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Outline

● Convolution Neural Network

○ Residual network

○ Depthwise convolution

● Transformer Model Architecture

○ Encoder-decoder based model

○ Large Language Models
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Deep convolutional neural networks

● Each neuron only sees a “local receptive field”

○ 5 x 5 grid of neurons in this example

○ The first neuron is looking for feature in 

the top-left 5x5 corner of the image

○ Combines the 25 inputs with 25 synaptic

weights to decide its output

○ The set of 5x5 weights as a “filter”

4



Deep convolutional neural networks

● Convolution
○ Applying a 5x5 filter (kernel) to each part

of the image

○ All the neurons are sharing the same set

of 25 weights (plus bias)

○ Why do we create small size filter ?
■ The small local receptive field and the use 

of shared weights can help for slow 

learning rate in early layers of the network
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Convolutional Computation Details
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● Convolution

○ Sliding dot product or cross-correlation

○ Convoluting a 5x5x1 image with a 3x3x1 filter kernel to get a 

3x3x1 convoluted feature



CNN Dimension Parameters

● N – Number of input fmaps/output fmaps (batch size)

● C – Number of 2D input fmaps/filters (channels)

● H – Height of input fmap (activations)

● W – Width of input fmap (activations)

● R – Height of 2D filter (weights)

● S – Width of 2D filter (weights)

● M – Number of 2D output fmaps (channels)

● F – Width of output fmap (activations)

● E – Height of output fmap (activations)
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CONV Layer Tensor Computation
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Output fmaps (Y) Bias (B) Input fmaps

(X)

Filter weights 

(W)

Shape Parameter Description

N fmap batch size

M # of filters or # of output fmap channels

C # of input fmap or # of filter channels

U Convolution stride



CONV Layer Implementation
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for ( n = 0;   n < N;   n++) {

for (m = 0;   m < M;   m++) {

for (x = 0;   x < F;   x++)       {

for ( y = 0;   y < E;   y++)     {

Y[n][m][x][y] = B[m];

for (  i = 0;   i < R;  i++)     {

for (  j = 0;  j < S;  j++)      { 

for (  k = 0;  k < C;  k++) {

Y[n][m][x][y] += X[n][k][Ux+i][Uy+j] x W[m][k][i][j]

}

}

}

Y[n][m][x][y] = Activation(Y[n][m][x][y]);

}

}

}

}

For each output fmap

value

CONV &

Activation

How to run CONV in parallel ?



CONV Layer Parallel Implementation
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Parallel_for ( n = 0;   n < N;   n++) {

Parallel_for (m = 0;   m < M;   m++) {

Parallel_for (x = 0;   x < F;   x++)       {

Parallel_for ( y = 0;   y < E;   y++)     {

Y[n][m][x][y] = B[m];

for (  i = 0;   i < R;  i++)     {

for (  j = 0;  j < S;  j++)      { 

for (  k = 0;  k < C;  k++) {

Y[n][m][x][y] += X[n][k][Ux+i][Uy+j] x W[m][k][i][j]

}

}

}

Y[n][m][x][y] = Activation(Y[n][m][x][y]);

}

}

}

}

For each output fmap

value

CONV &

Activation



Convolution (CONV) Layer
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C

E

F

Filter

Input fmap

Output 

fmap

Many Input Channels (C), e.g. RGB in an image



Convolution (CONV) Layer
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Convolution (CONV) Layer

13

R

S

C

R

S

C

…

Many filters (M)

M

H

W

C

H

W

C

…

N

E

F
M

E

F
M

…

N

Many fmaps (N)

Many Output 

fmaps (N)



Pooling

● Pooling
○ Once a feature has been found, its’s exact location isn’t as important as 

its relative location – help us reduce the parameters

○ Further reduce the network, say reduce 4 neurons into a single one
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22 8 4 9

11 3 10 0

5 8 11 3

2 1 5 9

22 10

8 11

11 6

4 7

2x2 pooling, stride = 2
Max pooling

Average pooling

Input fmap size: W1 x H1 x C1

Spatial extent: F 

Stride S

Output fmap after pooling: W2 x H2 X 

C2

W2 = ( W1 – F ) / S + 1

H2 = ( H1 – F ) / S + 1

C2 = C1 https://cs231n.github.io/convolutional-networks/

https://cs231n.github.io/convolutional-networks/


POOL Layer Implementation
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for ( n = 0;   n < N;   n++) {

for (m = 0;   m < M;   m++) {

for (x = 0;   x < F;   x++)       {

for ( y = 0;   y < E;   y++)     {

max = -Inf

for (  i = 0;   i < R;  i++)     {

for (  j = 0;  j < S;  j++)      { 

if (  X[n][m][Ux+i][Uy+j] > max) {

max = X[n][m][Ux+i][Uy+j];

}

}

}

Y[n][m][x][y] = max;

}

}

}

}

for each pooled 

value

Find the max in 

each window



GoogleNet Inception Architecture

● 22 layers

● Fully-Connected Layers: 1

● Weights: 7.0 M (< VGG(19.7X)

AlexNet(8.7X))

● MACs: 1.4G
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ILSCVR14 Winner

GoogleNet is used to classify images

GoogleNet top-5 error rate is 6.67% 

over VGG 7.3%

Auxiliary classifiers outputs to inject 

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf


What’s New in GoogleNet ?

● 1 x 1 CONV filter (why?)

○ Decrease the number of parameters (weights and biases)

○ Increase the depth of the network

17

Case 1: 5x5 filter, # of filter = 48

Total MACs: (14x14x48)x(5x5x480) = 112.9M

Case 2: 1x1 filter, # of filter = 16 as intermediate

Total MACs: (14x14x16)x(1x1x480) + 

(14x14x48)x(5x5x16)= 5.3M

https://www.geeksforgeeks.org/understanding-googlenet-model-cnn-architecture/

GoogleNet can be trained in a 

single machine such as (GPU 

with limit memory space) !!



What’s New in GoogleNet ? 

● Inception module
○ A local network topology 

(network within a network)

○ Stack modules on top of each 

other

○ Multiple receptive field 

sizes for CONV (1x1,

3x3, 5x5)

○ Pooling operation (3x3)

○ Depth-wise filter 

concatenation
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Inception module

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf

What’s the problem of 

inception module?

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf


GoogleNet Inception Module Problems?

● What is the output size of 1x1 conv, with 128 filters ?
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GoogleNet Inception Module Problems?
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http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf


Dimension Reduction on GoogleNet
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Inception module with 

dimension reduction

using

1x1 conv “bottleneck” 

layers

Naïve inception module

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf


GoogleNet 1x1 Bottleneck Layer Ops
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ResNet Model Overview 

● 152-layer model for 

ImageNet Classification

● ILSVRC’15 winner

(3.57% top-5 error)

● Using residual blocks

and connections
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http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf

How to train the data in 

ULTRA-DEEP network 

(over 1000 layers)?

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf


Deep Network Training Problems on ResNet

● Training and test error are increased with the length of networks
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What is wrong when increasing the length of networks?

- Deeper model performs worse on both training and test error

(overfitting?)
[He et al., 2015]



Deep Network Training Problems on ResNet

● Why overfitting isn’t the main reason to increase error rate of 56-layer?

● Hypothesis: vanishing gradient raises error rate of ultra-deep networks?

○ Solution: Add layers to fit a residual mapping instead of fitting a desired 

underlying mapping directly (skipping connection)(What?)
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Deep Network Training Problems on ResNet

● Solution: Add layers to fit a residual mapping instead of fitting a 

desired underlying mapping directly

26“Original” Layer “Residual” Block

H(x) = F(X)+x

Instead of fitting H(x) 

directly, use residual 

F(x) = H(x) - x
Why not use 

H(x) directly?

Identity mapping 

F(x) = x

Shortcut/skip 

connection



Bottleneck Layer on ResNet

● ResNet50+ also uses 

“bottleneck” layer

to improve efficiency 

for deep networks

(similar to GoogleNet)
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1x1 conv, 64 filters 

projects to 28x28x64

3x3 conv operates over 

only 64 feature maps

1x1 conv, 256 filters 

projects back to 256 

feature maps (28x28x256)



ResNet Model Details

● Full ResNet architecture
○ Stack residual blocks

○ Every residual block has two 3x3 conv layers

○ Periodically, double the number of filters and

down-sample using stride 2 (/2 in each 

dimension) 

○ Additional conv layer at the beginning

○ Only FC 1000 to output class

○ Total depths of 34, 50, 101 or 152 layers

for ImageNet

28
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf


MobileNet v1: Depthwise Separable CONV

● Decouple cross-channel correlations and spatial 

correlations in the feature maps

● How to reduce # of parameters? [Andrew et. al. arxiv, 2017]
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What is Depthwise Separable Convolution ?

● Purpose: Reduce the amount of CONV computation

● Input: W_in * H_in * Nch (# of channels)

● Kernel: k * k * Nk (# of kernels)

● Output: W_out * H_out * Nk (# of kernels)

30

H_in

W_in
N_ch

H_ou

t

W_out
N_k

W_in * H_in * Nch k * k * Nk W_out* H_out * Nk

*



Depthwise Convolution

● Each channel of inputs has a k * k kernel

● Separate the convolution of each channel

● Difference: Every kernel convolves with all channels in standard CONV
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Input

W_in * H_in * Nch
Nch Kernel

k * k 

Depthwise_out

W_out* H_out * Nch

… … …

1

Nch

*

*

=

=



Pointwise Convolution

● The number of kernel: Nk with (1 * 1 * Nch) size

● Do CONV on the outputs of depthwise convolution

32
深度學習-MobileNet (Depthwise separable convolution) | by Tommy Huang | Medium

…

https://chih-sheng-huang821.medium.com/%E6%B7%B1%E5%BA%A6%E5%AD%B8%E7%BF%92-mobilenet-depthwise-separable-convolution-f1ed016b3467


Depthwise + Pointwise Convolution
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Pointwise convolution

Input: W_out * H_out * Nch

Nk kernel = (1 * 1 * Nk)

Output = W_out * H_out * Nk

Depthwise convolution

Input: W_in * H_in * Nch

Nch Kernel (k * k)

Output: W_out * H_out * Nch

Depthwise convolution Pointwise convolution

深度學習-MobileNet (Depthwise separable convolution) | by Tommy Huang | Medium

https://chih-sheng-huang821.medium.com/%E6%B7%B1%E5%BA%A6%E5%AD%B8%E7%BF%92-mobilenet-depthwise-separable-convolution-f1ed016b3467


Depthwise Separable Convolution

● Standard CONV
○ Input: W_in * H_in * Nch

○ Kernel: k * k * Nk

○ Output: W_out * H_out * Nk

○ Computation: W_in * H_in * Nch * k * k * Nk

● Depthwise separable convolution
○ Depthwise CONV computation: W_in * H_in * Nch * k * k

○ Pointwise CONV computation: Nch * Nk * W_in * H_in

34

Depthwise separable CONV

Standard CONV

W_in * H_in * Nch * k * k + Nch * Nk * W_in * H_in

W_in * H_in * Nch * k * k * Nk
1

Nk

1

K*k

=

= +



Depthwise Separable Convolution

● Depthwise separable convolution can save more computation when

○ kernel size is large

○ The number of kernel is increased

● Suppose input is 416 * 416 * 50, # of filter is 10, its size is 3 * 3. 

● How much computation can be saved by depthwise separable 

convolution ?

○ 1/10 + 1/9 = 0.22
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Takeaway Questions

● What are problems in ultra-deep neural networks ? 
○ (A) Over-fitting

○ (B) Gradient vanishing 

○ (C) Low training accuracy

● Given a CNN model below, how many channels are in the 

second layer ?
○ (A) 4

○ (B) 8

○ (C) 16

36



Takeaway Questions

● A standard CONV layer
○ Input: W_in * H_in * Nch = (32 * 32 * 16)

○ Kernel: k * k * Nk = (3 * 3 * 8)

○ Computation: W_in * H_in * Nch * k * k * Nk = (32 * 32 * 16 * 3 * 3 * 8)

● What is the amount of computation that is carried out by 

depthwise separable convolution ?

○ (A) (32 * 32 * 16 * 3 * 3) + (3 * 8 * 8)

○ (B) (32 * 32 * 3 * 3 * 8) + (16 * 3 * 3)

○ (C) (32 * 32 * 16 * 3 * 3) + (16 * 8 * 32 * 32)

37



Classical Sequence-to-Sequence Model

● Pass the last hidden state of the encoding stage

● Decoder uses this last hidden state to do the prediction
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Word Representation

● One-Hot Encoding

○ Representing each word as a vector that has as many values in it

○ Each column in a vector is one possible word in a vocabulary

○ Problem

■ In large vocabularies, these

vectors can get very long

■ Contain all 0’s except for 

one value

■ Sparse representation
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Word Representation

● Word Embedding

○ Map the word index to a continuous word embedding through 

a look-up table

○ Popular pre-trained word embeddings

■ Word2Vec, GloVe
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Positional Encoding (PE)

● Positional encoding (PE)

○ Information to each word about its position in the sentence

○ Unique encoding for each word’s position in a sentence

○ Distance between any two positions is consistent across 

sentences with different lengths

○ Encode words by using sin(), cos() with different frequencies

○ Deterministic and generalize to longer sentences

41



Positional Encoding (PE)

● Arguments

○ L: maximum # of possible positions

○ dmodel: dimension of the embeddings

○ n: can be set to any value

○ k: position

○ i: dimension
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Positional Encoding (PE)

43



Transformer Model Architecture

● Each encoder block has two sub-layers
○ Multi-head self-attention 

○ A position-wise fully connected feed-forward

● Each decoder block has an additional

third sub-layer
○ The third is a masked multi-head attention 

over the output of the encoder stack

● A residual connection is added around

each of the two sub-layers

● The decoder yields the output sequence

of symbols one element at a time

44
Vaswani et al. 2017 https://arxiv.org/pdf/1706.03762.pdf

https://web.stanford.edu/class/cs224n/slides/cs224n-2020-lecture10-QA.pdf

https://web.stanford.edu/class/cs224n/slides/cs224n-2020-lecture10-QA.pdf


Transformer Model Architecture

● Transformer encoder
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Bottleneck of Sequence-to-Sequence Model

● It is challenging for the model to deal with long sentences

● Attention

○ The encoder passes all the hidden states to the decoder

○ The attention enables the decoder to focus on the word before it 

generates the English translation

○ This ability amplifies the signal from the relevant part of the input 

sentence
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Transformer Model Architecture

● Encoder – Multi-head self-attention

47

Q: query

K: key

V: value



Transformer Model Architecture

● Encoder – Multi-head self-attention
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Multi-Head Self-Attention (MHSA)

● Project Q, K, and V with h different learned

linear projections

● Perform the scaled dot-product attention

function on each of Q, K, V in parallel

● Concatenate the output values

● Project the output values again, resulting

in the final values

49



Transformer Model Architecture

● Encoder – Residual connection

○ Address exploding/vanishing

gradients

○ Equation

■ F(x): output of previous layer

■ x: input of previous layer 

50



Transformer Model Architecture

● Encoder – Layer normalization

○ For each input vector x = (x1 ..Xm)

■ Calculate Mean, variance

■ Normalize the vector x

● Small     -> avoid dividing 0 

■ Scale and shift

51



Transformer Model Architecture

● Encoder – Feed Forward Network

○ Contains 2 linear transformations and 1 ReLU
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Transformer Model Architecture
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Transformer Model Architecture

● Decoder – Mask self-attention
○ The output of a certain position can

only depend on the words on the

previous positions

○ Set alignment scores of successive

position to negative infinity
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LLaMA Model Architecture
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LLaMA Model Architecture
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● Why LLaMA is decoder-only model?

https://www.53ai.com/news/qianyanjishu/1539.html



LLaMA Model Architecture
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● Difference between Transformer and LLaMA
○ Decoder-only model

○ Pre-Norm (root mean square (RMS) norm)

○ Rotary positional embedding (RoPE)

○ KV cache

○ Grouped multi query attention

○ SwiGLU activation function rather than ReLU in FFN



LLaMA Model Architecture
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● Rotary positional embedding (RoPE)
○ Combine absolute and relative encoding

■ Absolute positional embedding 

● Assigns a unique vector to each position and doesn’t scale well 

to capture relative position

■ Relative embeddings

● Focuses on the distance between tokens

● Enhance the model’s understanding of token relationship

○ Rotational mechanism

■ Each position in the sequence is represented by a rotation in the 

embedding space



LLaMA Model Architecture
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● Rotary positional embedding (RoPE)
○ RoPE applies a rotation to the word vector

○ The equation incorporates a rotation matrix that rotates a vector by an 

angle of Mθ, where M is the absolute position in the sentence.

○ This rotation is applied to the query and key vectors in the self-attention



LLaMA Model Architecture
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● Root Mean Square (RMS) normalization

○ Calculate the RMS of the input vectors rather than the mean and 

variance

○ Efficient normalization

■ No subtracting mean before squaring

■ No shifting in implementation

Layer norm



LLaMA Model Architecture
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● LLM decoder

○ The decoder works in an auto-regressive fashion

■ Given an input, the model predict the next token

■ Taking the combined input in the next step

https://medium.com/@joaolages/kv-caching-explained-276520203249



LLaMA Model Architecture
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● Sequence mask (in decoder)

○ The decoder cannot see the message

in the coming future

○ Use the mask to enable the decoder

to only rely on the previous outputs to

do the inference → training the 

decoder



LLaMA Model Architecture
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● The scaled dot-product attention

○ The attention of a token only depends on its preceding tokens

○ At each generation step we are recalculating the same previous 

token attention, when we actually just want to calculate the 

attention for the new token

https://medium.com/@joaolages/kv-caching-explained-276520203249



LLaMA Model Architecture
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● Key-Value (KV) cache

○ By caching the previous Keys and Values, we can focus on only 

calculating the attention for the new token.

https://medium.com/@joaolages/kv-caching-explained-276520203249



LLaMA Model Architecture
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● Key-Value (KV) cache
○ LLM models can generate only one token 

at a time

○ Each new prediction is dependent on the 

previous context

■ To predict token number 1000 in the generation, 

you need information from the previous 999 tokens

○ Optimize the sequential generation process by storing 

previous calculations to reuse in subsequent tokens, 

so they don't need to be computed again.



LLaMA Model Architecture
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● KV cache



LLaMA Model Architecture
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● Key-Value (KV) cache
○ The matrices obtained with KV caching are way smaller, which leads to 

faster matrix multiplications

○ The downside of the KV cache is

■ When the length of sequences is becoming long

■ Needs the large memory to cache the Key and Value states



LLaMA Model Architecture
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● SwiGLU (Swish and Gated Linear Unit) 

○ LLU such as PALM and LLAMA use SwiGLU in FFN rather than 

the usual ReLU -> SwiGLU tackles minus value better than ReLU



Takeaway Questions

● What’s problem the “Attention” aiming to solve? 

○ (A) Gradient vanishing

○ (B) Message passing in the long sequence of data

○ (C) Over-fitting

● What are benefits of the “Transformer” ?

○ (A) Large hidden layer

○ (B) The amount of computation is small

○ (C) More data parallelism
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Takeaway Questions

● How does the “self-attention” help the encoder?

○ (A) Looking at other works in the input sentence

○ (B) Memorizing the more messages within a network

○ (C) Focus on a specific word

70


