

Accelerator Architectures for Machine Learning (AAML)

Lecture 1: Basics of AI Accelerator

Tsung Tai Yeh Department of Computer Science National Yang-Ming Chiao Tung University

Acknowledgements and Disclaimer

 Slides was developed in the reference with Joel Emer, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, ISCA 2019 tutorial

Efficient Processing of Deep Neural Network, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, Morgan and Claypool Publisher, 2020 Yakun Sophia Shao, EE290-2: Hardware for Machine Learning, UC Berkeley, 2020

CS231n Convolutional Neural Networks for Visual Recognition,

Stanford University, 2020

Outline

- Dennard Scaling vs Dark Silicon
- Artificial Neural Network (ANN)
- Spiking Neural Network (SNN)
- Neuromorphic architectures
- Digital vs Analog Accelerators

Why do we need accelerators ?

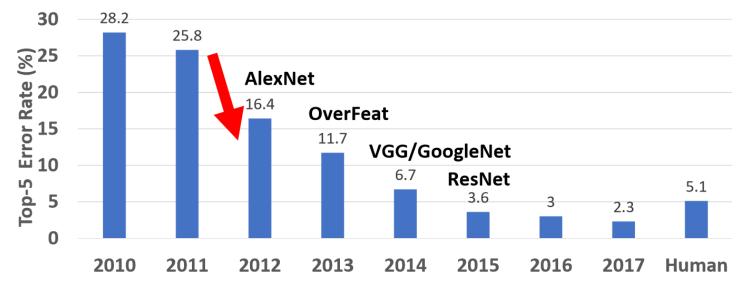
- Previously
 - We focused on designing general-purpose processors
- Why do accelerators have become attractive in recent years?
 - Dennard Scaling has ended
 - Dennard Scaling allowed voltage to shrink with transistor size
 - Without Dennard Scaling, we need to find other ways to keep power in check

• Dark Silicon

- Not turn on all transistors on the chip
- The success of application's accelerators (encryption, compression ...)
- Applications only use subset of processors/accelerators at a time, such a heterogeneous architecture meets dark silicon phenomenon

Why Deep Neural Network become popular?

• DNN model outperforms human-being on the ImageNet Challenge

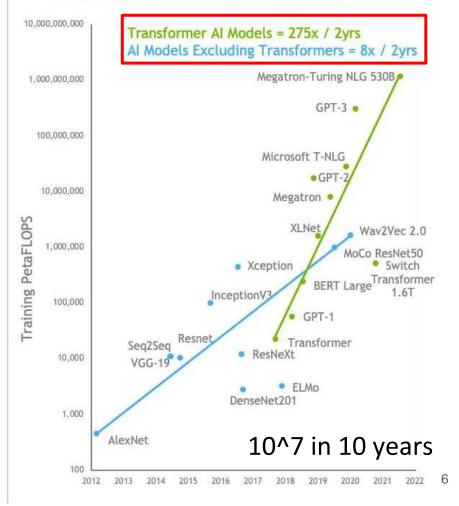


https://arxiv.org/ftp/arxiv/papers/1911/1911.05289.pdf

Computations of DNN

- Deep Neural Network is getting large
 - Large model parameters
 - Palm-E (540B)
 - GPT-MoE (1.8T)
 - Why do we need such a large model?

EXPLODING COMPUTATIONAL REQUIREMENTS



Large Language Model

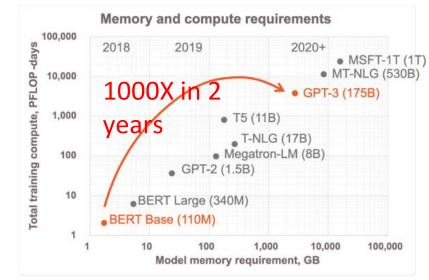
- A language model is a mathematical mapping
 - Text -> embedding vector ("representation")
 - Embedding vectors encode meaning of texts i.e. dog [1,0,0]
 - Train such a model via next-word prediction on a large corpus of text data as the lossy compression

■ 1000B text token -> 30B model parameters

Empirically, LLMs behaves as human as the model size increases

Unsustainable ML Model Growth

- We need a better way to grow models more efficiently
- Get the advantages of larger models but with substantially less compute and memory resources



Sparsity might be one of answer

https://www.cerebras.net/blog/accelerating-llm-training-with-variable-sparse-pre-training-and-dense-fine-tuning/

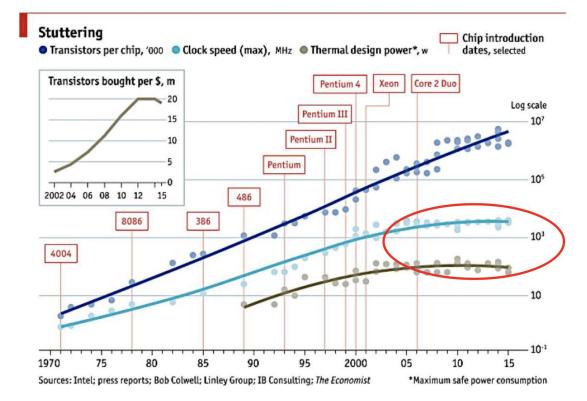
Hardware trends

- Stagnant single and multi-thread performance on general-purpose cores
- What do accelerators matter?
 - Dark silicon (emphasis on power-efficient throughput)
 - End of scaling
- Emergence of machine learning
 - Facilitate the pervasive of hardware acceleration as machine learning emerges as a solution for "everything".

Commercial Hardware for Machine Learning

- Google TPU (inference and training)
- Nvidia Tensor/transformer cores (Ampere, Hopper)
- Microsoft Brainwave and Catapult
- Intel Loihi NPU
- Cambricon
- Graphcore (training)
- Cerebras (Training)
- Tesla (FSD, Dojo)
- ...

Increasing transistors is not getting efficient



General purpose processor is not getting faster and powerefficient because of **Slowdown of Moore's** Law and Dennard Scaling

Dennard Scaling

- Dennard scaling allowed voltage to shrink with transistor size
 - E.g. 180 nm -> 1.8 V, 130 nm -> 1.3 V
 - All 4 cores (45 nm) can be worked in full speed
 - Could all 8 cores (28 nm) be worked in full speed, too? Why?

Power = alpha x CFV^2

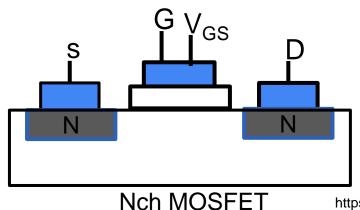
alpha: percent time switched

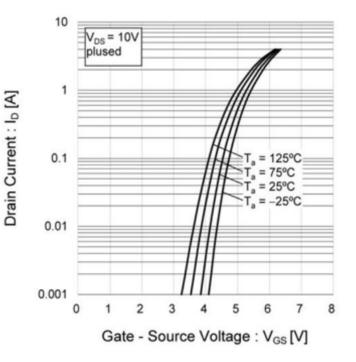
- C: capacitance
- F: Frequency
- V: Voltage

- 1. Typically, the transistor size reduces K (~1.4) times
- In the same chip area, the number of transistor increases K² times, the frequency increases K times
- 3. The size of capacitance shrinks K times as the reduction of transistor size, and the voltage reduces K² times
- 4. So, we can boost performance of the chip without any compensation of the power

Voltage threshold of MOSFET

- Temperature affects the value of V_{GS} and I_D
 - $\circ~$ Ta = 25 d, I_D = 1A and Ta = 75 d, ~I_D = 1.5 A when fixing V_{GS}
 - Due to V_{GS (TH)} constraint, difficult to keep reducing voltage to be proportional to the transistor size below 28 nm





https://techweb.rohm.com.tw/knowledge/si/s-si/03-s-si/5277

What can we do ?

• Dark silicon

 Below 28 nm, the voltage (V) is hard to be changed

Power = alpha x CFV²
alpha: percent time
switched
C: capacitance
F: Frequency
V: Voltage

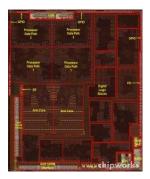
- $K^2 = (transistor size as capacitance size) K x frequency (K)$
- The power increases K² times
- Therefore, not turn on all transistor on the chip
- What is the percentage of inactive transistors ?
- 20 nm: 33%, 16 nm: 45%, 10 nm: 56%, 7 nm: 75%, 5 nm: 80%

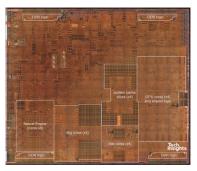
Dim silicon

• Turn all transistor on at low clock speeds

Heterogeneous SoC

- Post-Moore era and dark silicon
 - · A suite of accelerators on chip are rising
 - Applications will only use a subset of processors/accelerators at a time
 - Such a heterogeneous architecture is compatible with dark silicon





2019 Apple A12 7 nm TSMC 83 mm² 42 accelerators

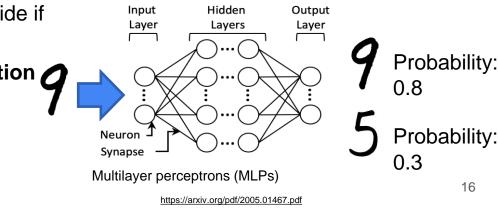
2010 Apple A4 65 nm TSMC 53 mm² 4 accelerators 2014 Apple A8 20 nm TSMC 89 mm² 28 accelerators

https://edge.seas.harvard.edu/files/edge/files/alp.pdf

Artificial Neural Network (ANN)

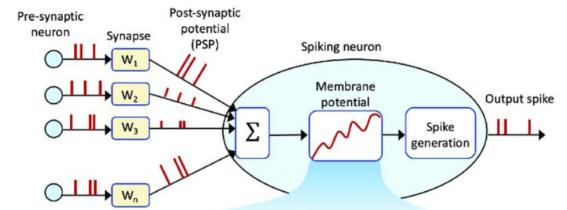
Most machine learning algorithms

- Perceptron or artificial neuron
- Receiving synchronous inputs, and performs math, then produce outputs
- Measuring the "strength" (z) of weighted inputs
- Z = x1 * w1 + x2 * w2 where (x is the input of the neuron, w is the weight (determined by training))
- Activation function a = f(z) to decide if a neuron should fire or not
- Training performs back-propagation with gradient descent



Spiking Neural Network (SNN)

- Spiking neurons resembles chemical reactions in our brains
 - A neuron has a certain potential that represents inputs received
 - The potential rises and falls depending on the relative importance of those inputs and leaks away when no receiving inputs
 - When the potential reaches a threshold, the neuron fires
 - All inputs/outputs are in the form of binary spikes



17

ANN vs. SNN

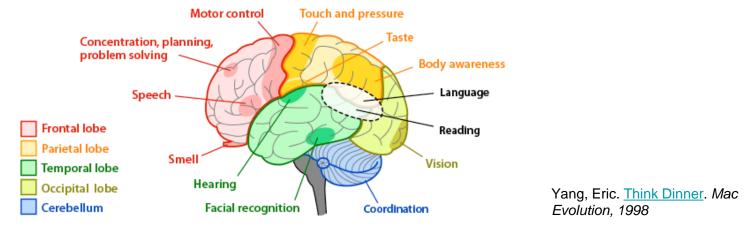
• ANN

- Perceptron, 8-bit or 16-bit multiplications, complex activation functions
- High accuracy, supervised learning (inference and training)
- SNN
 - Don't achieve very high accuracies, not well understood
 - A neuron has state that is a more powerful construct for applications that have a notion of time, e.g. video and language analysis
 - Carry a large amount of information in a few bits
 - Unsupervised learning

Uncover Your Brain

2400 kcal/24 hr = 100 kcal/hr = 27.8 cal/ sec = 116.38 J/s = 116 W 20% x 116 W = 23.3 W

- The computer as a brain that comprises **specialized accelerators**
- Low power the brain consumes only about 20W
- Fault tolerant the brain loses neurons all the time



https://askabiologist.asu.edu/sites/default/files/resources/articles/nervous_journey/brain-regions-areas.gif

Neuromorphic architectures

• Architectures inspired by neuron behavior

• Two major flavors

- Artificial Neural Network (ANN)
 - Operations on perceptrons
- Spiking Neural Network (SNN)
 - Mimic operations in the brain
- Two major implementation styles
 - Digital
 - Analog

Neuromorphic Hardware

• Emulating the human brain

- Low power the brain consumes only 20 W
- Fault tolerant the brain loses neurons all the time
- No programming required the brain learns by itself

• Examples:

SpiNNaker, Spikey, TrueNorth

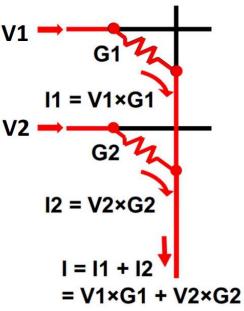
Digital vs. Analog

• A single analog device

- Perform multiple multi-bit operations
- Analog has challenges, e.g., noise/precision
- The current in a wire or the charge in a capacitor represent a rational number
- Perform addition by merging the currents in two wires ISAAC, ISCA 2016
- Multiplication can be represented by the current that emerges when a voltage is applied to a conductor
- **Instability** as temperature changes, currents change

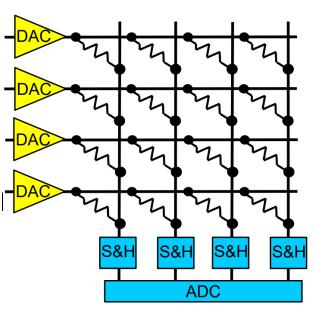
Digital device

Use CMOS transistors and gates, exclusively deal with 0s and 1s



Crossbar for vector-matrix multiplication

- A grid of resistances and horizontal and vertical wires
 - The input voltages are provided on the horizontal wires (wordlines)
 - Each column represents a different neuron
 - Each column computes a different dotproduct based on conductances in that col
 - Analog current is sent through an analog-todigital converter (**ADC**).
 - S&H is the sample-and-hold circuit that feeds signals sequentially to the ADC



ISAAC, ISCA 2016

Challenges of analog devices

- High ADC/DAC area/energy
 - Long stay in analog needs expensive analog buffering, introduces significant noise that accumulates across network layers
 - Some ADC overheads increase exponentially with resolution
 - The number of bits coming out of a bitline is a function of the bits of info in the voltage (v)
 - The bits of info in the weight (w)
 - The number of rows (R) being added
 - To increase the parallelism and storage density high v, w, and R
 - Demanding an expensive high-resolution ADC
 - SNN is amenable to analog, why?

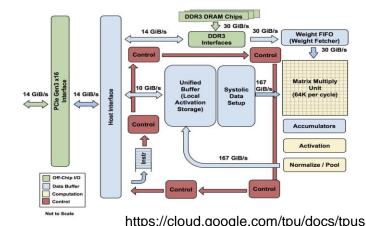
Digital (I) GPU

	Nvidia V100 GPU (2019)	Nvidia A100 GPU (2020)	2.57 X
Transistor count	21 billion	54 billion	1.24 X
FP32 performance	15.7 TFLOP/s	19.5 TFLOP/s	1.25 X
Tensor FP32	125 TFLOP/s	156 TFLOP/s	.06
TDP	300 W	250 W	
Die size	815 mm ²	862 mm ²	
	TSMC 12 nm	TSMC 7 nm	

.25 X

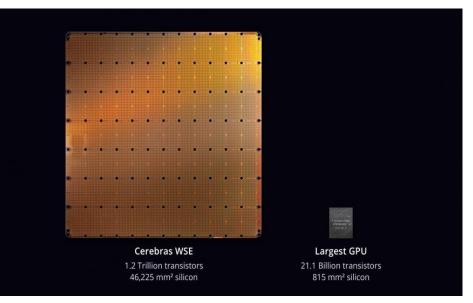
Digital (II) Google Tensor Processing Unit (TPU)

- Systolic-array accelerator
 - V1: Inference only
 - V2: Training with bfloat
 - V3: 2X powerful than v2
- Edge TPU
 - Coral Dev Board
 - **4 TOPS**
 - 2 TOPS/Watt
 - Support TensorFlow Lite



Digital (III) Cerebras: Wafer-Scale DL Engine

- Largest DL Chip Ever Built!!
- 46225 mm² (WoW !!)
- 1.2 trillion transistor
- 400,000 optimized AI cores
- 18 GB on-chip memory
- TSMC 16 nm process



In summary

• Learning from History

- Neural network (NN) booms, but fades away when it ceases to be fashionable -> support vector machines (SVM) took over
- General-purpose processors and GPU quickly outpace ASICs
- Today
 - NNs > SVM
 - GPPs and GPUs will stagnate in performance, but ML is hot
 - ML accelerators (hardware + ML software perspective) include many implementation operations
 - Neuroscience + emerging technology

Takeaway Questions

- What does dark silicon tell us ?
 - (A) We should turn all transistor on at low clock speeds
 - (B) We cannot turn on all transistors on a chip
 - (C) Allowed voltage to shrink with transistor size
- Why does SNN have the potential for low-energy computations and communication ?
 - (A) Skipping connections
 - (B) Complex SNN computation
 - (C) Not involve in multiplications or complex activation functions

Takeaway Questions

- What are the challenges of analog accelerators ?
 - (A) High ADC/DAC area and energy
 - (B) Limited parallelism
 - (C)Non-programmable