
Accelerator
Architectures for

Machine Learning
Lecture 8: Tensor Core

Tsung Tai Yeh
Friday: 3:30 – 6:20 pm

Classroom: ED-302

1

Acknowledgements and Disclaimer
• Slides was developed in the reference with

Joel Emer, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, ISCA 2019
tutorial
Efficient Processing of Deep Neural Network, Vivienne Sze, Yu-Hsin
Chen, Tien-Ju Yang, Joel Emer, Morgan and Claypool Publisher, 2020
Yakun Sophia Shao, EE290-2: Hardware for Machine Learning, UC
Berkeley, 2020
CS231n Convolutional Neural Networks for Visual Recognition,
Stanford University, 2020
CS224W: Machine Learning with Graphs, Stanford University, 2021

2

Outline

• GPU Memory Space
• Global memory
• Shared memory
• Texture memory
• Constant memory

• Tensor Core

3

GPU Memory Spaces
• Global memory

• Device DRAM, shared across blocks

• Local memory
• Reside in global memory
• Store variable data consuming too many

registers (register spilling)

• Shared memory
• On-chip addressable memory
• Direct mapped

• Constant/Texture memory
• Read-only memory

• Register File
• Each thread has its private register space

4

Block (0,0)

Shared memory

Registers

Thread (0,0)

Registers

Thread (1,0)

Local Mem Local Mem

Global Mem

Block (1,0)

Constant Mem

Texture Mem

Global Memory
• Global memory resides in off-chip DRAM

• Global memory is accessed via 32, 64, 128 byte memory transaction

• Misaligned/uncoalescing memory increases # of memory transaction

5

void kernel_copy(float *out, float *in,
int offset)
{

int i = blockIdx.x * blockDim.x +
threadIdx.x + offset;

out[i] = in[i];
}

What’s wrong when offset > 1 ?

Coalesced/aligned memory access

Memory Divergent access

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Built-in align variable:
__align__(int mem_byte)

Memory Coalescing

• Coalesced access
• If all threads in a warp access locations that fall within a

single L1 data cache block and that block is not present in
the cache

• Only a single request needs to be sent to the lower level
caches

• Un-coalesced access
• If the threads within a warp access different cache blocks
• Multiple memory accesses need to be generated

6

Memory Coalescing

• Combining memory access of threads in a warp into
fewer transactions

• E.g. Each thread in a warp accesses consecutive 4-byte
memory

• Send one 128-byte request to DRAM (Coalescing)
• Instead of 32 4-byte requests

• Coalescing reduces the number of transactions
between SIMT cores and DRAM

• Less work for interconnect, memory partition, and DRAM

7

Memory Coalescing
• Supposed that a 3 x 4 matrix is shown :
• Which one is coalescing access pattern ?

• Pattern B is coalescing access pattern

8

1 2 3 4
5 6 7 8
9 a b c

Thread 0: 1, 2, 3
Thread 1: 4, 5, 6
Thread 2: 7, 8, 9
Thread 3: a, b, c

Thread 0: 1, 5, 9
Thread 1: 2, 6, a
Thread 2: 3, 7, b
Thread 3: 4, 8, c

Time Time

Pattern A Pattern B

Local Memory
• Off-chip memory
• High latency and low bandwidth as the global memory
• When will use the local memory ?

• Large structure or array that use too much register space
• A kernel uses too many register than available (register

spilling)

9

Data Cache & Shared Memory

• A memory access request is first sent from the load/store unit
inside the instruction pipeline to the L1 cache

10

Shared Memory
• 32 banks organized as 32-bit successive words

• Threads share data in the same thread block

• Programmer-managed on-chip cache

• Bank conflict
• Two or more threads access words within the

same bank
• Serialized memory access (low memory bandwidth)

• Which one is bank conflict ?
• float i_data = shared[base + S * tid]; S = 3
• float i_data = shared[base + S * tid]; S = 2
• double i_data = shared[base + tid]
• char i_data = shared[base + tid] 11

Which one is bank conflict ?

How to Resolve Bank Conflict ?
• Shared memory size is 16 x 16

• Each thread takes charge of each row operation

• Threads in one block access the same location
(each column) -> 16-way bank conflict

• Solution ?
• memory padding
• Add one float at the end of each row
• Changing access pattern
• __shared__ sData[TILE_SIZE][TILE_SIZE + 1]

12

Memory padding (blue column)

http://cuda-programming.blogspot.com/2013/02/bank-conflicts-in-shared-memory-in-cuda.html

Time

How to Resolve Bank Conflict ?

• Memory padding is one of solution to remove shared memory
bank conflict

• __shared__ a[32][32] -> __shared__ a[32][33]

13

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

0 1 2 3 4

tid 0

Bank 3Bank 0

tid 1

tid 4

0 1 2 3 4

0 1 2 3

4 0 1 2

3 4 0 1

2 3 4 0

1 2 3 4

Memory
padding

Shared memory access

• Arbiter
• Determine whether the

requested addresses
within the warp will
cause bank conflict

• Split the request into two
parts when the bank
conflicts show

• Accepted request
• Bypass tag lookup in the

tag unit, since shared
memory is direct mapped

14

Shared memory access

• In the absence of bank conflict
• The latency of the direct mapped memory

lookup is constant (single-cycle)
• The tag unit determines which bank each

thread’s request maps to
• The address cross bar distributes address

to the individual banks within the data array
• Each bank inside the data array is 32-bits wide
• Each bank has its own decoder allowing from independent access to

different rows in each bank
• The data is returned to the appropriate thread’s lane for storage in the

register file via the data crossbar
15

L1 Data Cache Read

• Access to global memory is restricted
to a single cache block per cycle ->
help to reduce tag storage overhead

• The L1 cache block size is 128 bytes,
is further divided into four 32-byte
sectors

• A single access of GDDR5 is 32-byte

• Each 128-byte cache block is composed of 32-bit entries at the
same row in each of the 32 banks

16

L1 Data Cache Read

• 1) The LD/ST unit
• Computes memory addresses

• 2) The arbiter
• Requests the instruction pipeline schedule

a writeback to the register file if enough
resources are available

• 3) The tag unit
• Check whether the access leads to a cache hit or a miss

• 4) Access the appropriate row of the data array
• In the event of a cache hit

17

L1 Data Cache Read

• 5) Pending request table (PRT)
• The tag unit determines a cache

miss
• The arbiter informs the LD/ST unit to

replay the request and sends request
information

• 6) Memory Management Unit (MMU)
• After an entry is allocated in the PRT
• Virtual to physical address translation

• 7) Fill unit
• Use the subid field in the memory request to lookup information about

the request in the PRT

18

Constant Memory
• What is the constant memory ?

• Optimized when warp of threads read the same location
• 4 bytes per cycle through broadcasting to threads in a warp
• Serialized when threads in a warp read in different locations
• Very slow when constant cache miss (read data from global mem.)

• Where is the constant memory (64KB) ?
• Data is stored in the device global memory
• Read data through SM constant cache (8KB)

• Declaration of constant memory
• __constant__ float c_mem[size];
• cudaMemcpyToSymbol() // copy host data to constant memory

19

Texture Memory

• What is the texture memory ?
• Optimized for spatial locality shown among threads in blocks
• Spatial locality implies threads of the same warp that read

memory addresses are close together

• Where is the texture memory ?
• 28 – 128 KB texture cache per SM (Nvidia GPU arch. 8.6)

• Declaration of texture memory
• text1D(texObj, x) // fetch from region of memory with texture object and

coordinate x
• text2D(texObj, x, y) // 2 D texture object with coordinate x and y

20

L2 Cache Bank

• A unified last level cache shared by all SIMT cores

• L1 cache request cannot span across two L2 cache lines

• What are advantages of write-back policy ?
• Fast data write speed

• Write-no-allocate
• The cache doesn’t allocate a cache line on a write miss

21

Local Memory Global Memory
Write Hit Write-back Write-back

Write Miss Write-no-allocate Write-no-allocate

GPU Micro-architecture

22http://gpgpu-sim.org/manual/index.php/Main_Page

Problems of DNNs on GPU
• DNNs require a large number of matrix computations

• Tensor core tailors for matrix computation on GPUs

23

Instruction Cache

Warp Scheduler Warp Scheduler Warp Scheduler Warp Scheduler

SIMD Dispatch
Unit

SIMD Dispatch
Unit

SIMD Dispatch
Unit

SIMD Dispatch
Unit

FP64/32
SP/SFU

Tensor
Core

Tensor
Core

FP64/32
SP/SFU

Tensor
Core

Tensor
Core

FP64/32
SP/SFU

Tensor
Core

Tensor
Core

FP64/32
SP/SFU

Tensor
Core

Tensor
Core

LD/ST
Unit

Register
Files

LD/ST
Unit

Register
Files

LD/ST
Unit

Register
Files

LD/ST
Unit

Register
Files

L1 Data Cache/Shared memory Texture memory

Streaming Multiprocessing (SM)/ SIMT Core

Zhu
et.al.,
MICRO
2019

Inner Product

• Inner product
• Each inner product computes

a single element of the product
matrix C

• High memory transaction in
B[k][n]

• B[0][j] and B[1][j] may not
stay in a cache line

24

Outer Product

• Outer product
• Raise k to the outer-most for

loop
• Multiply (m, 1) and (1, n)

matrix
• Accumulate k (m, n) matrix
• Good to do blocked matrix

multiplication. How ?

25

Blocked Outer Product

26

% iterate through blocks
for k = 1: K/K0

for I = 1:I/I0
Ablock = &A(i*I0, k*K0)
for j = 1: J/J0

Cblock = &C(i*I0, j*J0)
Bblock = &B(k*K0, j*J0)
do_block(Ablock, Bblock, Cblock)

void do_block(Ablock, Bblock, Cblock){
for k0 = 1:K0

for i0 = 1:I0
for j0 = 1:J0

Cblock(i0, j0) = Cblock(i0, j0)+ Ablock(i0, k0) * Bblock(k0, j0)
}

Tensor Core
• Each tensor core is a programmable compute unit for matrix-

multiply-and accumulation (MAC) – inner-product-based

• Each tensor can complete a single 4 x 4 MAC each clock cycle
• Why does tensor core use 4 x 4 matrix ?

• The tensor core has two modes of operation:
• FP16 mode: reads three 4 x 4 16-bit floating-point matrices as source

operands
• Mixed-precision: reads two 4 x 4 16-bit floating point matrices along with a

third 4 x 4 32-bit floating-point accumulation matrix

27

Warp Matrix Function (WMMA) API

• C++ API performs “warp-level matrix multiply and accumulate
(WMMA)” on tensor cores

• CUDA 9.0 supports 16 x 16 x 16 tile size, while later versions
have more flexibility

• Each tile is divided into fragments
• A fragment is a set of tile elements that are mapped to registers of a

thread
• Input matrices are distributed across different threads
• Each thread contains only a portion of a tile

• CUDA WMMA APIs
• Load_matrix sync, store_matrix_sync, mma_sync

28

Tensor Core PTX instructions

• Matrices A, B, and C are stored in registers ra, rb, and rc
• The “layout” specifies the operand matrix stored in memory with

a row-major or column-major layout
• The “shape” represents the fragment size of operand matrices
• The type indicates the precision of operand matrices
• The “stride” operand indicates the beginning of each row

29

wmma.load.a.sync.layout.shape.type ra, [pa] {stride};
wmma.load.b.sync.layout.shape.type rb, [pb] {stride};
wmma.load.c.sync.layout.shape.type rc, [pc] {stride};
wmma.mma.sync.alayout.blayout.shape.dtype.ctype rd, ra, rb, rc;
wmma.store.d.sync.layout.shape.type rd, [pd] {stride;}

WMMA Operations on Tensor Core

• Given A, B, C, and D are 16 x 16 matrices

• A warp computes a matrix multiply and accumulate
D= A x B + C

• 32 threads in a warp are divided into “8” threadgroups

• Each threadgroup consists of 4 threads in a warp

30

Nvidia Volta Tensor Core

• Each row or column is loaded by a threadgroup

• Threadgroups load consecutive rows or columns

31

Threadgroup Mapping

• Each PTX wmma.mma is broken into a group of HMMA
instructions

32

FP16 mode

Mix-precision mode

Tensor Core Microarchitecture
• Each tensor core performs 16 four-element dot products each cycle

• Each warp uses two tensor cores, two octets in a warp access each tensor core

• Matrix A and C, each threadgroup fetches operands to its separate buffer

• Threadgroups fetch matrix B operands to a shared buffer

33

Register
Operand Bus 1
Operand Bus 2
Operand Bus 3

Tensor Core

Octet 3 Octet 2
Tensor Core

Octet 1
Threadgroup 0 Threadgroup 4

A Buf A Buf

B Buf

Writeback
Octet 0

Ac
c

Bu
f Acc

Buf

Zhu et.al., MICRO 2019

Tensor Core Microarchitecture
• There are four octets in a warp

• Matrix A and B is loaded twice by threads in a different threadgroup

• This enables each octet to work independently

34

What should we learn from Tensor Core ?

• Parallelism
• Thread-level Parallelism (TLP) for MMA execution
• Special functional units for DP calculation

• Data reuse
• Increase the tiling block reuse through local memory buffer

• ISA Support
• Need the supports from special ISA (WMMA) in the compiler

• What else ?

35

Sparse Tensor Core
• Improve tensor core utilization in sparse MMA

• Sparse MMA is shown on model compression

• Data encoding + tensor core mapping

• Does this work on graph workloads with dynamic sparsity ?

36Original Weight Compressed Weight

Encoded offset

Zhu et.al., MICRO 2019

Sparse Tensor Core in Nvidia A100 GPU

37https://developer.download.nvidia.com/video/gputechconf/gtc/2020/presentations/s21730-inside-the-nvidia-ampere-architecture.pdf

Dual-side sparse tensor core

• Activation sparsity
• Dynamic sparsity – the zero value was created during the

runtime
• Hard to predict, data dependent

• Dual-side sparse tensor core
• Support SpCONV and SpGEMM
• Outer-product-based tensor core

• How to encode dynamic sparsity ?
• Bitmap encoding
• Each matrix has a b(bitmap) and a

v(value) matrix
38Wang et.al., ISCA 2021

Tensor Core Comparison

39

4 x 4 x 4 matrix
multiplication

Sparse inner-
product unit

Dual-side
sparsity unit

Wang et.al., ISCA 2021

Bitmap-encoding outer product

• Outer-product SpGEMM
• Multiply matrix v
• Multiply matrix b
• Merger

• Fetch updated values from
matrix b

• Accumulate values in matrix
v

40Wang et.al., ISCA 2021

Outer product tensor core

• Outer product
tensor core (OTC)

• The size of matrix
in OTC is 8 x 8

• The size of A and B
is (32, k) and (k, 32)

• Two tensor cores do
8 x 16 matrix comp.

• The data sparsity
decides the rate of
acceleration

41

Wang et.al., ISCA 2021

Two-level Bitmap Encoding

• Two-level bitmap encoding
• When the size of

matrix is too large
• Bitmap matrix is

large too
• Warp bitmap

• Represent if a tile has
value

• Element bitmap
• Represent the location

of non-zero in a tile
42Wang et.al., ISCA 2021

Outer-product friendly im2col

• The im2col work
• Rearranges input

feature maps as
an input of GEMM

• Improperly designed
• Harm input data reuse

• Sliding a 1 x 4 window
• Zig-zag way to scan

over the feature map

43Wang et.al., ISCA 2021

Takeaway Questions

• How does tensor core accelerate the matrix
computation ?

• (A) Reduce the data movement
• (B) Increase the frequency of tensor cores
• (C) Intelligent data mapping

• How to increase the utilization of the tensor core ?
• (A) Use image to column (Im2col)
• (B) Encode the data smartly
• (C) Increase the number of registers

44

