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Outline

• GPU Memory Space
• Global memory
• Shared memory
• Texture memory
• Constant memory

• Tensor Core
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GPU Memory Spaces 
• Global memory

• Device DRAM, shared across blocks

• Local memory
• Reside in global memory
• Store variable data consuming too many 

registers (register spilling)

• Shared memory
• On-chip addressable memory
• Direct mapped

• Constant/Texture memory
• Read-only memory

• Register File
• Each thread has its private register space
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Global Memory 
• Global memory resides in off-chip DRAM

• Global memory is accessed via 32, 64, 128 byte memory transaction

• Misaligned/uncoalescing memory increases # of memory transaction 
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void kernel_copy(float *out, float *in, 
int offset) 
{

int i = blockIdx.x * blockDim.x + 
threadIdx.x + offset;

out[i] = in[i];
}

What’s wrong when offset > 1 ?

Coalesced/aligned memory access

Memory Divergent access

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Built-in align variable: 
__align__(int mem_byte)



Memory Coalescing 

• Coalesced access
• If all threads in a warp access locations that fall within a 

single L1 data cache block and that block is not present in 
the cache

• Only a single request needs to be sent to the lower level 
caches

• Un-coalesced access
• If the threads within a warp access different cache blocks
• Multiple memory accesses need to be generated
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Memory Coalescing 

• Combining memory access of threads in a warp into 
fewer transactions

• E.g. Each thread in a warp accesses consecutive 4-byte 
memory

• Send one 128-byte request to DRAM (Coalescing)
• Instead of 32 4-byte requests

• Coalescing reduces the number of transactions 
between SIMT cores and DRAM

• Less work for interconnect, memory partition, and DRAM

7



Memory Coalescing 
• Supposed that a 3 x 4 matrix is shown :
• Which one is coalescing access pattern ?

• Pattern B is coalescing access pattern
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1   2   3   4
5   6   7   8
9   a   b   c

Thread 0: 1, 2, 3
Thread 1: 4, 5, 6
Thread 2: 7, 8, 9
Thread 3: a, b, c

Thread 0: 1, 5, 9
Thread 1: 2, 6, a
Thread 2: 3, 7, b
Thread 3: 4, 8, c

Time Time

Pattern A Pattern B



Local Memory
• Off-chip memory
• High latency and low bandwidth as the global memory
• When will use the local memory ?

• Large structure or array that use too much register space
• A kernel uses too many register than available (register 

spilling)
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Data Cache & Shared Memory

• A memory access request is first sent from the load/store unit 
inside the instruction pipeline to the L1 cache
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Shared Memory
• 32 banks organized as 32-bit successive words

• Threads share data in the same thread block

• Programmer-managed on-chip cache

• Bank conflict
• Two or more threads access words within the 

same bank
• Serialized memory access (low memory bandwidth)

• Which one is bank conflict ?
• float i_data = shared[base + S * tid]; S = 3
• float i_data = shared[base + S * tid]; S = 2
• double i_data = shared[base + tid]
• char i_data = shared[base + tid] 11

Which one is bank conflict ?



How to Resolve Bank Conflict ?
• Shared memory size is 16 x 16

• Each thread takes charge of each row operation

• Threads in one block access the same location
(each column) -> 16-way bank conflict

• Solution ?
• memory padding 
• Add one float at the end of each row
• Changing access pattern
• __shared__ sData[TILE_SIZE][TILE_SIZE + 1]
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Memory padding (blue column)

http://cuda-programming.blogspot.com/2013/02/bank-conflicts-in-shared-memory-in-cuda.html

Time



How to Resolve Bank Conflict ?

• Memory padding is one of solution to remove shared memory 
bank conflict

• __shared__ a[32][32] -> __shared__ a[32][33]
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Shared memory access

• Arbiter
• Determine whether the 

requested addresses 
within the warp will
cause bank conflict

• Split the request into two
parts when the bank
conflicts show

• Accepted request
• Bypass tag lookup in the

tag unit, since shared
memory is direct mapped
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Shared memory access

• In the absence of bank conflict
• The latency of the direct mapped memory 

lookup is constant (single-cycle)
• The tag unit determines which bank each 

thread’s request maps to
• The address cross bar distributes address 

to the individual banks within the data array
• Each bank inside the data array is 32-bits wide
• Each bank has its own decoder allowing from independent access to 

different rows in each bank
• The data is returned to the appropriate thread’s lane for storage in the 

register file via the data crossbar 
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L1 Data Cache Read

• Access to global memory is restricted 
to a single cache block per cycle -> 
help to reduce tag storage overhead

• The L1 cache block size is 128 bytes, 
is further divided into four 32-byte 
sectors

• A single access of GDDR5 is 32-byte

• Each 128-byte cache block is composed of 32-bit entries at the 
same row in each of the 32 banks
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L1 Data Cache Read

• 1) The LD/ST unit 
• Computes memory addresses

• 2) The arbiter 
• Requests the instruction pipeline schedule 

a writeback to the register file if enough 
resources are available

• 3) The tag unit
• Check whether the access leads to a cache hit or a miss

• 4) Access the appropriate row of the data array
• In the event of a cache hit

17



L1 Data Cache Read

• 5) Pending request table (PRT)
• The tag unit determines a cache

miss
• The arbiter informs the LD/ST unit to 

replay the request and sends request
information 

• 6) Memory Management Unit (MMU)
• After an entry is allocated in the PRT
• Virtual to physical address translation

• 7) Fill unit
• Use the subid field in the memory request to lookup information about 

the request in the PRT
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Constant Memory
• What is the constant memory ?

• Optimized when warp of threads read the same location
• 4 bytes per cycle through broadcasting to threads in a warp
• Serialized when threads in a warp read in different locations
• Very slow when constant cache miss (read data from global mem.)

• Where is the constant memory (64KB) ?
• Data is stored in the device global memory
• Read data through SM constant cache (8KB)

• Declaration of constant memory
• __constant__ float c_mem[size];
• cudaMemcpyToSymbol() // copy host data to constant memory
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Texture Memory

• What is the texture memory ?
• Optimized for spatial locality shown among threads in blocks
• Spatial locality implies threads of the same warp that read 

memory addresses are close together

• Where is the texture memory ?
• 28 – 128 KB texture cache per SM (Nvidia GPU arch. 8.6)

• Declaration of texture memory
• text1D(texObj, x) // fetch from region of memory with texture object and 

coordinate x
• text2D(texObj, x, y) // 2 D texture object with coordinate x and y

20



L2 Cache Bank

• A unified last level cache shared by all SIMT cores

• L1 cache request cannot span across two L2 cache lines 

• What are advantages of write-back policy ?
• Fast data write speed

• Write-no-allocate
• The cache doesn’t allocate a cache line on a write miss
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GPU Micro-architecture

22http://gpgpu-sim.org/manual/index.php/Main_Page



Problems of DNNs on GPU
• DNNs require a large number of matrix computations

• Tensor core tailors for matrix computation on GPUs
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Inner Product

• Inner product
• Each inner product computes

a single element of the product
matrix C

• High memory transaction in
B[k][n]

• B[0][j] and B[1][j] may not
stay in a cache line
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Outer Product

• Outer product
• Raise k to the outer-most for

loop
• Multiply (m, 1) and (1, n) 

matrix
• Accumulate k (m, n) matrix
• Good to do blocked matrix

multiplication. How ?
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Blocked Outer Product
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% iterate through blocks
for k = 1: K/K0

for I = 1:I/I0
Ablock = &A(i*I0, k*K0)
for j = 1: J/J0

Cblock = &C(i*I0, j*J0)
Bblock = &B(k*K0, j*J0)
do_block(Ablock, Bblock, Cblock)

void do_block(Ablock, Bblock, Cblock){
for k0 = 1:K0

for i0 = 1:I0
for j0 = 1:J0

Cblock(i0, j0) = Cblock(i0, j0)+ Ablock(i0, k0) * Bblock(k0, j0)
}



Tensor Core
• Each tensor core is a programmable compute unit for matrix-

multiply-and accumulation (MAC) – inner-product-based 

• Each tensor can complete a single 4 x 4 MAC each clock cycle
• Why does tensor core use 4 x 4 matrix ?

• The tensor core has two modes of operation: 
• FP16 mode: reads three 4 x 4 16-bit floating-point matrices as source 

operands
• Mixed-precision: reads two 4 x 4 16-bit floating point matrices along with a 

third 4 x 4 32-bit floating-point accumulation matrix
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Warp Matrix Function (WMMA) API

• C++ API performs “warp-level matrix multiply and accumulate 
(WMMA)” on tensor cores

• CUDA 9.0 supports 16 x 16 x 16 tile size, while later versions 
have more flexibility

• Each tile is divided into fragments
• A fragment is a set of tile elements that are mapped to registers of a 

thread
• Input matrices are distributed across different threads
• Each thread contains only a portion of a tile

• CUDA WMMA APIs
• Load_matrix sync, store_matrix_sync, mma_sync
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Tensor Core PTX instructions

• Matrices A, B, and C are stored in registers ra, rb, and rc
• The “layout” specifies the operand matrix stored in memory with 

a row-major or column-major layout
• The “shape” represents the fragment size of operand matrices
• The type indicates the precision of operand matrices
• The “stride” operand indicates the beginning of each row
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wmma.load.a.sync.layout.shape.type ra, [pa] {stride};
wmma.load.b.sync.layout.shape.type rb, [pb] {stride};
wmma.load.c.sync.layout.shape.type rc, [pc] {stride};
wmma.mma.sync.alayout.blayout.shape.dtype.ctype rd, ra, rb, rc;
wmma.store.d.sync.layout.shape.type rd, [pd] {stride;}



WMMA Operations on Tensor Core

• Given A, B, C, and D are 16 x 16 matrices

• A warp computes a matrix multiply and accumulate 
D= A x B + C

• 32 threads in a warp are divided into “8” threadgroups

• Each threadgroup consists of 4 threads in a warp
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Nvidia Volta Tensor Core

• Each row or column is loaded by a threadgroup

• Threadgroups load consecutive rows or columns 
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Threadgroup Mapping

• Each PTX wmma.mma is broken into a group of HMMA 
instructions
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FP16 mode

Mix-precision mode



Tensor Core Microarchitecture
• Each tensor core performs 16 four-element dot products each cycle

• Each warp uses two tensor cores, two octets in a warp access each tensor core

• Matrix A and C, each threadgroup fetches operands to its separate buffer

• Threadgroups fetch matrix B operands to a shared buffer
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Tensor Core Microarchitecture
• There are four octets in a warp

• Matrix A and B is loaded twice by threads in a different threadgroup

• This enables each octet to work independently
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What should we learn from Tensor Core ?

• Parallelism
• Thread-level Parallelism (TLP) for MMA execution
• Special functional units for DP calculation

• Data reuse
• Increase the tiling block reuse through local memory buffer

• ISA Support
• Need the supports from special ISA (WMMA) in the compiler

• What else ?
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Sparse Tensor Core
• Improve tensor core utilization in sparse MMA

• Sparse MMA is shown on model compression

• Data encoding + tensor core mapping

• Does this work on graph workloads with dynamic sparsity ?

36Original Weight Compressed Weight

Encoded offset

Zhu et.al., MICRO 2019



Sparse Tensor Core in Nvidia A100 GPU

37https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s21730-inside-the-nvidia-ampere-architecture.pdf



Dual-side sparse tensor core

• Activation sparsity
• Dynamic sparsity – the zero value was created during the 

runtime
• Hard to predict, data dependent 

• Dual-side sparse tensor core
• Support SpCONV and SpGEMM
• Outer-product-based tensor core 

• How to encode dynamic sparsity ?
• Bitmap encoding
• Each matrix has a b(bitmap) and a 

v(value) matrix
38Wang et.al., ISCA 2021



Tensor Core Comparison
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4 x 4 x 4 matrix 
multiplication

Sparse inner-
product unit

Dual-side 
sparsity unit

Wang et.al., ISCA 2021



Bitmap-encoding outer product

• Outer-product SpGEMM
• Multiply matrix v
• Multiply matrix b
• Merger

• Fetch updated values from
matrix b

• Accumulate values in matrix
v

40Wang et.al., ISCA 2021



Outer product tensor core

• Outer product 
tensor core (OTC)

• The size of matrix 
in OTC is 8 x 8

• The size of A and B
is (32, k) and (k, 32)

• Two tensor cores do
8 x 16 matrix comp. 

• The data sparsity 
decides the rate of
acceleration
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Wang et.al., ISCA 2021



Two-level Bitmap Encoding

• Two-level bitmap encoding
• When the size of

matrix is too large
• Bitmap matrix is

large too
• Warp bitmap

• Represent if a tile has
value

• Element bitmap
• Represent the location

of non-zero in a tile
42Wang et.al., ISCA 2021



Outer-product friendly im2col

• The im2col work
• Rearranges input

feature maps as
an input of GEMM

• Improperly designed
• Harm input data reuse

• Sliding a 1 x 4 window
• Zig-zag way to scan

over the feature map

43Wang et.al., ISCA 2021



Takeaway Questions

• How does tensor core accelerate the matrix 
computation ?

• (A) Reduce the data movement
• (B) Increase the frequency of tensor cores
• (C) Intelligent data mapping

• How to increase the utilization of the tensor core ?
• (A) Use image to column (Im2col)
• (B) Encode the data smartly
• (C) Increase the number of registers
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