
“CFU Playground: Customize Your ML Processor for Your
Specific TinyML Model”

Tim Callahan - Google

January 11, 2022

2

Additional Sponsorships available – contact Olga@tinyML.org for info

tinyML Talks Strategic Partners

mailto:Bette@tinyML.org

Executive Strategic Partners

76

Dataset

Test

Device

The leading edge ML platform

www.edgeimpulse.com

Impulse

Platinum Strategic Partners

81

83

Gold Strategic Partners

86

89

90

93

95

Silver Strategic Partners

tinyML Summit 2022
Miniature dreams can come true…

March 28-30, 2022
Hyatt Regency San Francisco Airport

https://www.tinyml.org/event/summit-2022/

The Best Product of the Year and the Best Innovation of the Year awards are open for
nominations between November 15 and February 28.

tinyML Research Symposium 2022
March 28, 2022

https://www.tinyml.org/event/research-symposium-2022

More sponsorships are available: sponsorships@tinyML.org

https://www.tinyml.org/event/summit-2022/
https://www.tinyml.org/event/research-symposium-2022
mailto:sponsorships@tinyML.org

Join Growing tinyML Communities:

bb

tinyML - Enabling ultra-low Power ML at the Edge
https://www.meetup.com/tinyML-Enabling-ultra-low-Power-ML-at-the-Edge/

The tinyML Community
https://www.linkedin.com/groups/13694488/

7.7k members in
40 Groups in 33 Countries

2.5k members
 &
4.3k followers

https://www.meetup.com/tinyML-Enabling-ultra-low-Power-ML-at-the-Edge/
https://www.linkedin.com/groups/13694488/

Subscribe to
tinyML YouTube Channel

for updates and notifications
(including this video)

www.youtube.com/tinyML

5.8k subscribers, 320+ videos with 166k views

http://www.youtube.com/tinyML

Next tinyML Talks

Date Presenter Topic / Title

Tuesday,
January 18

Ashutosh Pandey,
Infineon Technologies

Exploring techniques to build efficient and
robust TinyML deployments

Webcast start time is 8:00 am Pacific time

Please contact talks@tinyml.org if you are interested in presenting

mailto:talks@tinyml.org

Reminders

youtube.com/tinyml

Slides & Videos will be posted
tomorrow

tinyml.org/forums

Please use the Q&A window for your
questions

Tim Callahan

 Tim Callahan works at Google with the open source FPGA toolchain

(SymbiFlow) team. His work is to help make FPGA development more
accessible, fun, and rewarding. His research interests include anything that
involves optimizing the hardware/software boundary. He has degrees from
UC Berkeley, Cambridge University, and the University of Minnesota.

CFU Playground

TinyML.org Talk
January 11, 2022
Tim Callahan, tcal@google.com presenting the work of many

Disclaimer: NOT an official Google project

It’s on GitHub: Fork it, fix it, send a PR!

Custom
Function
Unit

Customize Your ML Processor for
Your Specific TinyML Model

mailto:tcal@google.com

Acknowledgements

Googlers: Alan Green, David Lattimore, Dan Callaghan,
 Tim Ansell,
 Interns Rachel Sugrono & Joey Bushagour

 TFLM (Pete Warden and team)

Antmicro

Harvard: Prof Vijay Reddi, Shvetank Prakash, Colby Banbury

Open source: VexRiscv , LiteX, SymbiFlow, Yosys, Nextpnr,
 VTR, Migen, nMigen, Renode, Verilator, OpenOCD, ..

Open Source Showcase!
● ML library TensorFlow Lite -- open source
● CPU ISA RISC-V -- open
● CPU design VexRiscv -- open source
● FPGA SoC/IP LiteX -- open source
● FPGA synth/PnR SymbiFlow,Yosys, -- open source

Nextpnr, VPR

○ FPGA vendor tools can be used if you wish

● Python HW gen Migen, nMigen -- open source
● Simulation Renode, Verilator -- open source

● The only proprietary component is the FPGA itself

Benefits of Open Source
● No licensing fees

● No license headaches in your build system

● You can fix bugs and address shortcomings

● No vendor lock-in

● Transparency -- open for inspection, both sw & hw

○ Do you trust a third-party blob of sw or hw

integrated with your product?

→ see betrusted.io
“At its core lies not a CPU, but an FPGA, so that users are empowered to build their
processors from scratch and know there are no flaws or backdoors in the
architecture that could lead to security compromises.”

https://betrusted.io/

CFU Playground Key Ideas

● Specialize the entire stack for your particular model –

 both the ML kernels AND the processor

● Make it easy to get started; allow quick iterations
→ rapid iterative design space exploration

FPGA – programmable hardware

A “bitstream” or “configuration”

● determines the function of each
configurable logic block

● and sets switches in the
interconnect to connect them to
each other and to I/O

Image source: “Parallel Programming for
FPGAs”, Ryan Kastner, Janarbek Matai,
Stephen Neuendorffer (CC 4.0)

FPGA

USB
Port

FPGA

CFU Playground System Architecture

Bus

Serial
Port

RAM

RISC V
CPU

Custom
Function Unit

(CFU)

Host
Computer

Tensorflow Lite
for

Microcontrollers

CFU Playground -- some of the tested boards

CFU Playground Prerequisites:

● Linux host

● You will use:
○ git

○ C++ (mostly C)

○ Hardware design – Verilog or ???

■ unless you just want to experiment with CPU configuration

● A supported FPGA board
○ or you could just simulate with Renode or Verilator

Chisel
XLS

SystemVerilog

nMigen (Python)

CFU Playground Uses

● Deploy a soft CPU+CFU on FPGA for tinyML
■ Firmware updates include a new ML model, new software, and

a new CPU+CFU

● Prototype a custom RISC-V-based ASIC
■ Yes you! efabless.com MPW will fab your open-source chip

● Learn about ML software, hardware, and performance

● Research new ML approaches
■ while co-designing the hardware to support it

The Hardware Lottery
● Sara Hooker’s observation

that the success of new ML

approaches depends on

their compatibility with

downstream software and

hardware

● Here you can “make your

own luck”!

RISC-V and CFU

Basics

The RISCV Add Instruction

00720C33 add x24,x4,x7 # x24 = x4 + x7

The RISCV Add Instruction

00720C33 add x24,x4,x7 # x24 = x4 + x7

0000000 00111 00100 000 11000 0110011

The RISCV Add Instruction

00720C33 add x24,x4,x7 # x24 = x4 + x7

0000000 00111 00100 000 11000 0110011

opcode

ALU

0000000 00111 00100 000 11000 0110011

opcode

ALU

 Register File

ALU

0000000 00111 00100 000 11000 0110011

funct7 rs2 rs1 funct3 rd opcode

ADD x7 x4 ADD x24 ALU

 Register File

ALU

0000000 00111 00100 000 11000 0110011

funct7 rs2 rs1 funct3 rd opcode

ADD x7 x4 ADD x24 ALU

 Register File

ALU

rs2rs1

x4 x7

0000000 00111 00100 000 11000 0110011

funct7 rs2 rs1 funct3 rd opcode

ADD x7 x4 ADD x24 ALU

 Register File

ALU

rs2rs1

funct3 ADD

funct7 ADD

x4 x7

0000000 00111 00100 000 11000 0110011

funct7 rs2 rs1 funct3 rd opcode

ADD x7 x4 ADD x24 ALU

 Register File

ALU

x4 x7

rs2rs1

funct3 ADD

funct7 ADD

x24

rd

0000000 00111 00100 000 11000 0110011

funct7 rs2 rs1 funct3 rd opcode

ADD x7 x4 ADD x24 ALU

 Register File

ALU

x4 x7

rs2rs1

funct3 ADD

funct7 ADD

x24

rd

0000000 00111 00100 000 11000 0001011

opcode

CUSTOM

 Register File

ALU CFU

0000000 00111 00100 000 11000 0001011

funct7 rs2 rs1 funct3 rd opcode

CFUOP x7 x4 CFUOP x24 CUSTOM

 Register File

ALU

x4 x7

rs2rs1

CFU

0000000 00111 00100 000 11000 0001011

funct7 rs2 rs1 funct3 rd opcode

CFUOP x7 x4 CFUOP x24 CUSTOM

 Register File

ALU

x4 x7

rs2rs1

funct7 CFUOP CFU
funct3 CFUOP

0000000 00111 00100 000 11000 0001011

funct7 rs2 rs1 funct3 rd opcode

CFUOP x7 x4 CFUOP x24 CUSTOM

 Register File

ALU

x4 x7

rs2rs1

funct7 CFUOP

x24

rd

CFU
funct3 CFUOP

0000000 00111 00100 000 11000 0001011

funct7 rs2 rs1 funct3 rd opcode

CFUOP x7 x4 CFUOP x24 CUSTOM

 Register File

ALU

x4 x7

rs2rs1

funct7 CFUOP

x24

rd

CFU
funct3 CFUOP

CFU details

● Two operands from the regfile, one result written back

● Multiple/variable cycles; can refuse new inputs while working
→ pipelined or iterative computation

● NO direct connection between CFU & the memory hierarchy

● CFU cannot otherwise affect CPU state (branch etc.)

● CFU can contain state -- registers and memories that persist

● CFU can contain its own sequencer

● One CFU, multiple instructions that can access the shared state

 Register File

ALU CFU

So how do we use the CFU?

● Do we build a nifty compiler? NO!

● YOU are the compiler..it’s up to you to insert uses of your

new instructions into the code

● After all, you’re the one who just designed the new

instruction to speed up your code, so you know exactly

where it will be used

How to use the CFU from software

● Access the new instruction using function call syntax:

rslt = cfu_op(funct3, funct7, op1, op2);

 Compile-time constants C / C++ variables / expressions

How to use the CFU from software

● Access the new instruction using function call syntax:

rslt = cfu_op(funct3, funct7, op1, op2);

rslt = cfu_op(0, 1, op1, op2);

 Compile-time constants C / C++ variables / expressions

How to use the CFU from software

● Access the new instruction using function call syntax:

rslt = cfu_op(funct3, funct7, op1, op2);

#define HAMMING_DISTANCE(x,y) cfu_op(0, 1, (x), (y));

rslt = HAMMING_DISTANCE(op1, op2);

 Compile-time constants C / C++ variables / expressions

How to use the CFU from software
● Custom instruction macros intermix with regular C code:

t1 = *x;

t2 = cfu_op(0, 0, t1, b);

t3 = cfu_op(1, 0, t2, b);

*x = t3;

Compiled and disassembled:

400001a0: 00812783 lw a5,8(sp)

400001a4: 00d7878b cfu[0,0] a5, a5, a3

400001a8: 00d7978b cfu[0,1] a5, a5, a3

400001ac: 00f12423 sw a5,8(sp)

Objdump can’t disassemble the custom instructions,

so we wrote a helper script..

No overhead!

Why use a CFU approach for tinyML?

● With ML inference, the hot spots are small & very hot

● A SMALL amount of custom hardware to exploit the bit-level
flexibility of FPGA can accelerate a LARGE fraction of the runtime

● Leave complexity, setup, outer loops in SW

● Iterative approach: easy to take first step, then next step, …

● In our experience, the CFU will incrementally grow to become
almost a full-blown “accelerator”

TensorFlow Lite

for Microcontrollers

(TFLM)

TensorFlow Lite for Microcontrollers

Conv2D(.....)
{
 if (filter.shape() is 1x1xC) {
 Conv2D_1x1(....)
 return;
 }
 for (…) {
 for (…) {
 for (…) {
 ….
 }
 }
 }
}

All instances use
the same kernel…

Conv2D_1x1(.....)
{
 for (…) {
 for (…) {
 for (…) {
 ….
 }
 }
 }
}

...but a kernel
can dispatch to
a specialized
version

TFLite model

Conv2D

Depthwise
Conv2D

Conv2D

Conv2D

Depthwise
Conv2D

Depthwise
Conv2D

CFU Playground

CFU Playground Build

$ cd proj/proj_template_v/ # establish project

$ make prog # build gateware using ./cfu.v

 and put the bitstream on the FPGA

$ make -j8 software # build software w/ local overrides

$ make load # load and execute the software

...then interact with the software running on the board

3.5min

<1min

--============= Liftoff! ===============--
Hello, World!

CFU Playground
==============
 1: TfLM Models menu
 2: Functional CFU Tests
 3: Project menu
 4: Performance Counter Tests
 5: TFLite Unit Tests
 6: Benchmarks
 7: Util Tests
main> 1

Running TfLM Models menu

TfLM Models
===========
 1: Person Detection int8 model
 2: Micro Speech
 3: MLCommons Tiny V0.1 Keyword Spotting
 x: eXit to previous menu
models> 3

Tests for kws model
===================
 0: Run with "down" input
 1: Run with "go" input
 2: Run with "left" input
 g: Run golden tests (check for expected outputs)
 x: eXit to previous menu
kws> g

Running Run golden tests (check for expected outputs)
...

Copied 490 bytes at 0x400dd590
Running kws
.............
"Event","Tag","Ticks"
0,CONV_2D,19841
1,DEPTHWISE_CONV_2D,4306
2,CONV_2D,11690
3,DEPTHWISE_CONV_2D,4226
4,CONV_2D,11662
5,DEPTHWISE_CONV_2D,4230
6,CONV_2D,11050
7,DEPTHWISE_CONV_2D,4757
8,CONV_2D,11905
9,AVERAGE_POOL_2D,237
10,RESHAPE,3
11,FULLY_CONNECTED,16
12,SOFTMAX,26
Perf counters not enabled.
 86M (85996663) cycles total
OK Golden tests passed

CFU Playground Development

● Start a new project by copying a template:
○ cp -r proj/proj_template proj/my_first_project

● Choose or bring the TFLite model

● Use built-in profiling to identify time-consuming TF ops

● Look at tensor shapes and other parameters,

find opportunities to specialize/simplify the kernel(s)

● Then, look for CFU acceleration opportunities
○ Design CFU, alter TFLM kernels to use the custom instructions

● Measure speedup, repeat!

Examples

Simple Example
 const int32_t input_offset = params.input_offset; // r = s(q - Z)

 for (int batch = 0; batch < batches; ++batch) {
 for (int out_y = 0; out_y < output_height; ++out_y) {
 const int in_y_origin = (out_y * stride_height) - pad_height;
 for (int out_x = 0; out_x < output_width; ++out_x) {
 const int in_x_origin = (out_x * stride_width) - pad_width;
 for (int out_channel = 0; out_channel < output_depth; ++out_channel) {
 int32_t acc = 0;
 for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
 const int in_y = in_y_origin + dilation_height_factor * filter_y;
 for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
 const int in_x = in_x_origin + dilation_width_factor * filter_x;

 // Zero padding by omitting the areas outside the image.
 const bool is_point_inside_image =
 (in_x >= 0) && (in_x < input_width) && (in_y >= 0) &&
 (in_y < input_height);

 if (!is_point_inside_image) {
 continue;
 }

 for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
 int32_t input_val = input_data[Offset(input_shape, batch, in_y,
 in_x, in_channel)];
 int32_t filter_val = filter_data[Offset(
 filter_shape, out_channel, filter_y, filter_x, in_channel)];

 acc += filter_val * (input_val + input_offset);
 }
 }
 }
 (use acc)

This Conv2D kernel
consumes 76% of the
execution time with model
“pdti8”, so go after the
computation in the
innermost loop.

 funct3

Simple Example

acc += filter_val * (input_val + input_offset)

input_offset

acc

*

+

+

Loop invariant

decode

 rst

 enable

CFU

 in1

 in2

 funct3

Simple Example

acc += filter_val * (input_val + input_offset)

input_offset

acc

*

+

+

Loop invariant

decode

 in1

 rst

CFU

 //

 // The CFU computation

 //

 reg signed [31:0] input_offset; // state

 reg signed [31:0] acc; // state

 wire signed [31:0] filt_val = in1;

 wire signed [31:0] input_val = in2;

 wire signed [31:0] newacc = acc + (filt_val * (input_val + input_offset));

 assign out = acc;

 always @(posedge clk) begin

 if (cmd_valid) begin

 if (funct3 == 3'b000) begin

 input_offset <= in1;

 end else if (funct3 == 3'b001) begin

 acc <= in1;

 end else if (funct3 == 3'b010) begin

 acc <= newacc;

 end

 end

 end

 in2
 enable

Verilog!

Simple Example

 const int32_t input_offset = params.input_offset; // r = s(q - Z)

 // CFU: copy input_offset into the CFU

 cfu_op(0, 0, input_offset, 0);

 for (int batch = 0; batch < batches; ++batch) {
 for (int out_y = 0; out_y < output_height; ++out_y) {
 const int in_y_origin = (out_y * stride_height) - pad_height;
 for (int out_x = 0; out_x < output_width; ++out_x) {
 const int in_x_origin = (out_x * stride_width) - pad_width;
 for (int out_channel = 0; out_channel < output_depth; ++out_channel) {

 //int32_t acc = 0;

 // CFU: set the CFU internal acc to ZERO
 cfu_op(1, 0, 0, 0);

 for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
 const int in_y = in_y_origin + dilation_height_factor * filter_y;
 for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
 const int in_x = in_x_origin + dilation_width_factor * filter_x;

 ...

 for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
 int32_t input_val = input_data[Offset(input_shape, batch, in_y,
 in_x, in_channel)];
 int32_t filter_val = filter_data[Offset(
 filter_shape, out_channel, filter_y, filter_x, in_channel)];

 // acc += filter_val * (input_val + input_offset);

 // CFU: add-multiply-accumulate in the CFU
 cfu_op(2, 0, filter_val, input_val);
 }
 }
 }

 // CFU: retrieve final acc value from the CFU
 int32_t acc = cfu_op(3, 0, 0, 0);

31% cycle reduction for CONV_2D
24% cycle reduction overall
(model “pdti8”)

Simple Example

 const int32_t input_offset = params.input_offset; // r = s(q - Z)

 // CFU: copy input_offset into the CFU

 cfu_init_offset(input_offset);

 for (int batch = 0; batch < batches; ++batch) {
 for (int out_y = 0; out_y < output_height; ++out_y) {
 const int in_y_origin = (out_y * stride_height) - pad_height;
 for (int out_x = 0; out_x < output_width; ++out_x) {
 const int in_x_origin = (out_x * stride_width) - pad_width;
 for (int out_channel = 0; out_channel < output_depth; ++out_channel) {

 //int32_t acc = 0;

 // CFU: set the CFU internal acc to ZERO
 cfu_clear_acc();

 for (int filter_y = 0; filter_y < filter_height; ++filter_y) {
 const int in_y = in_y_origin + dilation_height_factor * filter_y;
 for (int filter_x = 0; filter_x < filter_width; ++filter_x) {
 const int in_x = in_x_origin + dilation_width_factor * filter_x;

 ...

 for (int in_channel = 0; in_channel < input_depth; ++in_channel) {
 int32_t input_val = input_data[Offset(input_shape, batch, in_y,
 in_x, in_channel)];
 int32_t filter_val = filter_data[Offset(
 filter_shape, out_channel, filter_y, filter_x, in_channel)];

 // acc += filter_val * (input_val + input_offset);

 // CFU: add-multiply-accumulate in the CFU
 cfu_macc_with_offset(filter_val, input_val);
 }
 }
 }

 // CFU: retrieve final acc value from the CFU
 int32_t acc = cfu_get_acc();

31% cycle reduction for CONV_2D
24% cycle reduction overall
(model “pdti8”)

Add aliases for the
custom instructions,
for readability

 cmd_valid

 function_id

Typical CFU evolution

acc += filter_val * (input_val + input_offset)

input_offset

acc

*

+

+

Loop invariant

decode

 operands

 rst

 en

Typical CFU evolution

acc += filter_val * (input_val + input_offset)

input_offset

acc

*

+

+

Loop invariant

+++
* * *

Exploit SIMD

4x 8b vals

4x 8b vals

 function_id
decode

 cmd_valid

 function_id
decode +++

Typical CFU evolution

acc += filter_val * (input_val + input_offset)

+
input_offset

acc

*

+

Loop invariant

+

8x 8b vals

Filter
weights,
addr gen ++ Move re-used

data (filter
weights) into
the CFU

 cmd_valid

Typical CFU evolution

And after a few more iterations, you’ve added:

● Local memories for both input_vals and filter_vals
● Increased MACC parallelism
● Sequencer for complete matrix x vector computation
● Activation function & scaling
● Double buffering at input and output buffers to pipeline

data transfer and computation

Typical CFU evolution

MobileNet v2

Before speeding up conv_2d (1x1):

Totals

 SOFTMAX 11510 (0.0M)
 RESHAPE 21887 (0.0M)
 FULLY_CONNECTED 48284 (0.0M)
 AVERAGE_POOL_2D 487497 (0.5M)
 ADD 4564330 (4.6M)
 MUL 7236662 (7.2M)
 SUB 16517877 (16.5M)
 CONV_2D_3x3 95241303 (95.2M)
 DEPTHWISE_CONV_2D 197214007 (197.2M)
 CONV_2D_1x1 559817289 (559.8M)

MobileNet v2

55x speedup!
(on just conv2d 1x1)

But Amdahl’s law…
overall speedup is just
2.8x

MobileNet v2

After speeding up conv_2d (1x1):

Totals

 SOFTMAX 11503 (0.0M)
 RESHAPE 21886 (0.0M)
 FULLY_CONNECTED 50183 (0.1M)
 AVERAGE_POOL_2D 494322 (0.5M)
 ADD 4577562 (4.6M)
 MUL 7233115 (7.2M)
 CONV_2D_1x1 10263213 (10.3M)
 SUB 16517493 (16.5M)
 CONV_2D_3x3 76621863 (76.6M)
 DEPTHWISE_CONV_2D 199485469 (199.5M)

Originally
560M

Example #2

Keyword Spotting

on Fomu

Proprietary + Confidential

About my Intern Joey Bushagour’s project

● Adding support for tiny
FPGAs in CFU-Playground

● Fitting TensorFlow Lite for
Microcontrollers on tiny
FPGAs

● Making inference on tiny
FPGAs faster

fomu.im

How it started: How it's going:

75× speedup on model inference

How it started:

Proprietary + Confidential

Optimization: Use CFU SIMD MAC in TFLM ops

Cumulative speedup: 32.10x

● Convolution and depthwise
convolution are mostly multiply and
accumulate

● Sometimes these 8 bit multiply and
accumulates are contiguous in
memory

● Our registers are 32 bits wide, we
can vectorize where possible

Proprietary + Confidential

Title

Proprietary + Confidential

What's left

● We have 75× speedup

● If we could find room to fit a branch
predictor and bypass we'd have
102×

● Optimizing depthwise convolution
more

Wrap up

Generating hardware from Python?

● Yes! We used nMigen (now “Amaranth HDL”) to build our large
CFUs.

● It is a Python library for generating HW

● You still need to understand HW

● But you can use Python conveniences (functions, loops,
dictionaries, etc)

● Google “pyconline au 2021 cfu” to find Alan’s presentation on
YouTube.

Join In The Fun
Clone it: github.com/google/CFU-Playground

- plenty of sample code and models to accelerate
- works with many LiteX supported boards (check the

wiki!)

Docs: cfu-playground.readthedocs.io
- introductions to nmigen, step-by-step guides, detailed

documentation

Contact us:
- raise a github issue
- mail us: tcal@google.com, avg@google.com
- chat us: https://gitter.im/CFU-Playground/community

https://github.com/google/CFU-Playground
https://cfu-playground.readthedocs.io/en/latest/
mailto:tcal@google.com
mailto:avg@google.com
https://gitter.im/CFU-Playground/community

End

Copyright Notice

This multimedia file is copyright © 2022 by tinyML Foundation.
All rights reserved. It may not be duplicated or distributed in any
form without prior written approval.

tinyML® is a registered trademark of the tinyML Foundation.

www.tinyml.org

Copyright Notice
This presentation in this publication was presented as a tinyML® Talks webcast. The content reflects the
opinion of the author(s) and their respective companies. The inclusion of presentations in this
publication does not constitute an endorsement by tinyML Foundation or the sponsors.

There is no copyright protection claimed by this publication. However, each presentation is the work of
the authors and their respective companies and may contain copyrighted material. As such, it is strongly
encouraged that any use reflect proper acknowledgement to the appropriate source. Any questions
regarding the use of any materials presented should be directed to the author(s) or their companies.

tinyML is a registered trademark of the tinyML Foundation.

www.tinyML.org

