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tinyML Summit 2022
Miniature dreams can come true…

March 28-30, 2022
Hyatt Regency San Francisco Airport

https://www.tinyml.org/event/summit-2022/ 

The Best Product of the Year and the Best Innovation of the Year awards are open for 
nominations between November 15  and February 28. 

tinyML Research Symposium 2022
March 28, 2022

https://www.tinyml.org/event/research-symposium-2022 

More sponsorships are available: sponsorships@tinyML.org

https://www.tinyml.org/event/summit-2022/
https://www.tinyml.org/event/research-symposium-2022
mailto:sponsorships@tinyML.org


Join Growing tinyML Communities:

bb

tinyML - Enabling ultra-low Power ML at the Edge
https://www.meetup.com/tinyML-Enabling-ultra-low-Power-ML-at-the-Edge/

The tinyML Community
https://www.linkedin.com/groups/13694488/

7.7k members in
40 Groups in 33 Countries

2.5k members 
          &
4.3k followers

https://www.meetup.com/tinyML-Enabling-ultra-low-Power-ML-at-the-Edge/
https://www.linkedin.com/groups/13694488/


Subscribe to
tinyML YouTube Channel

for updates and notifications
(including this video)

www.youtube.com/tinyML 

5.8k subscribers, 320+ videos with 166k views 

http://www.youtube.com/tinyML


Next tinyML Talks

Date Presenter Topic / Title

Tuesday,
January 18

Ashutosh Pandey, 
Infineon Technologies

Exploring techniques to build efficient and 
robust TinyML deployments 

Webcast start time is 8:00 am Pacific time

Please contact talks@tinyml.org if you are interested in presenting

mailto:talks@tinyml.org


Reminders

youtube.com/tinyml

Slides & Videos will be posted 
tomorrow

tinyml.org/forums

Please use the Q&A window for your 
questions



Tim Callahan

  
  Tim Callahan works at Google with the open source FPGA toolchain 

(SymbiFlow) team. His work is to help make FPGA development more 
accessible, fun, and rewarding. His research interests include anything that 
involves optimizing the hardware/software boundary. He has degrees from 
UC Berkeley, Cambridge University, and the University of Minnesota.



CFU Playground

TinyML.org Talk
January 11, 2022
Tim Callahan, tcal@google.com presenting the work of many

Disclaimer: NOT an official Google project

It’s on GitHub: Fork it, fix it, send a PR!

Custom
Function
Unit

Customize Your ML Processor for 
Your Specific TinyML Model 

mailto:tcal@google.com
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Open Source Showcase!
● ML library TensorFlow Lite -- open source
● CPU ISA  RISC-V -- open
● CPU design VexRiscv -- open source
● FPGA SoC/IP  LiteX -- open source
● FPGA synth/PnR SymbiFlow,Yosys, -- open source

Nextpnr, VPR

○ FPGA vendor tools can be used if you wish

● Python HW gen Migen, nMigen -- open source
● Simulation Renode, Verilator -- open source

● The only proprietary component is the FPGA itself



Benefits of Open Source
● No licensing fees

● No license headaches in your build system

● You can fix bugs and address shortcomings

● No vendor lock-in

● Transparency -- open for inspection, both sw & hw

○ Do you trust a third-party blob of sw or hw 

integrated with your product?

→ see betrusted.io
“At its core lies not a CPU, but an FPGA, so that users are empowered to build their 
processors from scratch and know there are no flaws or backdoors in the 
architecture that could lead to security compromises.”

https://betrusted.io/


CFU Playground Key Ideas

● Specialize the entire stack for your particular model –

       both the ML kernels AND the processor 

● Make it easy to get started; allow quick iterations
→ rapid iterative design space exploration



FPGA – programmable hardware

A “bitstream” or “configuration”

● determines the function of each 
configurable logic block

● and sets switches in the 
interconnect to connect them to 
each other and to I/O

Image source: “Parallel Programming for 
FPGAs”, Ryan Kastner, Janarbek Matai, 
Stephen Neuendorffer (CC 4.0)



FPGA

USB 
Port



FPGA

CFU Playground System Architecture

Bus

Serial 
Port

RAM

RISC V 
CPU

Custom 
Function Unit

(CFU)

Host
Computer

Tensorflow Lite 
for 

Microcontrollers



CFU Playground -- some of the tested boards





CFU Playground Prerequisites:

● Linux host

● You will use:
○ git

○ C++ (mostly C)

○ Hardware design – Verilog or ???

■ unless you just want to experiment with CPU configuration

● A supported FPGA board
○ or you could just simulate with Renode or Verilator

Chisel
XLS

SystemVerilog

nMigen (Python)



CFU Playground Uses

● Deploy a soft CPU+CFU on FPGA for tinyML
■ Firmware updates include a new ML model, new software, and 

a new CPU+CFU

● Prototype a custom RISC-V-based ASIC
■ Yes you!  efabless.com MPW will fab your open-source chip

● Learn about ML software, hardware, and performance

● Research new ML approaches 
■ while co-designing the hardware to support it



The Hardware Lottery
● Sara Hooker’s observation 

that the success of new ML 

approaches depends on 

their compatibility with 

downstream software and 

hardware

● Here you can “make your 

own luck”!



RISC-V and CFU

Basics



The RISCV Add Instruction

00720C33    add x24,x4,x7    # x24 = x4 + x7



The RISCV Add Instruction

00720C33    add x24,x4,x7    # x24 = x4 + x7

0000000 00111 00100 000 11000 0110011



The RISCV Add Instruction

00720C33    add x24,x4,x7    # x24 = x4 + x7

0000000 00111 00100 000 11000 0110011

opcode

ALU



0000000 00111 00100 000 11000 0110011

opcode

ALU

 Register File 

ALU



0000000 00111 00100 000 11000 0110011

funct7 rs2 rs1 funct3 rd opcode

ADD x7 x4 ADD x24 ALU

 Register File 

ALU



0000000 00111 00100 000 11000 0110011

funct7 rs2 rs1 funct3 rd opcode

ADD x7 x4 ADD x24 ALU

 Register File 

ALU

rs2rs1

x4 x7



0000000 00111 00100 000 11000 0110011

funct7 rs2 rs1 funct3 rd opcode

ADD x7 x4 ADD x24 ALU

 Register File 

ALU

rs2rs1

funct3  ADD

funct7  ADD

x4 x7



0000000 00111 00100 000 11000 0110011

funct7 rs2 rs1 funct3 rd opcode

ADD x7 x4 ADD x24 ALU

 Register File 

ALU

x4 x7

rs2rs1

funct3  ADD

funct7  ADD

x24

rd



0000000 00111 00100 000 11000 0110011

funct7 rs2 rs1 funct3 rd opcode

ADD x7 x4 ADD x24 ALU

 Register File 

ALU

x4 x7

rs2rs1

funct3  ADD

funct7  ADD

x24

rd



0000000 00111 00100 000 11000 0001011

opcode

CUSTOM

 Register File 

ALU CFU



0000000 00111 00100 000 11000 0001011

funct7 rs2 rs1 funct3 rd opcode

CFUOP x7 x4 CFUOP x24 CUSTOM

 Register File 

ALU

x4 x7

rs2rs1

CFU



0000000 00111 00100 000 11000 0001011

funct7 rs2 rs1 funct3 rd opcode

CFUOP x7 x4 CFUOP x24 CUSTOM

 Register File 

ALU

x4 x7

rs2rs1

funct7  CFUOP CFU
funct3  CFUOP



0000000 00111 00100 000 11000 0001011

funct7 rs2 rs1 funct3 rd opcode

CFUOP x7 x4 CFUOP x24 CUSTOM

 Register File 

ALU

x4 x7

rs2rs1

funct7  CFUOP

x24

rd

CFU
funct3  CFUOP



0000000 00111 00100 000 11000 0001011

funct7 rs2 rs1 funct3 rd opcode

CFUOP x7 x4 CFUOP x24 CUSTOM

 Register File 

ALU

x4 x7

rs2rs1

funct7  CFUOP

x24

rd

CFU
funct3  CFUOP



CFU details

● Two operands from the regfile, one result written back

● Multiple/variable cycles; can refuse new inputs while working
→ pipelined or iterative computation

● NO direct connection between CFU & the memory hierarchy

● CFU cannot otherwise affect CPU state (branch etc.)

● CFU can contain state -- registers and memories that persist

● CFU can contain its own sequencer

● One CFU, multiple instructions that can access the shared state

 Register File 

ALU CFU



So how do we use the CFU?

● Do we build a nifty compiler?    NO!

● YOU are the compiler..it’s up to you to insert uses of your 

new instructions into the code

● After all, you’re the one who just designed the new 

instruction to speed up your code, so you know exactly 

where it will be used



How to use the CFU from software

● Access the new instruction using function call syntax:

rslt = cfu_op(funct3, funct7, op1, op2);

 Compile-time constants  C / C++ variables / expressions



How to use the CFU from software

● Access the new instruction using function call syntax:

rslt = cfu_op(funct3, funct7, op1, op2);

rslt = cfu_op(0, 1, op1, op2);

 Compile-time constants  C / C++ variables / expressions



How to use the CFU from software

● Access the new instruction using function call syntax:

rslt = cfu_op(funct3, funct7, op1, op2);

#define HAMMING_DISTANCE(x,y) cfu_op(0, 1, (x), (y));

rslt = HAMMING_DISTANCE(op1, op2);

 Compile-time constants  C / C++ variables / expressions



How to use the CFU from software
● Custom instruction macros intermix with regular C code:

t1 = *x;

t2 = cfu_op(0, 0, t1, b);

t3 = cfu_op(1, 0, t2, b);

*x = t3;

Compiled and disassembled:

400001a0:       00812783            lw        a5,8(sp)

400001a4:       00d7878b            cfu[0,0]  a5, a5, a3

400001a8:       00d7978b            cfu[0,1]  a5, a5, a3

400001ac:       00f12423            sw        a5,8(sp)

Objdump can’t disassemble the custom instructions, 

so we wrote a helper script..

No overhead!



Why use a CFU approach for tinyML?

● With ML inference, the hot spots are small & very hot

● A SMALL amount of custom hardware to exploit the bit-level 
flexibility of FPGA can accelerate a LARGE fraction of the runtime

● Leave complexity, setup, outer loops in SW

● Iterative approach: easy to take first step, then next step, …

● In our experience, the CFU will incrementally grow to become 
almost a full-blown “accelerator”



TensorFlow Lite

for Microcontrollers

(TFLM)



TensorFlow Lite for Microcontrollers

Conv2D(.....)
{
  if (filter.shape() is 1x1xC) {
     Conv2D_1x1(....)
     return;
  } 
  for ( … ) {
     for ( … ) {
       for ( … ) {
        ….
        }
     }
  }
}

All instances use 
the same kernel…

Conv2D_1x1(.....)
{
   for ( … ) {
     for ( … ) {
       for ( … ) {
        ….
        }
     }
  }
}

...but a kernel 
can dispatch to 
a specialized 
version

TFLite model

Conv2D

Depthwise 
Conv2D

Conv2D

Conv2D

Depthwise 
Conv2D

Depthwise 
Conv2D



CFU Playground



CFU Playground Build

$ cd proj/proj_template_v/ # establish project

$ make prog # build gateware using ./cfu.v

      and put the bitstream on the FPGA

$ make -j8 software # build software w/ local overrides

$ make load # load and execute the software

...then interact with the software running on the board

3.5min

<1min



--============= Liftoff! ===============--
Hello, World!

CFU Playground
==============
 1: TfLM Models menu
 2: Functional CFU Tests
 3: Project menu
 4: Performance Counter Tests
 5: TFLite Unit Tests
 6: Benchmarks
 7: Util Tests
main> 1

Running TfLM Models menu

TfLM Models
===========
 1: Person Detection int8 model
 2: Micro Speech
 3: MLCommons Tiny V0.1 Keyword Spotting
 x: eXit to previous menu
models> 3

Tests for kws model
===================
 0: Run with "down" input
 1: Run with "go" input
 2: Run with "left" input
 g: Run golden tests (check for expected outputs)
 x: eXit to previous menu
kws> g

Running Run golden tests (check for expected outputs)
...
 
Copied 490 bytes at 0x400dd590
Running kws
.............
"Event","Tag","Ticks"
0,CONV_2D,19841
1,DEPTHWISE_CONV_2D,4306
2,CONV_2D,11690
3,DEPTHWISE_CONV_2D,4226
4,CONV_2D,11662
5,DEPTHWISE_CONV_2D,4230
6,CONV_2D,11050
7,DEPTHWISE_CONV_2D,4757
8,CONV_2D,11905
9,AVERAGE_POOL_2D,237
10,RESHAPE,3
11,FULLY_CONNECTED,16
12,SOFTMAX,26
Perf counters not enabled.
    86M (    85996663) cycles total
OK   Golden tests passed



CFU Playground Development

● Start a new project by copying a template:
○ cp -r  proj/proj_template  proj/my_first_project

● Choose or bring the TFLite model

● Use built-in profiling to identify time-consuming TF ops

● Look at tensor shapes and other parameters,

find opportunities to specialize/simplify the kernel(s)

● Then, look for CFU acceleration opportunities
○ Design CFU, alter TFLM kernels to use the custom instructions

● Measure speedup, repeat!



Examples



Simple Example
 const int32_t input_offset = params.input_offset;  // r = s(q - Z)

  for (int batch = 0; batch < batches; ++batch) {
    for (int out_y = 0; out_y < output_height; ++out_y) {
      const int in_y_origin = (out_y * stride_height) - pad_height;
      for (int out_x = 0; out_x < output_width; ++out_x) {
        const int in_x_origin = (out_x * stride_width) - pad_width;
        for (int out_channel = 0; out_channel < output_depth; ++out_channel) {
          int32_t acc = 0;
          for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
            const int in_y = in_y_origin + dilation_height_factor * filter_y;
            for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
              const int in_x = in_x_origin + dilation_width_factor * filter_x;

              // Zero padding by omitting the areas outside the image.
              const bool is_point_inside_image =
                  (in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
                  (in_y < input_height);

              if (!is_point_inside_image) {
                continue;
              }

              for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
                int32_t input_val = input_data[Offset(input_shape, batch, in_y,
                                                      in_x, in_channel)];
                int32_t filter_val = filter_data[Offset(
                    filter_shape, out_channel, filter_y, filter_x, in_channel)];

                acc += filter_val * (input_val + input_offset);
              }
            }
          }
          (use acc)

This Conv2D kernel
consumes 76% of the 
execution time with model
“pdti8”, so go after the 
computation in the 
innermost loop.



 funct3

Simple Example

acc += filter_val * (input_val + input_offset) 

input_offset

acc

*

+

+

Loop invariant

decode

 rst

 enable

CFU

 in1

 in2



 funct3 

Simple Example

acc += filter_val * (input_val + input_offset) 

input_offset

acc

*

+

+

Loop invariant

decode

 in1

 rst

CFU

 //

 // The CFU computation

 //

 reg signed [31:0] input_offset;      // state

 reg signed [31:0] acc;               // state

 wire signed [31:0] filt_val = in1;

 wire signed [31:0] input_val = in2;

 wire signed [31:0] newacc = acc + (filt_val * (input_val + input_offset) );

 assign out = acc;

 always @(posedge clk) begin

   if (cmd_valid) begin

     if (funct3 == 3'b000) begin

       input_offset <= in1;

     end else if (funct3 == 3'b001) begin

       acc <= in1;

     end else if (funct3 == 3'b010) begin

       acc <= newacc;

     end

   end

 end

 in2
 enable

Verilog!



Simple Example

 const int32_t input_offset = params.input_offset;  // r = s(q - Z)

  // CFU: copy input_offset into the CFU

  cfu_op(0, 0, input_offset, 0);

  for (int batch = 0; batch < batches; ++batch) {
    for (int out_y = 0; out_y < output_height; ++out_y) {
      const int in_y_origin = (out_y * stride_height) - pad_height;
      for (int out_x = 0; out_x < output_width; ++out_x) {
        const int in_x_origin = (out_x * stride_width) - pad_width;
        for (int out_channel = 0; out_channel < output_depth; ++out_channel) {

          //int32_t acc = 0;

          // CFU: set the CFU internal acc to ZERO
          cfu_op(1, 0, 0, 0);

          for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
            const int in_y = in_y_origin + dilation_height_factor * filter_y;
            for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
              const int in_x = in_x_origin + dilation_width_factor * filter_x;

              ...

              for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
                int32_t input_val = input_data[Offset(input_shape, batch, in_y,
                                                      in_x, in_channel)];
                int32_t filter_val = filter_data[Offset(
                    filter_shape, out_channel, filter_y, filter_x, in_channel)];

                // acc += filter_val * (input_val + input_offset);

                // CFU: add-multiply-accumulate in the CFU
                cfu_op(2, 0, filter_val, input_val);
              }
            }
          }

          // CFU: retrieve final acc value from the CFU
          int32_t acc = cfu_op(3, 0, 0, 0);

31% cycle reduction for CONV_2D
24% cycle reduction overall
(model “pdti8”)



Simple Example

 const int32_t input_offset = params.input_offset;  // r = s(q - Z)

  // CFU: copy input_offset into the CFU

  cfu_init_offset(input_offset);

  for (int batch = 0; batch < batches; ++batch) {
    for (int out_y = 0; out_y < output_height; ++out_y) {
      const int in_y_origin = (out_y * stride_height) - pad_height;
      for (int out_x = 0; out_x < output_width; ++out_x) {
        const int in_x_origin = (out_x * stride_width) - pad_width;
        for (int out_channel = 0; out_channel < output_depth; ++out_channel) {

          //int32_t acc = 0;

          // CFU: set the CFU internal acc to ZERO
          cfu_clear_acc();

          for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
            const int in_y = in_y_origin + dilation_height_factor * filter_y;
            for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
              const int in_x = in_x_origin + dilation_width_factor * filter_x;

              ...

              for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
                int32_t input_val = input_data[Offset(input_shape, batch, in_y,
                                                      in_x, in_channel)];
                int32_t filter_val = filter_data[Offset(
                    filter_shape, out_channel, filter_y, filter_x, in_channel)];

                // acc += filter_val * (input_val + input_offset);

                // CFU: add-multiply-accumulate in the CFU
                cfu_macc_with_offset(filter_val, input_val);
              }
            }
          }

          // CFU: retrieve final acc value from the CFU
          int32_t acc = cfu_get_acc();

31% cycle reduction for CONV_2D
24% cycle reduction overall
(model “pdti8”)

Add aliases for the 
custom instructions, 
for readability



 cmd_valid

 function_id

Typical CFU evolution

acc += filter_val * (input_val + input_offset) 

input_offset

acc

*

+

+

Loop invariant

decode

 operands

 rst

 en



Typical CFU evolution

acc += filter_val * (input_val + input_offset) 

input_offset

acc

*

+

+

Loop invariant

+++
* * *

Exploit SIMD

4x 8b vals

4x 8b vals

 function_id
decode

 cmd_valid



 function_id
decode +++

Typical CFU evolution

acc += filter_val * (input_val + input_offset) 

+
input_offset

acc

*

+

Loop invariant

+
******

8x 8b vals

Filter 
weights, 
addr gen ++ Move re-used 

data (filter 
weights) into 
the CFU

 cmd_valid



Typical CFU evolution

And after a few more iterations, you’ve added:

● Local memories for both input_vals and filter_vals
● Increased MACC parallelism
● Sequencer for complete matrix x vector computation
● Activation function & scaling 
● Double buffering at input and output buffers to pipeline 

data transfer and computation



Typical CFU evolution



MobileNet v2 

Before speeding up conv_2d (1x1):

Totals

                       SOFTMAX         11510   (0.0M)
                       RESHAPE         21887   (0.0M)
               FULLY_CONNECTED         48284   (0.0M)
               AVERAGE_POOL_2D        487497   (0.5M)
                           ADD       4564330   (4.6M)
                           MUL       7236662   (7.2M)
                           SUB      16517877   (16.5M)
                   CONV_2D_3x3      95241303   (95.2M)
             DEPTHWISE_CONV_2D     197214007   (197.2M)
                   CONV_2D_1x1     559817289   (559.8M)



MobileNet v2 

55x speedup!
(on just conv2d 1x1)

But Amdahl’s law…
overall speedup is just 
2.8x



MobileNet v2 

After speeding up conv_2d (1x1):

Totals

                       SOFTMAX         11503   (0.0M)
                       RESHAPE         21886   (0.0M)
               FULLY_CONNECTED         50183   (0.1M)
               AVERAGE_POOL_2D        494322   (0.5M)
                           ADD       4577562   (4.6M)
                           MUL       7233115   (7.2M)
                   CONV_2D_1x1      10263213   (10.3M)
                           SUB      16517493   (16.5M)
                   CONV_2D_3x3      76621863   (76.6M)
             DEPTHWISE_CONV_2D     199485469   (199.5M)

Originally 
560M



Example #2

Keyword Spotting

on Fomu



Proprietary + Confidential

About my Intern Joey Bushagour’s project 

● Adding support for tiny 
FPGAs in CFU-Playground

● Fitting TensorFlow Lite for 
Microcontrollers on tiny 
FPGAs

● Making inference on tiny 
FPGAs faster

fomu.im



How it started: How it's going:

75× speedup on model inference

How it started:



Proprietary + Confidential

Optimization: Use CFU SIMD MAC in TFLM ops

Cumulative speedup: 32.10x

● Convolution and depthwise 
convolution are mostly multiply and 
accumulate

● Sometimes these 8 bit multiply and 
accumulates are contiguous in 
memory 

● Our registers are 32 bits wide, we 
can vectorize where possible



Proprietary + Confidential

Title



Proprietary + Confidential

What's left

● We have 75× speedup

● If we could find room to fit a branch 
predictor and bypass we'd have 
102× 

● Optimizing depthwise convolution 
more



Wrap up



Generating hardware from Python?

● Yes!  We used nMigen (now “Amaranth HDL”) to build our large 
CFUs.

● It is a Python library for generating HW 

● You still need to understand HW

● But you can use Python conveniences (functions, loops, 
dictionaries, etc)

● Google “pyconline au 2021 cfu” to find Alan’s presentation on 
YouTube.



Join In The Fun
Clone it: github.com/google/CFU-Playground

- plenty of sample code and models to accelerate
- works with many LiteX supported boards (check the 

wiki!)

Docs: cfu-playground.readthedocs.io  
- introductions to nmigen, step-by-step guides, detailed 

documentation

Contact us:
- raise a github issue
- mail us: tcal@google.com, avg@google.com 
- chat us: https://gitter.im/CFU-Playground/community 

https://github.com/google/CFU-Playground
https://cfu-playground.readthedocs.io/en/latest/
mailto:tcal@google.com
mailto:avg@google.com
https://gitter.im/CFU-Playground/community


End
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