}} - Z_{\mathbf{Y}}) = S_{\mathbf{W}} (\mathbf{q}_{\mathbf{W}} - Z_{\mathbf{W}}) \cdot S_{\mathbf{X}} (\mathbf{q}_{\mathbf{X}} - Z_{\mathbf{X}}) + S_{\mathbf{b}} (\mathbf{q}_{\mathbf{b}} - Z_{\mathbf{b}})$$

$$\downarrow Z_{\mathbf{W}} = 0$$

$$S_{\mathbf{Y}} (\mathbf{q}_{\mathbf{Y}} - Z_{\mathbf{Y}}) = S_{\mathbf{W}} S_{\mathbf{X}} (\mathbf{q}_{\mathbf{W}} \mathbf{q}_{\mathbf{X}} - Z_{\mathbf{X}} \mathbf{q}_{\mathbf{W}}) + S_{\mathbf{b}} (\mathbf{q}_{\mathbf{b}} - Z_{\mathbf{b}})$$

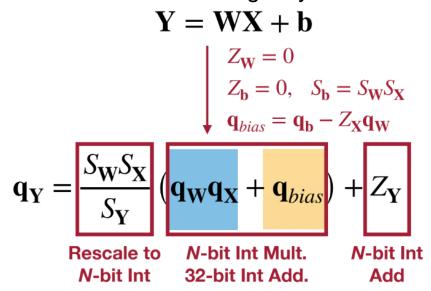
$$\downarrow Z_{\mathbf{b}} = 0, \quad S_{\mathbf{b}} = S_{\mathbf{W}} S_{\mathbf{X}}$$

$$S_{\mathbf{Y}} (\mathbf{q}_{\mathbf{Y}} - Z_{\mathbf{Y}}) = S_{\mathbf{W}} S_{\mathbf{X}} (\mathbf{q}_{\mathbf{W}} \mathbf{q}_{\mathbf{X}} - Z_{\mathbf{X}} \mathbf{q}_{\mathbf{W}} + \mathbf{q}_{\mathbf{b}})$$

- An affine mapping of integers to real numbers (r = S(q Z))
  - Now, we consider the following fully-connected layer with bias

$$\begin{aligned} \mathbf{Y} &= \mathbf{W}\mathbf{X} + \mathbf{b} \\ Z_{\mathbf{W}} &= 0 \quad \downarrow \quad Z_{\mathbf{b}} = 0, \quad S_{\mathbf{b}} = S_{\mathbf{W}}S_{\mathbf{X}} \\ S_{\mathbf{Y}} \left( \mathbf{q}_{\mathbf{Y}} - Z_{\mathbf{Y}} \right) &= S_{\mathbf{W}}S_{\mathbf{X}} \left( \mathbf{q}_{\mathbf{W}}\mathbf{q}_{\mathbf{X}} - Z_{\mathbf{X}}\mathbf{q}_{\mathbf{W}} + \mathbf{q}_{\mathbf{b}} \right) \\ \mathbf{q}_{\mathbf{Y}} &= \frac{S_{\mathbf{W}}S_{\mathbf{X}}}{S_{\mathbf{Y}}} \left( \mathbf{q}_{\mathbf{W}}\mathbf{q}_{\mathbf{X}} + \frac{\mathbf{p}_{recompute}}{\mathbf{q}_{\mathbf{b}} - Z_{\mathbf{X}}\mathbf{q}_{\mathbf{W}}} \right) + Z_{\mathbf{Y}} \\ &\downarrow \mathbf{q}_{bias} = \mathbf{q}_{\mathbf{b}} - Z_{\mathbf{X}}\mathbf{q}_{\mathbf{W}} \\ \mathbf{q}_{\mathbf{Y}} &= \frac{S_{\mathbf{W}}S_{\mathbf{X}}}{S_{\mathbf{Y}}} \left( \mathbf{q}_{\mathbf{W}}\mathbf{q}_{\mathbf{X}} + \mathbf{q}_{bias} \right) + Z_{\mathbf{Y}} \end{aligned}$$

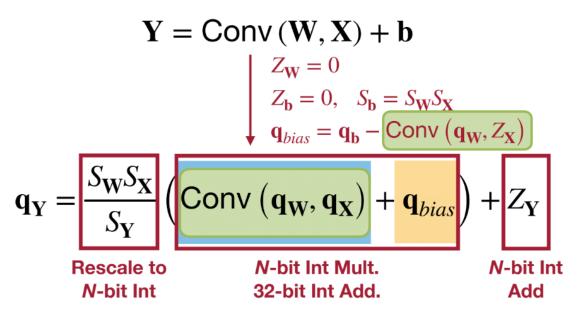
- An affine mapping of integers to real numbers (r = S(q Z))
  - Now, we consider the following fully-connected layer with bias



Note: both  $q_b$  and  $q_{bias}$  are 32 bits.

## Linear Quantized Convolution Layer

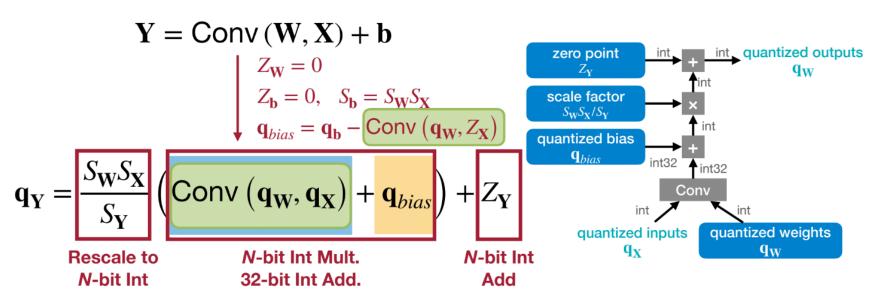
- An affine mapping of integers to real numbers (r = S(q Z))
  - Now, we consider the following convolution layer



Note: both  $q_b$  and  $q_{bias}$  are 32 bits.

## Linear Quantized Convolution Layer

- An affine mapping of integers to real numbers (r = S(q Z))
  - Now, we consider the following convolution layer



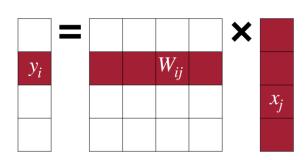
Note: both  $q_b$  and  $q_{bias}$  are 32 bits.

## Binary/Ternary Quantization

Could we push the quantization precision to 1 bit?

$$y_i = \sum_j W_{ij} \cdot x_j$$
  
= 8×5 + (-3)×2 + 5×0 + (-1)×1

| input        | weight       | operations | memory | computation |
|--------------|--------------|------------|--------|-------------|
| $\mathbb{R}$ | $\mathbb{R}$ | + ×        | 1×     | 1×          |
|              |              |            |        |             |
|              |              |            |        |             |

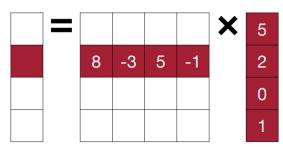


|   |    |   |    | × | 5 |
|---|----|---|----|---|---|
| 8 | -3 | 5 | -1 |   | 2 |
|   |    |   |    |   | 0 |
|   |    |   |    |   | 1 |

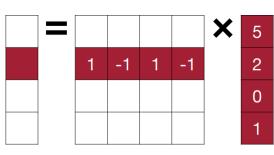
## Binary/Ternary Quantization

If weights are quantized to +1 and -1

$$y_i = \sum_j W_{ij} \cdot x_j$$
$$= 5 - 2 + 0 - 1$$



| input        | weight | operations | memory    | computation |
|--------------|--------|------------|-----------|-------------|
| $\mathbb{R}$ | R      | + ×        | 1×        | 1×          |
| $\mathbb{R}$ | B      | + -        | ~32× less | ~2× less    |
|              |        |            |           |             |



### Binarization

#### Deterministic Binarization

• directly computes the bit value based on a threshold, usually 0, resulting in a sign function.

$$q = \operatorname{sign}(r) = \begin{cases} +1, & r \ge 0 \\ -1, & r < 0 \end{cases}$$

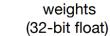
#### Stochastic Binarization

- use global statistics or the value of input data to determine the probability of being -1 or +1
  - e.g., in Binary Connect (BC), probability is determined by hard sigmoid function  $\sigma(r)$

$$q = \begin{cases} +1, & \text{with probability } p = \sigma(r) \\ -1, & \text{with probability } 1-p \end{cases}, \quad \text{where } \sigma(r) = \min(\max(\frac{r+1}{2}, 0), 1)$$

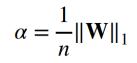
harder to implement as it requires the hardware to generate random bits when quantizing.

## Minimizing Quantization Error in Binarization



| 2.09  | -0.98 | 1.48  | 0.09  |
|-------|-------|-------|-------|
| 0.05  | -0.14 | -1.08 | 2.12  |
| -0.91 | 1.92  | 0     | -1.03 |
| 1.87  | 0     | 1.53  | 1.49  |

$$\mathbf{W}^{\mathbb{B}} = \operatorname{sign}(\mathbf{W})$$



# binary weights (1-bit)

| 1  | -1 | 1  | 1  |
|----|----|----|----|
| 1  | -1 | -1 | 1  |
| -1 | 1  | 1  | -1 |
| 1  | 1  | 1  | 1  |

| 1  | -1 | 1 | 1  |
|----|----|---|----|
| 1  | -1 | 7 | 1  |
| -1 | 1  | 1 | -1 |
| 1  | 1  | 1 | 1  |

| AlexNet-based<br>Network       | ImageNet Top-1<br>Accuracy Delta |  |  |
|--------------------------------|----------------------------------|--|--|
| BinaryConnect                  | -21.2%                           |  |  |
| Binary Weight<br>Network (BWN) | 0.2%                             |  |  |

$$\|\mathbf{W} - \mathbf{W}^{\mathbb{B}}\|_{F}^{2} = 9.28$$

scale (32-bit float)

**X** 1.05 = 
$$\frac{1}{16} \|\mathbf{W}\|_1$$

$$\|\mathbf{W} - \alpha \mathbf{W}^{\mathbb{B}}\|_F^2 = 9.24$$

# Binary Net

### Binary Connect

- Weights {-1, 1} (Bipolar binary),
   Activation 32-bit float
- Accuracy loss: 19 % on AlexNet

### Binarized Neural Networks

- Weights {-1, 1}, Activations {-1, 1}
- Both of operands are binary, the multiplication turns into an XNOR
- Accuracy loss: 29.8 % on AlexNet

for each i in width:

$$C += A[row][i] * B[i][col]$$



| 7.1101X |   |     |  |  |
|---------|---|-----|--|--|
| Α       | В | Out |  |  |
| 0       | 0 | 1   |  |  |
| 1       | 0 | 0   |  |  |
| 0       | 1 | 0   |  |  |
| 1       | 1 | 1   |  |  |

for each i in width:

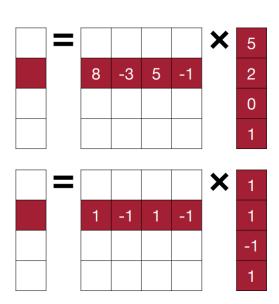
## Case Study: Binary Multiplication

- A = 10010, B = 01111 (0 is really -1 here)
- Dot product:

$$A * B = (1 * -1) + (-1 * 1) + (-1 * 1) + (1 * 1) + (-1 * 1) = -3$$

- P = XNOR (A, B) = 00010, popcount(P) = 1
- Result = 2 \* P N, where N is the total number of bits
- 2 \* P N = 2 \* 1 5 = -3

$$y_i = \sum_j W_{ij} \cdot x_j$$
= 1×1 + (-1)×1 + 1×(-1) + (-1)×1
= 1 + (-1) + (-1) + (-1) = -2



$$y_i = \sum_j W_{ij} \cdot x_j$$

$$= 1 \times 1 + (-1) \times 1 + 1 \times (-1) + (-1) \times 1$$

$$= 1 + (-1) + (-1) + (-1) = -2$$

| W  | X Y=WX |    |  |
|----|--------|----|--|
| 1  | 1      | 1  |  |
| 1  | -1     | -1 |  |
| -1 | -1     | 1  |  |
| -1 | 1      | -1 |  |

| bw | b <sub>X</sub> | XNOR(bw, bx) |
|----|----------------|--------------|
| 1  | 1              | 1            |
| 1  | 0              | 0            |
| 0  | 0              | 1            |
| 0  | 1              | 0            |

$$y_{i} = \sum_{j} W_{ij} \cdot x_{j}$$

$$= 1 \times 1 + (-1) \times 1 + 1 \times (-1) + (-1) \times 1$$

$$= 1 + (-1) + (-1) + (-1) = -2$$

$$= 1 + 0 + 0 + 0 = 1$$
?

| W  | W X Y= |    |
|----|--------|----|
| 1  | 1      | 1  |
| 1  | -1     | -1 |
| -1 | -1     | 1  |
| -1 | 1      | -1 |

| bw | b <sub>X</sub> | XNOR(bw, bx) |  |  |
|----|----------------|--------------|--|--|
| 1  | 1              | 1            |  |  |
| 1  | 0              | 0            |  |  |
| 0  | 0              | 1            |  |  |
| 0  | 1              | 0            |  |  |

$$y_{i} = \sum_{j} W_{ij} \cdot x_{j}$$

$$= 1 \times 1 + (-1) \times 1 + 1 \times (-1) + (-1) \times 1$$

$$= 1 + (-1) + (-1) + (-1) = -2$$

$$= 1 + 0 + 0 + 0 = 1 \times 2$$

$$\uparrow_{+2}$$

$$+ -4$$
Assuming -1 -1 -1 -1 -1 -1 -2

| W  | X  | Y=WX |
|----|----|------|
| 1  | 1  | 1    |
| 1  | -1 | -1   |
| -1 | -1 | 1    |
| -1 | 1  | -1   |

| bw | b <sub>X</sub> | XNOR(b <sub>W</sub> , b <sub>X</sub> ) |  |  |
|----|----------------|----------------------------------------|--|--|
| 1  | 1              | 1                                      |  |  |
| 1  | 0              | 0                                      |  |  |
| 0  | 0              | 1                                      |  |  |
| 0  | 1              | 0                                      |  |  |

If both activations and weights are binarized

$$y_i = -n + 2 \cdot \sum_j W_{ij} \operatorname{xnor} x_j \rightarrow y_i = -n + \operatorname{popcount} (W_i \operatorname{xnor} x) \ll 1$$
  
= -4 + 2 × (1 xnor 1 + 0 xnor 1 + 1 xnor 0 + 0 xnor 1)  
= -4 + 2 × (1 + 0 + 0 + 0) = -2

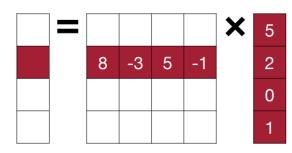
→ popcount: return the number of 1

| W  | X Y=WX |    |  |  |
|----|--------|----|--|--|
| 1  | 1 1    |    |  |  |
| 1  | -1 -1  |    |  |  |
| -1 | -1     | 1  |  |  |
| -1 | 1      | -1 |  |  |

| bw | b <sub>X</sub> | XNOR(b <sub>w</sub> , b <sub>x</sub> ) |  |  |
|----|----------------|----------------------------------------|--|--|
| 1  | 1              | 1                                      |  |  |
| 1  | 0              | 0                                      |  |  |
| 0  | 0              | 1                                      |  |  |
| 0  | 1              | 0                                      |  |  |

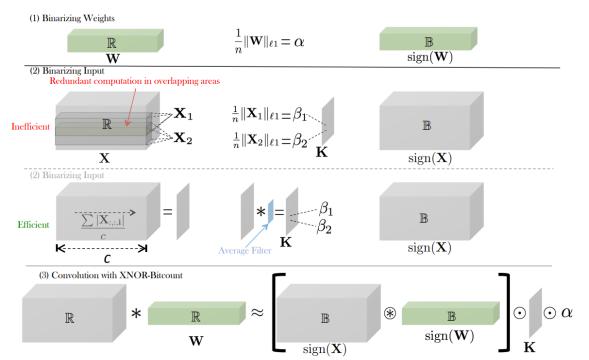
$$y_i = -n + \text{popcount}(W_i \times xnor x) \ll 1$$
  
= -4 + popcount(1010 \times nor 1101) \leftleq 1  
= -4 + popcount(1000) \leftleq 1 = -4 + 2 = -2

| input | weight       | operations | memory    | computation |
|-------|--------------|------------|-----------|-------------|
| R     | $\mathbb{R}$ | + ×        | 1×        | 1×          |
| R     | B            | + -        | ~32× less | ~2× less    |
| B     | B            | xnor,      | ~32× less | ~58× less   |



|   |    |   |    | × | 1  |
|---|----|---|----|---|----|
| 1 | -1 | 1 | -1 |   | 1  |
|   |    |   |    |   | -1 |
|   |    |   |    |   | 1  |

Minimizing quantization error in binarization



| Neural Network | Quantization | Bit-Width |    | ImageNet                |
|----------------|--------------|-----------|----|-------------------------|
|                |              | W         | Α  | Top-1 Accuracy<br>Delta |
| AlexNet        | BWN          | 1         | 32 | 0.2%                    |
|                | BNN          | 1         | 1  | -28.7%                  |
|                | XNOR-Net     | 1         | 1  | -12.4%                  |
| GoogleNet      | BWN          | 1         | 32 | -5.80%                  |
|                | BNN          | 1         | 1  | -24.20%                 |
| ResNet-18      | BWN          | 1         | 32 | -8.5%                   |
|                | XNOR-Net     | 1         | 1  | -18.1%                  |

<sup>\*</sup> BWN: Binary Weight Network with scale for weight binarization

<sup>\*</sup> BNN: Binarized Neural Network without scale factors

<sup>\*</sup> XNOR-Net: scale factors for both activation and weight binarization

# Ternary Weight Networks (TWN)

### Weights are quantized to +1, -1 and 0

$$q = \begin{cases} r_t, & r > \Delta \\ 0, & |r| \le \Delta, \quad \text{where } \Delta = 0.7 \times \mathbb{E}\left(\left|r\right|\right), r_t = \mathbb{E}_{|r| > \Delta}\left(\left|r\right|\right) \\ -r_t, & r < -\Delta \end{cases}$$

weights W (32-bit float) 2.09 |-0.98 | 1.48 | 0.09 0.05 |-0.14 |-1.08 | 2.12 -0.91 1.92 -1.03

1.87

1.53

0 0 -1

(2-bit) -1 -1 0

ternary weights  $\mathbf{W}^{\mathbb{T}}$ 

$$\boxed{o} \quad \Delta = 0.7 \times \frac{1}{16} \|\mathbf{W}\|_1 = 0.73$$

**X 1.5** = 
$$\frac{1}{11} \| \mathbf{W}_{\mathbf{W}^{\mathsf{T}} \neq 0} \|_{1}$$

| ImageNet Top-1 Accuracy Full Precision |      | 1 bit (BWN) | 2 bit (TWN) |
|----------------------------------------|------|-------------|-------------|
| ResNet-18                              | 69.6 | 60.8        | 65.3        |

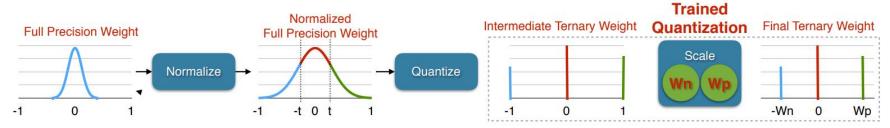
1.49

69

## Ternary Weight Networks (TWN)

• Instead of using fixed scale  $r_t$ , TTQ introduces two *trainable* parameters  $w_p$  and  $w_n$  to represent the positive and negative scales in the quantization.

$$q = \begin{cases} w_p, & r > \Delta \\ 0, & |r| \le \Delta \\ -w_n, & r < -\Delta \end{cases}$$



| ImageNet Top-1 Accuracy | Full Precision | 1 bit (BWN) | 2 bit (TWN) | TTQ  |
|-------------------------|----------------|-------------|-------------|------|
| ResNet-18               | 69.6           | 60.8        | 65.3        | 66.6 |

### What do we Learn from Quantization?

- Quantization can improve DNN computational throughput while maintaining accuracy
- Layers on DNN models can be offered with different bit widths
- Varying bit width requires the support of the hardware
- No systematic approach to figure out the proper bit width in layers of DNN models
- What else?

# **Takeaway Questions**

- What are purposes of data quantization?
  - (A) Constrain the value of inputs to a set of discrete values
  - (B) Create more values
  - (C) Improve the degree of parallelism on DNN training
- Why training requires large bit width?
  - (A) The training needs to compute more data
  - (B) Avoid the value underflow and overflow
  - (C) Gradient and weight update have a larger range