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Outline

« Dennard Scaling vs Dark Silicon
 Artificial Neural Network (ANN)
o Spiking Neural Network (SNN)

o Neuromorphic architectures

« Digital vs Analog Accelerators
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Why do we need accelerators ?

e Previously
o We focused on designing general-purpose processors

e Why do accelerators have become attractive in recent years?

o Dennard Scaling has ended
= Dennard Scaling allowed voltage to shrink with transistor size
= Without Dennard Scaling, we need to find other ways to keep power in
check
o Dark Silicon
= Not turn on all transistors on the chip
m [he success of application’s accelerators (encryption, compression ...)
= Applications only use subset of processors/accelerators at a time,
such a heterogeneous architecture meets dark silicon phenomenon
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Why Deep Neural Network become popular?

e DNN model outperforms human-being on the ImageNet Challenge
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Computations of DNN

o Deep Neural Network is
getting large
o Large model parameters
m Palm-E (540B)
m GPT-MoE (1.8T)
o Why do we need such
a large model?

https://blogs.nvidia.com/blog/what-is-a-transformer-model/
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Large Language Model

« A language model is a mathematical mapping

o Text -> embedding vector (“representation”)

o Embedding vectors encode meaning of texts i.e. dog [1,0,0]

o Train such a model via next-word prediction on a large
corpus of text data as the lossy compression

m 1000B text token -> 30B model parameters

o Empirically, LLMs behaves as human as the model size

Increases
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Unsustainable ML Model Growth

« We need a better way to grow models more efficiently
e Get the advantages of larger models but with substantially less
compute and memory resources

Memory and compute requirements
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Hardware trends

o Stagnant single and multi-thread performance on

general-purpose cores
« What do accelerators matter?
o Dark silicon (emphasis on power-efficient throughput)
- End of scaling

« Emergence of machine learning
- Facilitate the pervasive of hardware acceleration as
machine learning emerges as a solution for “everything”.
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Commercial Hardware for Machine Learning

e Google TPU (inference and training)

e Nvidia Tensor/transformer cores (Ampere, Hopper)
e Microsoft Brainwave and Catapult

e Intel Loihi NPU

e Cambricon

e Graphcore (training)

e Cerebras (Training)

e Tesla (FSD, Dojo)
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Increasing transistors Is not getting efficient

I Stuttering [ Chip introduction
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Dennard Scaling

e Dennard scaling allowed voltage to shrink with transistor size
o E.g.180nm->18V,130nm->1.3V
o All 4 cores (45 nm) can be worked in full speed
o Could all 8 cores (28 nm) be worked in full speed, too ? Why ?

Power = alpha x CFV?
alpha: percent time
switched

C:. capacitance

F: Frequency

V: Voltage

1.
2.

3.

4.

Typically, the transistor size reduces K (~1.4) times

In the same chip area, the number of transistor
increases K2 times, the frequency increases K times
The size of capacitance shrinks K times as the reduction
of transistor size, and the voltage reduces K2 times

So, we can boost performance of the chip without any
compensation of the power

12
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Voltage threshold of MOSFET

e Temperature affects the value of Vg5 and Iy "
o Ta=25d,I[p=1Aand Ta=75d, I=1.5A when
fixing Vgg

o Due to Vg (1) coOnstraint, difficult to keep
reducing voltage to be proportional to

Drain Current : |, [A]

the transistor size below 28 nm 0.1
Gyv
GS
D 0.01
0.001

N Ch |\/| OS F ET https:/techweb.rohm.com.tw/knowledge/si/s-si/03-s-si/5277
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Power = alpha x CFV?

What can we do ? alpha: percent time

e Dark silicon

(@)

(@)

(@)

(@)

(@)

(@)

switched
C. capacitance
F: Frequency

Below 28 nm, the voltage (V) is hard to | | , Voltage

be changed
K? = (transistor size as capacitance size) K x frequency (K)

The power increases K2 times

Therefore, not turn on all transistor on the chip

What is the percentage of inactive transistors ?

20 nm: 33%, 16 nm: 45%, 10 nm: 56%, 7 nm: 75%, 5 nm: 80%

e Dim silicon

(@)

Turn all transistor on at low clock speeds

14
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Heterogeneous SoC

« Post-Moore era and dark silicon
A suite of accelerators on chip are rising
« Applications will only use a subset of processors/accelerators at a time
« Such a heterogeneous architecture is compatible with dark silicon

(HS

2010 Apple A4 2014 Apple A8 2019 Apple A12

2
65 nm TSMC 53 mm2 20 nm TSMC 89 mm? 7 nm TSMC 83 mm
42 accelerators
4 accelerators 28 accelerators 15

https://edge.seas.harvard.edu/files/edge/files/alp.pdf
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Artificial Neural Network (ANN)

« Most machine learning algorithms

o Perceptron or artificial neuron
o Receliving synchronous inputs, and performs math, then produce outputs
o Measuring the “strength” (z) of weighted inputs
o Z=x1*wl+x2*w2where (x is the input of the neuron, w is the weight
(determined by training))
o Activation function a = f(z) to decide if 'faf,‘fr 1?\?52 Tt
a neuron should fire or not

o Training performs back-propagation ? (F)’ré)bability:
with gradient descent » 5 5 :

Neuron 5 Probability:

Synapse o
0.3

Multilayer perceptrons (MLPS)

16
https://arxiv.org/pdf/2005.01467.pdf
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Spiking Neural Network (SNN)

Spiking neurons resembles chemical reactions in our brains
A neuron has a certain potential that represents inputs received

The potential rises and falls depending on the relative importance
of those inputs and leaks away when no receiving inputs
Post-synaptic

Pz
Ic '\*

(©)

O
o When the potential Pre-synaptic :
neuron Synapse potential
reaches a threshold, (PSP) Spiking neuron
the neuron fires "
. embrane ;
o All inputs/outputs are _potential I
ZJ .| Spik | 1|
o gen:rafion
17

in the form of binary
spikes

https://www.researchgate.net/figure/A-Schematic-of-a-spiking-neural-network-consisting-of-an-array-of-plastic-synapses_figl 342414706
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ANN vs. SNN
e ANN
o Perceptron, 8-bit or 16-bit multiplications, complex activation
functions
o High accuracy, supervised learning (inference and training)
e SNN

o Don’t achieve very high accuracies, not well understood

o A neuron has state that is a more powerful construct for
applications that have a notion of time, e.g. video and language
analysis

o Carry a large amount of information in a few bits

o Unsupervised learning

18
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Uncover Your Brain 2400 kcal/24 hr = 100 kcal/hr = 27.8 cal/
sec =116.38J/s=116 W

20% x 116 W=23.3 W

e The computer as a brain that comprises specialized accelerators
e Low power — the brain consumes only about 20W
e Fault tolerant — the brain loses neurons all the time

Motor control

Concentration, planning,
problem solving —

Speech — | | ’ A Language

[] Frontal lobe Reading

Smell s
[:| Temporal lobe me Vision

[] occipital lobe Hearing

Yang, Eric. Think Dinner. Mac
[:| Cerebellum Facial recognition

Coordination Evolution, 1998

19
https://askabiologist.asu.edu/sites/default/files/resources/articles/nervous_journey/brain-regions-areas.gif
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Neuromorphic architectures

o Architectures inspired by neuron behavior

o« Two major flavors

o Atrtificial Neural Network (ANN)
= Operations on perceptrons

o Spiking Neural Network (SNN)
= Mimic operations in the brain

« Two major implementation styles
- Digital
- Analog

20
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Neuromorphic Hardware

« Emulating the human brain
o Low power — the brain consumes only 20 W
o Fault tolerant — the brain loses neurons all the time
o No programming required — the brain learns by itself
o« Examples:
o SpiNNaker, Spikey, TrueNorth

21
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G1
Digital vs. Analog .
V2 =
e A single analog device X
o Perform multiple multi-bit operations 12 = V2xG2
o Analog has challenges, e.qg., noise/precision
o The current in a wire or the charge in a =11+ |2‘
capacitor represent a rational number =V1xG1 + V2xG2
o Perform addition by merging the currents in two wires ISAAC, ISCA 2016

o Multiplication can be represented by the current that emerges
when a voltage is applied to a conductor
o Instability as temperature changes, currents change
o Digital device
o Use CMOS transistors and gates, exclusively deal with Os and 1s

22
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Crossbar for vector-matrix multiplication

e A grid of resistances and horizontal

. . —DA
and vertical wires >\¢-\'

o The input voltages are provided on the —DAC
horizontal wires (wordlines)

o Each column represents a different neuron PAS %\
o Each column computes a different dot- \’L\;"L\:’L\

product based on conductances in that col’|
o Analog current is sent through an analog-to-
digital converter (ADC).
o S&H is the sample-and-hold circuit that | ADC |
feeds signals sequentially to the ADC ISAAC, ISCA 2016

23
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o High ADC/DAC areal/energy

o Long stay in analog needs expensive analog buffering,
iIntroduces significant noise that accumulates across network
layers

o Some ADC overheads increase exponentially with resolution

= The number of bits coming out of a bitline is a function of the bits
of info in the voltage (v)

= The bits of info in the weight (w)

= The number of rows (R) being added

o To increase the parallelism and storage density — high v, w,
and R
= Demanding an expensive high-resolution ADC
o SNN is amenable to analog, why ?

24
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Digital (1) GPU

Nvidia V100 GPU | Nvidia A100 GPU
(2019) (2020) 257 X

Transistor count 21 billion 54 billion 124 X
FP32 15.7 TFLOP/s 19.5 TFLOP/s 1.25 X
performance
Tensor FP32 125 TFLOP/s 156 TFLOP/s
TDP 300 W 250 W
Die size 815 mm? 862 mm?

TSMC 12 nm TSMC 7 nm

https://www.nvidia.com/en-us/data-center/a100/ 25
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Digital (Il) Google Tensor Processmg Unit (TPU)

e Systolic-array accelerator
o V1. Inference only
o V2: Training with bfloat
o V3. 2X powerful than v2
e Edge TPU

(@)

(@)

(@)

(@)

Coral Dev Board

4 TOPS

2 TOPS/Watt

Support TensorFlow Lite

PCle Gen3 x16
Interface

Host Interface

https://coral.allproducts/

26
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Digital (Il1) Cerebras: Wafer-Scale DL Engine

o Largest DL Chip Ever Built!!

o 46225 mm? (WoW !

o 1.2 trillion transistor

o 400,000 optimized Al
cores

e 18 GB on-chip memory

e TSMC 16 nm process

Cerebras WSE Largest GPU

1.2 Trillion transistors 21.1 Billion transistors
46,225 mm? silicon 815 mm?silicon

https://twitter.com/CerebrasSystems/status/1163443985714753537
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In summary

e Learning from History
o Neural network (NN) booms, but fades away when it ceases to
be fashionable -> support vector machines (SVM) took over
o General-purpose processors and GPU quickly outpace ASICs
o Today
o NNs > SVM
o GPPs and GPUs will stagnate in performance, but ML is hot
o ML accelerators (hardware + ML software perspective) include
many implementation operations
o Neuroscience + emerging technology

28
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Takeaway Questions

o What does dark silicon tell us ?
o (A) We should turn all transistor on at low clock speeds
o (B) We cannot turn on all transistors on a chip
o (C) Allowed voltage to shrink with transistor size

e Why does SNN have the potential for low-energy

computations and communication ?
o (A) Skipping connections
o (B) Complex SNN computation
o (C) Not involve in multiplications or complex activation
functions

29
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Takeaway Questions

« What are the challenges of analog accelerators ?
> (A) High ADC/DAC area and energy
o (B) Limited parallelism
> (C )Non-programmable

30



