

Accelerator Architectures for Machine Learning (AAML)

Lecture 2: Basics of DNN Models

Tsung Tai Yeh Department of Computer Science National Yang-Ming Chiao Tung University

Acknowledgements and Disclaimer

 Slides was developed in the reference with Joel Emer, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, ISCA 2019 tutorial

Efficient Processing of Deep Neural Network, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, Morgan and Claypool Publisher, 2020 Yakun Sophia Shao, EE290-2: Hardware for Machine Learning, UC Berkeley, 2020

CS231n Convolutional Neural Networks for Visual Recognition,

Stanford University, 2020

Outline

Convolution Neural Network

- Residual network
- Depthwise convolution
- Transformer Model Architecture
 - Encoder-decoder based model
 - Large Language Models

Deep convolutional neural networks

- Each neuron only sees a "local receptive field"
 - 5 x 5 grid of neurons in this example
 - The first neuron is looking for feature in the top-left 5x5 corner of the image
 - Combines the 25 inputs with 25 synaptic weights to decide its output
 - The set of 5x5 weights as a "filter"

Deep convolutional neural networks

Convolution

- Applying a 5x5 filter (kernel) to each part of the image
- All the neurons are sharing the same set of 25 weights (plus bias)
- Why do we create small size filter ?
 - The small local receptive field and the use of shared weights can help for slow learning rate in early layers of the network

Convolutional Computation Details

Convolution

- Sliding dot product or cross-correlation
- Convoluting a 5x5x1 image with a 3x3x1 filter kernel to get a 3x3x1 convoluted feature

CNN Dimension Parameters

- N Number of input fmaps/output fmaps (batch size)
- C Number of 2D input fmaps/filters (channels)
- H Height of input fmap (activations)
- W Width of input fmap (activations)
- R Height of 2D filter (weights)
- S Width of 2D filter (weights)
- M Number of 2D output fmaps (channels)
- F Width of output fmap (activations)
- E Height of output fmap (activations)

CONV Layer Tensor Computation

$$0 \le n \le N, 0 \le m \le M, 0 \le y \le E, 0 \le x \le F$$

$$E = (H - R + U)/U, F = (W - S + U)/U$$

Shape Parameter	Description
Ν	fmap batch size
М	# of filters or # of output fmap channels
С	# of input fmap or # of filter channels
U	Convolution stride

CONV Layer Implementation

CONV Layer Parallel Implementation

Convolution (CONV) Layer

Many Input Channels (C), e.g. RGB in an image

National Yang Ming Chiao Tung University

Computer Architecture & System Lab

Convolution (CONV) Layer

13

Many fmaps (N)

Pooling

Pooling

- Once a feature has been found, its's exact location isn't as important as its relative location – help us reduce the parameters
- Further reduce the network, say reduce 4 neurons into a single one

POOL Layer Implementation

GoogleNet Inception Architecture

- 22 layers
- Fully-Connected Layers: 1
- Weights: 7.0 M (< VGG(19.7X) AlexNet(8.7X))
- MACs: 1.4G

ILSCVR14 Winner GoogleNet is used to classify images GoogleNet top-5 error rate is 6.67%

over VGG 7.3%

What's New in GoogleNet?

• 1 x 1 CONV filter (why?)

- Decrease the number of parameters (weights and biases)
- Increase the depth of the network

Case 1: 5x5 filter, # of filter = 48 Total MACs: (14x14x48)x(5x5x480) = **112.9M**

Case 2: 1x1 filter, # of filter = 16 as intermediate Total MACs: (14x14x16)x(1x1x480) + (14x14x48)x(5x5x16) = 5.3M

17

https://www.geeksforgeeks.org/understanding-googlenet-model-cnn-architecture/

What's New in GoogleNet ?

- Inception module
 - A local network topology (network within a network) What'
 - Stack modules on top of each inception modules
 other
 - Multiple receptive field sizes for CONV (1x1, 3x3, 5x5)
 - Pooling operation (3x3)
 - Depth-wise filter concatenation

GoogleNet Inception Module Problems?

• What is the output size of 1x1 conv, with 128 filters?

GoogleNet Inception Module Problems?

CONV Ops:

[1x1 conv, 128] 28x28x128x1x1x256 [3x3 conv, 192] 28x28x192x3x3x256 [5x5 conv, 96] 28x28x96x5x5x256 **Total: 854 M ops**

Very expensive compute

Solution: "bottleneck" layers that use 1x1 convolutions to reduce feature depth

Dimension Reduction on GoogleNet

GoogleNet 1x1 Bottleneck Layer Ops

Conv Ops:

[1x1 conv, 64] 28x28x64x1x1x256 [1x1 conv, 64] 28x28x64x1x1x256 [1x1 conv, 128] 28x28x128x1x1x256 [3x3 conv, 192] 28x28x192x3x3x64 [5x5 conv, 96] 28x28x96x5x5x64 [1x1 conv, 64] 28x28x64x1x1x256 **Total: 358 M ops**

Naïve version has **854M ops** Bottleneck layer can reduce ops using dimension reduction

ResNet Model Overview

- 152-layer model for ImageNet Classification
- ILSVRC'15 winner (3.57% top-5 error)
- Using residual blocks
 and connections

How to train the data in ULTRA-DEEP network (over 1000 layers)?

Deep Network Training Problems on ResNet

Training and test error are increased with the length of networks

What is wrong when increasing the length of networks?

- Deeper model performs worse on both training and test error (overfitting?)

Deep Network Training Problems on ResNet

- Why overfitting isn't the main reason to increase error rate of 56-layer?
- Hypothesis: vanishing gradient raises error rate of ultra-deep networks?
 - Solution: Add layers to fit a residual mapping instead of fitting a desired underlying mapping directly (skipping connection)(What?)

Deep Network Training Problems on ResNet

 Solution: Add layers to fit a residual mapping instead of fitting a desired underlying mapping directly

Bottleneck Layer on ResNet

ResNet50+ also uses
 "bottleneck" layer
 to improve efficiency
 for deep networks
 (similar to GoogleNet)

ResNet Model Details

- Full ResNet architecture
 - Stack residual blocks
 - Every residual block has two 3x3 conv layers
 - Periodically, double the number of filters and down-sample using stride 2 (/2 in each dimension)
 - Additional conv layer at the beginning
 - Only FC 1000 to output class
 - Total depths of 34, 50, 101 or 152 layers for ImageNet

MobileNet v1: Depthwise Separable CONV

- Decouple cross-channel correlations and spatial correlations in the feature maps
- How to reduce # of parameters? [Andrew et. al. arxiv, 2017]

What is Depthwise Separable Convolution ?

- **Purpose**: Reduce the amount of CONV computation
- **Input:** W_in * H_in * Nch (# of channels)
- Kernel: k * k * Nk (# of kernels)
- Output: W_out * H_out * Nk (# of kernels)

Depthwise Convolution

- Each channel of inputs has a k * k kernel
- Separate the convolution of each channel
- **Difference:** Every kernel convolves with all channels in standard CONV

Pointwise Convolution

- The number of kernel: Nk with (1 * 1 * Nch) size
- Do CONV on the outputs of depthwise convolution

Depthwise + Pointwise Convolution

Depthwise convolution

Input: W_in * H_in * Nch Nch Kernel (k * k) Output: W_out * H_out * Nch

Pointwise convolution

Input: W_out * H_out * Nch Nk kernel = (1 * 1 * Nk) Output = W_out * H_out * Nk

Depthwise Separable Convolution

• Standard CONV

- Input: W_in * H_in * Nch
- Kernel: k * k * Nk
- Output: W_out * H_out * Nk
- Computation: W_in * H_in * Nch * k * k * Nk

Depthwise separable convolution

- Depthwise CONV computation: W_in * H_in * Nch * k * k
- Pointwise CONV computation: Nch * Nk * W_in * H_in

Depthwise Separable Convolution

- Depthwise separable convolution can save more computation when
 - kernel size is large
 - The number of kernel is increased
- Suppose input is 416 * 416 * 50, # of filter is 10, its size is 3 * 3.
- How much computation can be saved by depthwise separable convolution ?
 - \circ 1/10 + 1/9 = 0.22

Ο

0

Ο

Takeaway Questions

- What are problems in ultra-deep neural networks ?
 - (A) Over-fitting
 - (B) Gradient vanishing
 - (C) Low training accuracy
- Given a CNN model below, how many channels are in the second layer ?

(A) 4 (B) 8		Input size	# of filter	Filter size	# of channel
(C) 16	Layer1	12 x 12	4	3x3	64
	Layer2	12 x 12	16	3x3	

Takeaway Questions

- A standard CONV layer
 - Input: W_in * H_in * Nch = (32 * 32 * 16)
 - Kernel: k * k * Nk = (3 * 3 * 8)
 - Computation: W_in * H_in * Nch * k * k * Nk = (32 * 32 * 16 * 3 * 3 * 8)
- What is the amount of computation that is carried out by
 - depthwise separable convolution ?
 - (A) (32 * 32 * 16 * 3 * 3) + (3 * 8 * 8)
 - (B) (32 * 32 * 3 * 3 * 8) + (16 * 3 * 3)
 - \circ (C) (32 * 32 * 16 * 3 * 3) + (16 * 8 * 32 * 32)

Computer Architecture & System Lab

Classical Sequence-to-Sequence Model

- Pass the last hidden state of the encoding stage
- Decoder uses this last hidden state to do the prediction

Word Representation

One-Hot Encoding

- Representing each word as a vector that has as many values in it
- Each column in a vector is one possible word in a vocabulary
- Problem
 - In large vocabularies, these vectors can get very long
 - Contain all 0's except for one value
 - Sparse representation

~100k columns, only one 1 in each vector

Word Representation

Word Embedding

- Map the word index to a continuous word embedding through a look-up table ~300 columns
- Popular pre-trained word embeddings
 - Word2Vec, GloVe

Positional Encoding (PE)

- Positional encoding (PE)
 - Information to each word about its position in the sentence
 - **Unique** encoding for each word's position in a sentence
 - Distance between any two positions is consistent across sentences with different lengths
 - Encode words by using **sin()**, **cos()** with different frequencies
 - **Deterministic** and **generalize** to longer sentences

$$\overrightarrow{p_t}^{(i)} = f(t)^{(i)} := egin{cases} \sin(\omega_k,t), & ext{if } i = 2k \ \cos(\omega_k,t), & ext{if } i = 2k+1 \end{cases} \qquad \omega_k = rac{1}{10000^{2k/d}}$$

Positional Encoding (PE)

- Arguments
 - L: maximum # of possible positions
 - d_{model}: dimension of the embeddings
 - n: can be set to any value
 - k: position
 - i: dimension

$$pos(k) = \begin{bmatrix} \sin \omega_{1} \cdot k \\ \cos \omega_{1} \cdot k \\ \sin \omega_{2} \cdot k \\ \cos \omega_{2} \cdot k \\ \vdots \\ \sin \omega_{d_{model}/2} \cdot k \\ \cos \omega_{d_{model}/2} \cdot k \end{bmatrix}_{d_{model}}$$
• For each $k = 0$ to $L -$
• For each $i = 0$ to $\frac{d_{model}}{2}$
• $PE_{(k,2i)} = \sin(\frac{k}{n^{\frac{2i}{d_{model}}}})$
• $PE_{(k,2i+1)} = \cos(\frac{k}{n^{\frac{2i}{d_{model}}}})$

42

Positional Encoding (PE)

- Each encoder block has two sub-layers
 - Multi-head self-attention
 - A position-wise fully connected feed-forward
- Each **decoder** block has an additional third sub-layer
 - The third is a masked multi-head attention over the output of the encoder stack
- A **residual connection** is added around each of the two sub-layers
- The decoder yields the output sequence of symbols one element at a time

Transformer Model Architecture

• Transformer encoder

Figure 1: The Transformer - model architecture.

img src: Stanford CS 231n

Bottleneck of Sequence-to-Sequence Model

- It is challenging for the model to deal with long sentences
- Attention
 - The encoder passes all the hidden states to the decoder
 - The attention enables the decoder to focus on the word before it generates the English translation
 - This ability amplifies the signal from the relevant part of the input sentence

Transformer Model Architecture

• $Q = \mathbf{X} \cdot W^Q$ • $K = \mathbf{X} \cdot W^K$ • $V = \mathbf{X} \cdot W^V$

Q: query K: key V: value

Encoder – Multi-head self-attention

$$Attention(Q, K, V) = softmax(\frac{QK^{T}}{\sqrt{d_{k}}})V$$

Z_{0,1}

Z_{0,2}

Z_{2,2}

...

Transformer Model Architecture

• Encoder – Multi-head self-attention

Multi-head Self-attention

Multi-Head Self-Attention (MHSA)

- **Project** Q, K, and V with h **different** learned linear projections
- Perform the scaled dot-product attention function on each of Q, K, V in parallel
- Concatenate the output values
- **Project** the output values again, resulting in the final values

$$\begin{aligned} \text{MultiHead}(Q, K, V) &= \text{Concat}(\text{head}_1, ..., \text{head}_h) W^O \\ \text{where head}_i &= \text{Attention}(QW_i^Q, KW_i^K, VW_i^V) \end{aligned}$$

Transformer Model Architecture

- Encoder Residual connection
 - Address exploding/vanishing gradients
 - Equation
 - F(x): output of previous layer
 - x: input of previous layer

y = x + F(x)

Transformer Model Architecture

- Encoder Layer normalization
 - For each input vector x = (x1 ..Xm)
 - Calculate Mean, variance
 - Normalize the vector x
 - Small ε -> avoid dividing 0
 - Scale and shift

 γ, β are learnable parameters

$$\mu = \frac{\sum_{i} x_{i}}{m} \qquad \widehat{x}_{i} = \frac{(x_{i} - \mu)}{\sqrt{\sigma^{2} + \varepsilon}}$$
$$\sigma^{2} = \frac{\sum_{i} (x_{i} - \mu)^{2}}{m} \qquad y_{i} = \gamma \widehat{x}_{i} + \beta$$

- Encoder Feed Forward Network
 - Contains 2 linear transformations and 1 ReLU

- Decoder Mask self-attention
 - The output of a certain position can only depend on the words on the previous positions
 - Set alignment scores of successive position to negative infinity

LLaMA Model Architecture

img src: medium @ccibeekeoc42

LLaMA Model Architecture

• Why LLaMA is decoder-only model?

https://www.53ai.com/news/qianyanjishu/1539.html

- Difference between Transformer and LLaMA
 - Decoder-only model
 - Pre-Norm (root mean square (RMS) norm)
 - Rotary positional embedding (RoPE)
 - KV cache
 - Grouped multi query attention
 - SwiGLU activation function rather than ReLU in FFN

- Rotary positional embedding (RoPE)
 - Combine absolute and relative encoding
 - Absolute positional embedding
 - Assigns a unique vector to each position and doesn't scale well to capture relative position
 - Relative embeddings
 - Focuses on the distance between tokens
 - Enhance the model's understanding of token relationship
 - Rotational mechanism
 - Each position in the sequence is represented by a rotation in the embedding space

- Rotary positional embedding (RoPE)
 - RoPE applies a rotation to the word vector
 - The equation incorporates a rotation matrix that rotates a vector by an angle of M θ , where M is the absolute position in the sentence.
 - This rotation is applied to the query and key vectors in the self-attention

$$f_{\{q,k\}}(\boldsymbol{x}_m,m) = \begin{pmatrix} \cos m\theta & -\sin m\theta \\ \sin m\theta & \cos m\theta \end{pmatrix} \begin{pmatrix} W_{\{q,k\}}^{(11)} & W_{\{q,k\}}^{(12)} \\ W_{\{q,k\}}^{(21)} & W_{\{q,k\}}^{(22)} \end{pmatrix} \begin{pmatrix} \boldsymbol{x}_m^{(1)} \\ \boldsymbol{x}_m^{(2)} \end{pmatrix}$$

The pig chased the dog

- Root Mean Square (RMS) normalization
 - Calculate the RMS of the input vectors rather than the mean and variance
 - Efficient normalization
 - No subtracting mean before squaring

LLaMA Model Architecture

- LLM decoder
 - The decoder works in an auto-regressive fashion
 - Given an input, the model predict the next token
 - Taking the combined input in the next step

61

- Sequence mask (in decoder)
 - The decoder cannot see the message $s(Q_{T_1} \star K_{T_1,3}) \star V_{T_{1,3}} \Rightarrow T_1'$ in the coming future
 - Use the mask to enable the decoder to only rely on the previous outputs to do the inference → training the decoder

LLaMA Model Architecture

- The scaled dot-product attention
 - The attention of a token only depends on its preceding tokens
 - At each generation step we are recalculating the same previous token attention, when we actually just want to calculate the attention for the new token

https://medium.com/@joaolages/kv-caching-explained-276520203249

63

LLaMA Model Architecture

- Key-Value (KV) cache
 - By caching the previous Keys and Values, we can focus on only calculating the attention for the new token.

https://medium.com/@joaolages/kv-caching-explained-276520203249

64

- Key-Value (KV) cache
 - LLM models can generate only one token at a time
 - Each new prediction is dependent on the previous context
 - To predict token number 1000 in the generation, you need information from the previous 999 tokens
 - Optimize the sequential generation process by storing previous calculations to reuse in subsequent tokens, so they don't need to be computed again.

LLaMA Model Architecture

• KV cache

- Key-Value (KV) cache
 - The matrices obtained with KV caching are way smaller, which leads to faster matrix multiplications
 - The downside of the KV cache is
 - When the length of sequences is becoming long
 - Needs the large memory to cache the Key and Value states

LLaMA Model Architecture

- SwiGLU (Swish and Gated Linear Unit)
 - LLU such as PALM and LLAMA use SwiGLU in FFN rather than the usual ReLU -> SwiGLU tackles minus value better than ReLU

 $FFN_{SwiGLU}(x, W, V, W_2) = (Swish_1(xW) \otimes xV)W_2,$

Takeaway Questions

- What's problem the "Attention" aiming to solve?
 - (A) Gradient vanishing
 - (B) Message passing in the long sequence of data
 - (C) Over-fitting
- What are benefits of the "Transformer" ?
 - (A) Large hidden layer
 - (B) The amount of computation is small
 - (C) More data parallelism

Takeaway Questions

- How does the "self-attention" help the encoder?
 - (A) Looking at other works in the input sentence
 - (B) Memorizing the more messages within a network
 - (C) Focus on a specific word