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Outline

● Dennard Scaling vs Dark Silicon

● Artificial Neural Network (ANN)

● Spiking Neural Network (SNN)

● Neuromorphic architectures

● Digital vs Analog Accelerators
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Why do we need accelerators ?

● Previously
○ We focused on designing general-purpose processors

● Why do accelerators have become attractive in recent years?
○ Dennard Scaling has ended

■ Dennard Scaling allowed voltage to shrink with transistor size
■ Without Dennard Scaling, we need to find other ways to keep power in 

check

○ Dark Silicon
■ Not turn on all transistors on the chip
■ The success of application’s accelerators (encryption, compression …)
■ Applications only use subset of processors/accelerators at a time, 

such a heterogeneous architecture meets dark silicon phenomenon
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Why Deep Neural Network become popular?

● DNN model outperforms human-being on the ImageNet Challenge

https://arxiv.org/ftp/arxiv/papers/1911/1911.05289.pdf
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Computations of DNN
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● Deep Neural Network is

getting large

○ Large model parameters

■ Palm-E (540B)

■ GPT-MoE (1.8T)

○ Why do we need such 

a large model?

https://blogs.nvidia.com/blog/what-is-a-transformer-model/

10^7 in 10 years



Large Language Model
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● A language model is a mathematical mapping

○ Text -> embedding vector (“representation”)

○ Embedding vectors encode meaning of texts i.e. dog [1,0,0] 

○ Train such a model via next-word prediction on a large 

corpus of text data as the lossy compression

■ 1000B text token -> 30B model parameters

○ Empirically, LLMs behaves as human as the model size 

increases



Unsustainable ML Model Growth
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● We need a better way to grow models more efficiently

● Get the advantages of larger models but with substantially less 

compute and memory resources

1000X in 2 
years Sparsity 

might be one 
of answer

https://www.cerebras.net/blog/accelerating-llm-training-with-variable-sparse-pre-training-and-dense-fine-tuning/



Hardware trends

● Stagnant single and multi-thread performance on 

general-purpose cores

● What do accelerators matter?
○ Dark silicon (emphasis on power-efficient throughput)

○ End of scaling

● Emergence of machine learning
○ Facilitate the pervasive of hardware acceleration as 

machine learning emerges as a solution for “everything”. 
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Commercial Hardware for Machine Learning

● Google TPU (inference and training)

● Nvidia Tensor/transformer cores (Ampere, Hopper)

● Microsoft Brainwave and Catapult

● Intel Loihi NPU

● Cambricon

● Graphcore (training)

● Cerebras (Training)

● Tesla (FSD, Dojo)

● …
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Increasing transistors is not getting efficient

General purpose 

processor is not getting 

faster and power-

efficient because of

Slowdown of Moore’s 

Law and Dennard 

Scaling
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Dennard Scaling

● Dennard scaling allowed voltage to shrink with transistor size 

○ E.g. 180 nm -> 1.8 V, 130 nm -> 1.3 V

○ All 4 cores (45 nm) can be worked in full speed

○ Could all 8 cores (28 nm) be worked in full speed, too ?  Why ?
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Power = alpha x CFV2

alpha: percent time 

switched

C: capacitance

F: Frequency

V: Voltage

1. Typically, the transistor size reduces K (~1.4) times 

2. In the same chip area, the number of transistor 

increases K2 times, the  frequency increases K times

3. The size of capacitance shrinks K times as the reduction 

of transistor size, and the voltage reduces K2 times

4. So, we can boost performance of the chip without any 

compensation of the power



Voltage threshold of MOSFET

● Temperature affects the value of VGS and ID
○ Ta = 25 d, ID = 1A and Ta = 75 d,  ID = 1.5 A when

fixing VGS

○ Due to VGS (TH) constraint, difficult to keep 

reducing voltage to be proportional to

the transistor size below 28 nm

13

N N
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Nch MOSFET https://techweb.rohm.com.tw/knowledge/si/s-si/03-s-si/5277



What can we do ?

● Dark silicon

○ Below 28 nm, the voltage (V) is hard to 

be changed 

○ K2 = (transistor size as capacitance size) K x frequency (K) 

○ The power increases K2 times 

○ Therefore, not turn on all transistor on the chip

○ What is the percentage of inactive transistors ?

○ 20 nm: 33%, 16 nm: 45%, 10 nm: 56%, 7 nm: 75%, 5 nm: 80%

● Dim silicon

○ Turn all transistor on at low clock speeds
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Power = alpha x CFV2

alpha: percent time 

switched

C: capacitance

F: Frequency

V: Voltage



Heterogeneous SoC

Domain-specific 

Accelerators

Domain-specific 

AcceleratorsCPU

2019 Apple A12 

7 nm TSMC 83 mm2

42 accelerators

2014 Apple A8 

20 nm TSMC 89 mm2

28 accelerators

2010 Apple A4 

65 nm TSMC 53 mm2

4 accelerators
https://edge.seas.harvard.edu/files/edge/files/alp.pdf
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• Post-Moore era and dark silicon

• A suite of accelerators on chip are rising

• Applications will only use a subset of processors/accelerators at a time

• Such a heterogeneous architecture is compatible with dark silicon



Artificial Neural Network (ANN)

● Most machine learning algorithms
○ Perceptron or artificial neuron

○ Receiving synchronous inputs, and performs math, then produce outputs

○ Measuring the “strength” (z) of weighted inputs 

○ Z = x1 * w1 + x2 * w2 where (x is the input of the neuron, w is the weight 

(determined by training))

○ Activation function a = f(z) to decide if 

a neuron should fire or not

○ Training performs back-propagation

with gradient descent
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Multilayer perceptrons (MLPs)

https://arxiv.org/pdf/2005.01467.pdf

Probability: 

0.8

Probability: 

0.3

https://arxiv.org/pdf/2005.01467.pdf


Spiking Neural Network (SNN) 

● Spiking neurons resembles chemical reactions in our brains
○ A neuron has a certain potential that represents inputs received

○ The potential rises and falls depending on the relative importance 

of those inputs and leaks away when no receiving inputs

○ When the potential 

reaches a threshold, 

the neuron fires

○ All inputs/outputs are 

in the form of binary 

spikes
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https://www.researchgate.net/figure/A-Schematic-of-a-spiking-neural-network-consisting-of-an-array-of-plastic-synapses_fig1_342414706



ANN vs. SNN

● ANN
○ Perceptron, 8-bit or 16-bit multiplications, complex activation 

functions
○ High accuracy, supervised learning (inference and training)

● SNN
○ Don’t achieve very high accuracies, not well understood
○ A neuron has state that is a more powerful construct for 

applications that have a notion of time, e.g. video and language 
analysis

○ Carry a large amount of information in a few bits
○ Unsupervised learning
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Uncover Your Brain 

● The computer as a brain that comprises specialized accelerators

● Low power – the brain consumes only about 20W

● Fault tolerant – the brain loses neurons all the time

https://askabiologist.asu.edu/sites/default/files/resources/articles/nervous_journey/brain-regions-areas.gif
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2400 kcal/24 hr = 100 kcal/hr = 27.8 cal/

sec = 116.38 J/s = 116 W

20% x 116 W = 23.3 W

Yang, Eric. Think Dinner. Mac 

Evolution, 1998

http://www.macevolution.com/thinkdinner/hotchip.shtml


Neuromorphic architectures

● Architectures inspired by neuron behavior

● Two major flavors
○ Artificial Neural Network (ANN)

■ Operations on perceptrons

○ Spiking Neural Network (SNN)
■ Mimic operations in the brain

● Two major implementation styles
○ Digital 

○ Analog
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Neuromorphic Hardware

● Emulating the human brain

○ Low power – the brain consumes only 20 W

○ Fault tolerant – the brain loses neurons all the time

○ No programming required – the brain learns by itself

● Examples:

○ SpiNNaker, Spikey, TrueNorth
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Digital vs. Analog

● A single analog device
○ Perform multiple multi-bit operations

○ Analog has challenges, e.g., noise/precision

○ The current in a wire or the charge in a 

capacitor represent a rational number

○ Perform addition by merging the currents in two wires

○ Multiplication can be represented by the current that emerges 

when a voltage is applied to a conductor

○ Instability as temperature changes, currents change

● Digital device
○ Use CMOS transistors and gates, exclusively deal with 0s and 1s
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ISAAC, ISCA 2016



Crossbar for vector-matrix multiplication

● A grid of resistances and horizontal
and vertical wires

○ The input voltages are provided on the
horizontal wires (wordlines)

○ Each column represents a different neuron
○ Each column computes a different dot-

product based on conductances in that column
○ Analog current is sent through an analog-to-

digital converter (ADC).
○ S&H is the sample-and-hold circuit that

feeds signals sequentially to the ADC
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ISAAC, ISCA 2016



Challenges of analog devices

● High ADC/DAC area/energy
○ Long stay in analog needs expensive analog buffering, 

introduces significant noise that accumulates across network 
layers

○ Some ADC overheads increase exponentially with resolution
■ The number of bits coming out of a bitline is a function of the bits 

of info in the voltage (v)
■ The bits of info in the weight (w)
■ The number of rows (R) being added

○ To increase the parallelism and storage density – high v, w, 
and R

■ Demanding an expensive high-resolution ADC

○ SNN is amenable to analog, why ?
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Digital (I) GPU

https://www.nvidia.com/en-us/data-center/a100/

Nvidia V100 GPU 

(2019)

Nvidia A100 GPU 

(2020)

Transistor count 21 billion 54 billion

FP32 

performance

15.7 TFLOP/s 19.5 TFLOP/s

Tensor FP32 125 TFLOP/s 156 TFLOP/s

TDP 300 W 250 W

Die size 815 mm2 862 mm2

TSMC 12 nm TSMC 7 nm 

2.57 X
1.24 X
1.25 X
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Digital (II) Google Tensor Processing Unit (TPU)

● Systolic-array accelerator

○ V1: Inference only

○ V2: Training with bfloat

○ V3: 2X powerful than v2

● Edge TPU

○ Coral Dev Board

○ 4 TOPS

○ 2 TOPS/Watt

○ Support TensorFlow Lite

26
https://coral.ai/products/

https://cloud.google.com/tpu/docs/tpus

https://coral.ai/products/
https://cloud.google.com/tpu/docs/tpus


Digital (III) Cerebras: Wafer-Scale DL Engine

● Largest DL Chip Ever Built!!

● 46225 mm2 (WoW !!)

● 1.2 trillion transistor

● 400,000 optimized AI 

cores

● 18 GB on-chip memory

● TSMC 16 nm process

https://twitter.com/CerebrasSystems/status/1163443985714753537
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In summary

● Learning from History

○ Neural network (NN) booms, but fades away when it ceases to 

be fashionable -> support vector machines (SVM) took over

○ General-purpose processors and GPU quickly outpace ASICs

● Today

○ NNs > SVM

○ GPPs and GPUs will stagnate in performance, but ML is hot

○ ML accelerators (hardware + ML software perspective) include 

many implementation operations

○ Neuroscience + emerging technology
28



Takeaway Questions

● What does dark silicon tell us ?
○ (A) We should turn all transistor on at low clock speeds
○ (B) We cannot turn on all transistors on a chip
○ (C) Allowed voltage to shrink with transistor size 

● Why does SNN have the potential for low-energy 
computations and communication ?

○ (A) Skipping connections
○ (B) Complex SNN computation 
○ (C) Not involve in multiplications or complex activation 

functions
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Takeaway Questions

● What are the challenges of analog accelerators ?

○ (A) High ADC/DAC area and energy

○ (B) Limited parallelism

○ (C )Non-programmable
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