
Accelerator Architectures for Machine

Learning (AAML)

Lecture 2: Basics of DNN Models

Tsung Tai Yeh
Department of Computer Science

National Yang-Ming Chiao Tung University

1

Acknowledgements and Disclaimer

● Slides was developed in the reference with

Joel Emer, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, ISCA 2019

tutorial

Efficient Processing of Deep Neural Network, Vivienne Sze, Yu-Hsin

Chen, Tien-Ju Yang, Joel Emer, Morgan and Claypool Publisher, 2020

Yakun Sophia Shao, EE290-2: Hardware for Machine Learning, UC

Berkeley, 2020

CS231n Convolutional Neural Networks for Visual Recognition,

Stanford University, 2020

2

Outline

● Convolution Neural Network

○ Residual network

○ Depthwise convolution

● Transformer Model Architecture

○ Encoder-decoder based model

○ Large Language Models

3

Deep convolutional neural networks

● Each neuron only sees a “local receptive field”

○ 5 x 5 grid of neurons in this example

○ The first neuron is looking for feature in

the top-left 5x5 corner of the image

○ Combines the 25 inputs with 25 synaptic

weights to decide its output

○ The set of 5x5 weights as a “filter”

4

Deep convolutional neural networks

● Convolution
○ Applying a 5x5 filter (kernel) to each part

of the image

○ All the neurons are sharing the same set

of 25 weights (plus bias)

○ Why do we create small size filter ?
■ The small local receptive field and the use

of shared weights can help for slow

learning rate in early layers of the network

5

Convolutional Computation Details

6

● Convolution

○ Sliding dot product or cross-correlation

○ Convoluting a 5x5x1 image with a 3x3x1 filter kernel to get a

3x3x1 convoluted feature

CNN Dimension Parameters

● N – Number of input fmaps/output fmaps (batch size)

● C – Number of 2D input fmaps/filters (channels)

● H – Height of input fmap (activations)

● W – Width of input fmap (activations)

● R – Height of 2D filter (weights)

● S – Width of 2D filter (weights)

● M – Number of 2D output fmaps (channels)

● F – Width of output fmap (activations)

● E – Height of output fmap (activations)

7

CONV Layer Tensor Computation

8

Output fmaps (Y) Bias (B) Input fmaps

(X)

Filter weights

(W)

Shape Parameter Description

N fmap batch size

M # of filters or # of output fmap channels

C # of input fmap or # of filter channels

U Convolution stride

CONV Layer Implementation

9

for (n = 0; n < N; n++) {

for (m = 0; m < M; m++) {

for (x = 0; x < F; x++) {

for (y = 0; y < E; y++) {

Y[n][m][x][y] = B[m];

for (i = 0; i < R; i++) {

for (j = 0; j < S; j++) {

for (k = 0; k < C; k++) {

Y[n][m][x][y] += X[n][k][Ux+i][Uy+j] x W[m][k][i][j]

}

}

}

Y[n][m][x][y] = Activation(Y[n][m][x][y]);

}

}

}

}

For each output fmap

value

CONV &

Activation

How to run CONV in parallel ?

CONV Layer Parallel Implementation

10

Parallel_for (n = 0; n < N; n++) {

Parallel_for (m = 0; m < M; m++) {

Parallel_for (x = 0; x < F; x++) {

Parallel_for (y = 0; y < E; y++) {

Y[n][m][x][y] = B[m];

for (i = 0; i < R; i++) {

for (j = 0; j < S; j++) {

for (k = 0; k < C; k++) {

Y[n][m][x][y] += X[n][k][Ux+i][Uy+j] x W[m][k][i][j]

}

}

}

Y[n][m][x][y] = Activation(Y[n][m][x][y]);

}

}

}

}

For each output fmap

value

CONV &

Activation

Convolution (CONV) Layer

11

R

S

C

H

W

C

E

F

Filter

Input fmap

Output

fmap

Many Input Channels (C), e.g. RGB in an image

Convolution (CONV) Layer

12

R

S

C

R

S

C

…

Many filters (M)

M
H

W

C

E

F

Input fmap

M

Many Output

Channels (M)

Convolution (CONV) Layer

13

R

S

C

R

S

C

…

Many filters (M)

M

H

W

C

H

W

C

…

N

E

F
M

E

F
M

…

N

Many fmaps (N)

Many Output

fmaps (N)

Pooling

● Pooling
○ Once a feature has been found, its’s exact location isn’t as important as

its relative location – help us reduce the parameters

○ Further reduce the network, say reduce 4 neurons into a single one

14

22 8 4 9

11 3 10 0

5 8 11 3

2 1 5 9

22 10

8 11

11 6

4 7

2x2 pooling, stride = 2
Max pooling

Average pooling

Input fmap size: W1 x H1 x C1

Spatial extent: F

Stride S

Output fmap after pooling: W2 x H2 X

C2

W2 = (W1 – F) / S + 1

H2 = (H1 – F) / S + 1

C2 = C1 https://cs231n.github.io/convolutional-networks/

https://cs231n.github.io/convolutional-networks/

POOL Layer Implementation

15

for (n = 0; n < N; n++) {

for (m = 0; m < M; m++) {

for (x = 0; x < F; x++) {

for (y = 0; y < E; y++) {

max = -Inf

for (i = 0; i < R; i++) {

for (j = 0; j < S; j++) {

if (X[n][m][Ux+i][Uy+j] > max) {

max = X[n][m][Ux+i][Uy+j];

}

}

}

Y[n][m][x][y] = max;

}

}

}

}

for each pooled

value

Find the max in

each window

GoogleNet Inception Architecture

● 22 layers

● Fully-Connected Layers: 1

● Weights: 7.0 M (< VGG(19.7X)

AlexNet(8.7X))

● MACs: 1.4G

16

ILSCVR14 Winner

GoogleNet is used to classify images

GoogleNet top-5 error rate is 6.67%

over VGG 7.3%

Auxiliary classifiers outputs to inject

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf

What’s New in GoogleNet ?

● 1 x 1 CONV filter (why?)

○ Decrease the number of parameters (weights and biases)

○ Increase the depth of the network

17

Case 1: 5x5 filter, # of filter = 48

Total MACs: (14x14x48)x(5x5x480) = 112.9M

Case 2: 1x1 filter, # of filter = 16 as intermediate

Total MACs: (14x14x16)x(1x1x480) +

(14x14x48)x(5x5x16)= 5.3M

https://www.geeksforgeeks.org/understanding-googlenet-model-cnn-architecture/

GoogleNet can be trained in a

single machine such as (GPU

with limit memory space) !!

What’s New in GoogleNet ?

● Inception module
○ A local network topology

(network within a network)

○ Stack modules on top of each

other

○ Multiple receptive field

sizes for CONV (1x1,

3x3, 5x5)

○ Pooling operation (3x3)

○ Depth-wise filter

concatenation

18

Inception module

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf

What’s the problem of

inception module?

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf

GoogleNet Inception Module Problems?

● What is the output size of 1x1 conv, with 128 filters ?

19

GoogleNet Inception Module Problems?

20
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf

Dimension Reduction on GoogleNet

21

Inception module with

dimension reduction

using

1x1 conv “bottleneck”

layers

Naïve inception module

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf

GoogleNet 1x1 Bottleneck Layer Ops

22

ResNet Model Overview

● 152-layer model for

ImageNet Classification

● ILSVRC’15 winner

(3.57% top-5 error)

● Using residual blocks

and connections

23
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf

How to train the data in

ULTRA-DEEP network

(over 1000 layers)?

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf

Deep Network Training Problems on ResNet

● Training and test error are increased with the length of networks

24

What is wrong when increasing the length of networks?

- Deeper model performs worse on both training and test error

(overfitting?)
[He et al., 2015]

Deep Network Training Problems on ResNet

● Why overfitting isn’t the main reason to increase error rate of 56-layer?

● Hypothesis: vanishing gradient raises error rate of ultra-deep networks?

○ Solution: Add layers to fit a residual mapping instead of fitting a desired

underlying mapping directly (skipping connection)(What?)

25

Deep Network Training Problems on ResNet

● Solution: Add layers to fit a residual mapping instead of fitting a

desired underlying mapping directly

26“Original” Layer “Residual” Block

H(x) = F(X)+x

Instead of fitting H(x)

directly, use residual

F(x) = H(x) - x
Why not use

H(x) directly?

Identity mapping

F(x) = x

Shortcut/skip

connection

Bottleneck Layer on ResNet

● ResNet50+ also uses

“bottleneck” layer

to improve efficiency

for deep networks

(similar to GoogleNet)

27

1x1 conv, 64 filters

projects to 28x28x64

3x3 conv operates over

only 64 feature maps

1x1 conv, 256 filters

projects back to 256

feature maps (28x28x256)

ResNet Model Details

● Full ResNet architecture
○ Stack residual blocks

○ Every residual block has two 3x3 conv layers

○ Periodically, double the number of filters and

down-sample using stride 2 (/2 in each

dimension)

○ Additional conv layer at the beginning

○ Only FC 1000 to output class

○ Total depths of 34, 50, 101 or 152 layers

for ImageNet

28
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf

MobileNet v1: Depthwise Separable CONV

● Decouple cross-channel correlations and spatial

correlations in the feature maps

● How to reduce # of parameters? [Andrew et. al. arxiv, 2017]

29

What is Depthwise Separable Convolution ?

● Purpose: Reduce the amount of CONV computation

● Input: W_in * H_in * Nch (# of channels)

● Kernel: k * k * Nk (# of kernels)

● Output: W_out * H_out * Nk (# of kernels)

30

H_in

W_in
N_ch

H_ou

t

W_out
N_k

W_in * H_in * Nch k * k * Nk W_out* H_out * Nk

*

Depthwise Convolution

● Each channel of inputs has a k * k kernel

● Separate the convolution of each channel

● Difference: Every kernel convolves with all channels in standard CONV

31

Input

W_in * H_in * Nch
Nch Kernel

k * k

Depthwise_out

W_out* H_out * Nch

… … …

1

Nch

*

*

=

=

Pointwise Convolution

● The number of kernel: Nk with (1 * 1 * Nch) size

● Do CONV on the outputs of depthwise convolution

32
深度學習-MobileNet (Depthwise separable convolution) | by Tommy Huang | Medium

…

https://chih-sheng-huang821.medium.com/%E6%B7%B1%E5%BA%A6%E5%AD%B8%E7%BF%92-mobilenet-depthwise-separable-convolution-f1ed016b3467

Depthwise + Pointwise Convolution

33

Pointwise convolution

Input: W_out * H_out * Nch

Nk kernel = (1 * 1 * Nk)

Output = W_out * H_out * Nk

Depthwise convolution

Input: W_in * H_in * Nch

Nch Kernel (k * k)

Output: W_out * H_out * Nch

Depthwise convolution Pointwise convolution

深度學習-MobileNet (Depthwise separable convolution) | by Tommy Huang | Medium

https://chih-sheng-huang821.medium.com/%E6%B7%B1%E5%BA%A6%E5%AD%B8%E7%BF%92-mobilenet-depthwise-separable-convolution-f1ed016b3467

Depthwise Separable Convolution

● Standard CONV
○ Input: W_in * H_in * Nch

○ Kernel: k * k * Nk

○ Output: W_out * H_out * Nk

○ Computation: W_in * H_in * Nch * k * k * Nk

● Depthwise separable convolution
○ Depthwise CONV computation: W_in * H_in * Nch * k * k

○ Pointwise CONV computation: Nch * Nk * W_in * H_in

34

Depthwise separable CONV

Standard CONV

W_in * H_in * Nch * k * k + Nch * Nk * W_in * H_in

W_in * H_in * Nch * k * k * Nk
1

Nk

1

K*k

=

= +

Depthwise Separable Convolution

● Depthwise separable convolution can save more computation when

○ kernel size is large

○ The number of kernel is increased

● Suppose input is 416 * 416 * 50, # of filter is 10, its size is 3 * 3.

● How much computation can be saved by depthwise separable

convolution ?

○ 1/10 + 1/9 = 0.22

35

Takeaway Questions

● What are problems in ultra-deep neural networks ?
○ (A) Over-fitting

○ (B) Gradient vanishing

○ (C) Low training accuracy

● Given a CNN model below, how many channels are in the

second layer ?
○ (A) 4

○ (B) 8

○ (C) 16

36

Takeaway Questions

● A standard CONV layer
○ Input: W_in * H_in * Nch = (32 * 32 * 16)

○ Kernel: k * k * Nk = (3 * 3 * 8)

○ Computation: W_in * H_in * Nch * k * k * Nk = (32 * 32 * 16 * 3 * 3 * 8)

● What is the amount of computation that is carried out by

depthwise separable convolution ?

○ (A) (32 * 32 * 16 * 3 * 3) + (3 * 8 * 8)

○ (B) (32 * 32 * 3 * 3 * 8) + (16 * 3 * 3)

○ (C) (32 * 32 * 16 * 3 * 3) + (16 * 8 * 32 * 32)

37

Classical Sequence-to-Sequence Model

● Pass the last hidden state of the encoding stage

● Decoder uses this last hidden state to do the prediction

38

Encoder

RNN

Encoder

RNN

Encoder

RNN

H
id

d
e

n
 S

ta
te

 #
1

H
id

d
e

n
 S

ta
te

 #
2

H
id

d
e
n
 S

ta
te

 #
3

Decoder

RNN

Decoder

RNN

Decoder

RNN

您 好 嗎

How are you

Word Representation

● One-Hot Encoding

○ Representing each word as a vector that has as many values in it

○ Each column in a vector is one possible word in a vocabulary

○ Problem

■ In large vocabularies, these

vectors can get very long

■ Contain all 0’s except for

one value

■ Sparse representation

39

Word Representation

● Word Embedding

○ Map the word index to a continuous word embedding through

a look-up table

○ Popular pre-trained word embeddings

■ Word2Vec, GloVe

40

Positional Encoding (PE)

● Positional encoding (PE)

○ Information to each word about its position in the sentence

○ Unique encoding for each word’s position in a sentence

○ Distance between any two positions is consistent across

sentences with different lengths

○ Encode words by using sin(), cos() with different frequencies

○ Deterministic and generalize to longer sentences

41

Positional Encoding (PE)

● Arguments

○ L: maximum # of possible positions

○ dmodel: dimension of the embeddings

○ n: can be set to any value

○ k: position

○ i: dimension

42

Positional Encoding (PE)

43

Transformer Model Architecture

● Each encoder block has two sub-layers
○ Multi-head self-attention

○ A position-wise fully connected feed-forward

● Each decoder block has an additional

third sub-layer
○ The third is a masked multi-head attention

over the output of the encoder stack

● A residual connection is added around

each of the two sub-layers

● The decoder yields the output sequence

of symbols one element at a time

44
Vaswani et al. 2017 https://arxiv.org/pdf/1706.03762.pdf

https://web.stanford.edu/class/cs224n/slides/cs224n-2020-lecture10-QA.pdf

https://web.stanford.edu/class/cs224n/slides/cs224n-2020-lecture10-QA.pdf

Transformer Model Architecture

● Transformer encoder

45

Bottleneck of Sequence-to-Sequence Model

● It is challenging for the model to deal with long sentences

● Attention

○ The encoder passes all the hidden states to the decoder

○ The attention enables the decoder to focus on the word before it

generates the English translation

○ This ability amplifies the signal from the relevant part of the input

sentence

46

Transformer Model Architecture

● Encoder – Multi-head self-attention

47

Q: query

K: key

V: value

Transformer Model Architecture

● Encoder – Multi-head self-attention

48

Multi-Head Self-Attention (MHSA)

● Project Q, K, and V with h different learned

linear projections

● Perform the scaled dot-product attention

function on each of Q, K, V in parallel

● Concatenate the output values

● Project the output values again, resulting

in the final values

49

Transformer Model Architecture

● Encoder – Residual connection

○ Address exploding/vanishing

gradients

○ Equation

■ F(x): output of previous layer

■ x: input of previous layer

50

Transformer Model Architecture

● Encoder – Layer normalization

○ For each input vector x = (x1 ..Xm)

■ Calculate Mean, variance

■ Normalize the vector x

● Small -> avoid dividing 0

■ Scale and shift

51

Transformer Model Architecture

● Encoder – Feed Forward Network

○ Contains 2 linear transformations and 1 ReLU

52

Transformer Model Architecture

53

Transformer Model Architecture

● Decoder – Mask self-attention
○ The output of a certain position can

only depend on the words on the

previous positions

○ Set alignment scores of successive

position to negative infinity

54

LLaMA Model Architecture

55

LLaMA Model Architecture

56

● Why LLaMA is decoder-only model?

https://www.53ai.com/news/qianyanjishu/1539.html

LLaMA Model Architecture

57

● Difference between Transformer and LLaMA
○ Decoder-only model

○ Pre-Norm (root mean square (RMS) norm)

○ Rotary positional embedding (RoPE)

○ KV cache

○ Grouped multi query attention

○ SwiGLU activation function rather than ReLU in FFN

LLaMA Model Architecture

58

● Rotary positional embedding (RoPE)
○ Combine absolute and relative encoding

■ Absolute positional embedding

● Assigns a unique vector to each position and doesn’t scale well

to capture relative position

■ Relative embeddings

● Focuses on the distance between tokens

● Enhance the model’s understanding of token relationship

○ Rotational mechanism

■ Each position in the sequence is represented by a rotation in the

embedding space

LLaMA Model Architecture

59

● Rotary positional embedding (RoPE)
○ RoPE applies a rotation to the word vector

○ The equation incorporates a rotation matrix that rotates a vector by an

angle of Mθ, where M is the absolute position in the sentence.

○ This rotation is applied to the query and key vectors in the self-attention

LLaMA Model Architecture

60

● Root Mean Square (RMS) normalization

○ Calculate the RMS of the input vectors rather than the mean and

variance

○ Efficient normalization

■ No subtracting mean before squaring

■ No shifting in implementation

Layer norm

LLaMA Model Architecture

61

● LLM decoder

○ The decoder works in an auto-regressive fashion

■ Given an input, the model predict the next token

■ Taking the combined input in the next step

https://medium.com/@joaolages/kv-caching-explained-276520203249

LLaMA Model Architecture

62

● Sequence mask (in decoder)

○ The decoder cannot see the message

in the coming future

○ Use the mask to enable the decoder

to only rely on the previous outputs to

do the inference → training the

decoder

LLaMA Model Architecture

63

● The scaled dot-product attention

○ The attention of a token only depends on its preceding tokens

○ At each generation step we are recalculating the same previous

token attention, when we actually just want to calculate the

attention for the new token

https://medium.com/@joaolages/kv-caching-explained-276520203249

LLaMA Model Architecture

64

● Key-Value (KV) cache

○ By caching the previous Keys and Values, we can focus on only

calculating the attention for the new token.

https://medium.com/@joaolages/kv-caching-explained-276520203249

LLaMA Model Architecture

65

● Key-Value (KV) cache
○ LLM models can generate only one token

at a time

○ Each new prediction is dependent on the

previous context

■ To predict token number 1000 in the generation,

you need information from the previous 999 tokens

○ Optimize the sequential generation process by storing

previous calculations to reuse in subsequent tokens,

so they don't need to be computed again.

LLaMA Model Architecture

66

● KV cache

LLaMA Model Architecture

67

● Key-Value (KV) cache
○ The matrices obtained with KV caching are way smaller, which leads to

faster matrix multiplications

○ The downside of the KV cache is

■ When the length of sequences is becoming long

■ Needs the large memory to cache the Key and Value states

LLaMA Model Architecture

68

● SwiGLU (Swish and Gated Linear Unit)

○ LLU such as PALM and LLAMA use SwiGLU in FFN rather than

the usual ReLU -> SwiGLU tackles minus value better than ReLU

Takeaway Questions

● What’s problem the “Attention” aiming to solve?

○ (A) Gradient vanishing

○ (B) Message passing in the long sequence of data

○ (C) Over-fitting

● What are benefits of the “Transformer” ?

○ (A) Large hidden layer

○ (B) The amount of computation is small

○ (C) More data parallelism

69

Takeaway Questions

● How does the “self-attention” help the encoder?

○ (A) Looking at other works in the input sentence

○ (B) Memorizing the more messages within a network

○ (C) Focus on a specific word

70

