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Outline

• GPU hardware basics
• Programming Model
• The SIMT Core

• Warp Scheduling
• Functional Unit
• Operand collector
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What is GPU?
• GPU = Graphics Processing Units

• Accelerate computer graphics rendering and rasterization

• Highly programmable (OpenGL, OpenCL, CUDA, HIP etc..)

• Why does GPU use GDDR memory?
• DDR RAM -> low latency access, GDDR RAM -> high bandwidth 
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Discrete GPU

• A (PCIe) bus connecting the CPU and GPU

• Separate DRAM memory spaces
• CPU (system memory) and the GPU (device memory)

• DDR for CPU vs. GDDR for GPU
• CPU DRAM optimizes for 

low latency access
• GPU DRAM is optimized for 

high throughput
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Integrated GPU

• Have a single DRAM memory space 

• Often found on low-power mobile devices
• Ex. AMD APU
• Private cache -> cache coherence 
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CPU vs GPU
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Cores Clock 
Speed

Memory Price Speed

CPU (Intel 
Core i7-
7700k)

4 4.2 GHz DDR4 RAM $385 ~540 GFLOPs F32

GPU (Nvidia 
RTX 3090 Ti)

10496 1.7 GHz DDR6 24 GB $1499 36 TFLOPs F32

CPU: A small number of complex cores, the clock speed 
of each core is high, great for sequential tasks
GPU: A large number of simple cores, the clock speed of 
each core is low, great for parallel tasks



Why do we use GPU for computing ?
• What is difference between CPU and GPU?

• GPU uses a large portion of silicon on the computation against CPU
• GPU (2nJ/op) is more energy-efficient than CPU (200 pJ/op) at peak 

performance
• Need to map applications on the GPU carefully (Programmers’ duties)
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Modern GPU Architecture

• A modern GPU is composed of many cores
• Streaming multiprocessors (SM) (Nvidia) or compute units (CU) (AMD)

• A GPU
• Executes a single-instruction

multiple-thread (SIMT) program
(kernel)

• A streaming multiprocessor
• Threads are interleaving on 

each SM
• Has a local scratch memory

and data cache
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GPGPU Programming Model
• CPU offloads “kernels” consisting of multiple threads to GPU

• CPU transfer data to GPU memory (discrete GPU)

• Need to transfer result data back to CPU main memory
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GPU Thread Hierarchy

• Group threads in a warp (32 threads)
• A thread block contains multiple warps/threads
• A thread block can have 1024 threads at most
• A “grid” can have multiple blocks
• The threads executing on a single core 

• Can communicate through a scratchpad memory
• Synchronize using fast barrier operations

• How to declare threads/blocks in GPU codes?
• Blocks are organized as three dimensional grid of 

thread block
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SIMT Execution Model
• All threads in warps/wavefront execute the same instruction

• GPU runs warps/wavefront in lockstep on SIMT hardware

• Challenges: How to handle branch operations when different 
threads in a warp go to different path through program ?
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w[] = {2, 4, 8, 10};
A: v = w[threadIdx.x];
B: if (v < 5)
C:      v = 1;

else
D: v = 20;
E:  w = bar[threadIdx.x] + v

Tim
e

A T1 T2 T3 T4

B T1 T2 T3 T4

C T1 T2

D T3 T4

E T1 T2 T3 T4

Serialize 
operations in 
different paths



SIMT Execution Model

• SIMT vs SIMD
• SIMD: HW pipeline width must be known by SW
• SIMT: Pipeline width hidden from SW
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CUDA Programming Syntax
• Declaration Specifiers

• Syntax for kernel launch
• Foo<<<256, 128>>>(…); //256 thread blocks, 128 threads each

• Built in variables for thread identification
• dim3 threadIdx.x, threadIdx.y, threadIdx.z; 
• dim3 blockIdx.x, blockIdx.y, blockIdx.z; 
• dim3 blockDim.x, blockDim.y, blockDim.z;
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Execution on Callable from:
__global__ void vadd(…) Device Host
__device__ void bar(…) Device Device
__host__  void func(…) Host Host



Example: SAXPY C Code
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void saxpy_serial(int n, float a, float *x, float *y)  
{ 
for (int i = 0; i < n; ++i)

y[i] = a*x[i] + y[i]; 
} 

int main() {
// omitted: allocate and initialize memory
saxpy_serial(n, 2.0, x, y); // Invoke serial SAXPY 
kernel
// omitted: using result

}



SAXPY CUDA Code
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__global__ void saxpy(float A[N][N], float B[N][N], float C[N][N]) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if(i<n) y[i]=a*x[i]+y[i];

} 

int main() {
// omitted: allocate and initialize memory
int nblocks = (n + 255) / 256;

cudaMalloc((void**) &d_x, n);
cudaMalloc((void**) &d_y, n);
cudaMemcpy(d_x,h_x,n*sizeof(float),cudaMemcpyHostToDevice);
cudaMemcpy(d_y,h_y,n*sizeof(float),cudaMemcpyHostToDevice);
saxpy<<<nblocks, 256>>>(n, 2.0, d_x, d_y);
cudaMemcpy(h_y,d_y,n*sizeof(float),cudaMemcpyDeviceToHost);
// omitted: using result

}



CUDA Program Compilation 
• NVCC compiler separates the host

and device codes
• nvcc abc.cu –o abc

• Ptxas
• Assembler of CUDA programs
• Output PTX instruction sets

• NVProf
• Performance profiler for CUDA programs
• Show runtime information of CUDA 

programs
• nvprof –print-gpu-trace ./a.out
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GPU Instruction Sets
• Nvidia

• PTX ISAs – virtual ISAs, RISC-like ISAs, a limitless set of virtual 
registers

• SASS ISAs – actual ISAs supported by the hardware, no fully 
document

• AMD
• TeraScale->GCN->RDNA ISAs
• Open-source ISAs – specified to AMD GPU architectures

• ARM
• Mali Bifrost, Valhall GPU architecture
• Proprietary ISAs

• Why ISAs matter ?
• Determine the computer architecture (IP) design
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Parallel Thread Execution (PTX) Instructions
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__global__ void vecAdd(double *a, double *b, double *c, int n){
int id = blockIdx.x*blockDim.x+threadIdx.x;
if (id < n)

c[id] = a[id] + b[id];
}

ld.param.u64 %rd1, [_Z6vecAddPdS_S_i_param_0];  // load parameter a
ld.param.u64 %rd2, [_Z6vecAddPdS_S_i_param_1];  // load parameter b
ld.param.u64 %rd3, [_Z6vecAddPdS_S_i_param_2];  // load parameter c
ld.param.u32 %r2, [_Z6vecAddPdS_S_i_param_3];  // load parameter d
mov.u32 %r3, %ctaid.x;  // blockIdx.x
mov.u32 %r4, %ntid.x; // blockDim.x
mov.u32 %r5, %tid.x; // threadIdx.x
mad.lo.s32 %r1, %r4, %r3, %r5; // id = blockIdx.x * blockDim.x + threadIdx.x
setp.ge.s32     %p1, %r1, %r2;  // if (id < n)
@%p1 bra BB0_2;



Parallel Thread Execution (PTX) Instructions
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__global__ void vecAdd(double *a, double *b, double *c, int n){
int id = blockIdx.x*blockDim.x+threadIdx.x;
if (id < n)

c[id] = a[id] + b[id];
}

cvta.to.global.u64 %rd4, %rd1; // convert memory address to generic address, %rd1: a
mul.wide.s32 %rd5, %r1, 8;
add.s64 %rd6, %rd4, %rd5;  // calculate memory location of b
cvta.to.global.u64 %rd7, %rd2; // %rd2: b
add.s64 %rd8, %rd7, %rd5;  // calculate memory location of a
ld.global.f64 %fd1, [%rd8]; // load a
ld.global.f64 %fd2, [%rd6]; // load b
add.f64 %fd3, %fd2, %fd1;   // c = a + b
cvta.to.global.u64 %rd9, %rd3; // %rd3: c
add.s64 %rd10, %rd9, %rd5;  // memory address of c
st.global.f64 [%rd10], %fd3;   // store result of c back to memory



Dump out PTX ISA

• Dump out an native kernel
• nvcc --ptx [file.cu]

• Dump out kernel of CUDA libraries (cuBLAS, cuDNN
etc..)

• cuobjdump --dump-ptx [file.cu] -lcublas_static -
lcublasLt_static -lculibos

• cuobjdump --dump-ptx [file.cu] –lcudnn_static -lcublas_static
-lcublasLt_static -lculibos

• Dump out native SASS ISAs
• cuobjdump --dump-sass [file.cu]
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Takeaway Questions

• What are features of the GPU?
• (A) Large L1 cache
• (B) Needs the memory with high memory bandwidth
• (C) The frequency of SIMT core is high

• How many threads in a warp declared by this kernel?
Foo<<<256, 4>>>

• (A) 256
• (B) 32
• (C) 4
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Modern GPU Architecture
• The GPU thread hierarchy 

• A warp (32 threads) -> a thread block (CTA) (< 32 warps) -> grid

• Each SM has a shared memory
(16 – 64 KB) and a data cache

• Threads within a CTA can 
communicate with each other via
a per SM shared memory

• The shared memory acts as a 
software controlled cache

• Allocate shared memory using
__shared__ in CUDA
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Modern GPU Architecture

• Synchronization
• Threads within a CTA can synchronize using hardware-supported 

barrier instructions (__syncthreads())
• Threads in different CTAs can 

communicate, but do so through
a global address space that is
accessible to all threads
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The SIMT Core
• SIMT front end

• The instruction fetch: fetch, I-cache, Decode, and I-buffer
• The instruction issue: I-buffer, Scoreboard, Issue, SIMT stack

• SIMD data path
• Operand collector, ALU, Memory
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The Execution in the SIMT core
• In each cycle, the hardware selects a warp for scheduling

• The warp’s program counter is used to access an instruction memory 
to find the next instruction to execute for the warp

• An on-chip warp buffer holds multiple warps
for a GPU SM. (Why ?) 
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SIMT Pipeline
• 5 stage In-Order SIMT pipeline

• Register values of all threads stays in core
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Inside a SIMT Core
• Fetch, Warp Issue, and Operand Schedulers

• Scoreboard ->data hazard and SIMT stack->control flow

• Large register file

• Multiple SIMD functional units 

29

SIMT Front End SIMD Datapath

ALUALUALU

I-Cache Decode
I-Buffer

Score
Board

Issue
Operand
Collector

MEM

ALU
Fetch SIMT-Stack

Done (WID)

Branch Target PC
Pred.Active

Mask
Scheduler 1

Scheduler 2

Scheduler 3

GPGPU-Sim, MICRO



Fetch + Decode

• I-Cache 
• Fetch instructions of warps in a round

robin manner
• Read-only, set associative
• FIFO or LRU replacement

• I-Buffer
• Store instructions fetched from I-cache
• Each warp has two I-buffer entries
• Valid bit indicates non-issued decode instructions
• Ready bit indicates instructions are ready to 

be issued to the execution pipeline
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Instruction Issue
• A round-robin arbiter 

• Choose instructions of a warp from I-Buffer to 
issue to the rest of the pipeline

• Allow dual issue

• Instruction issue
• Memory instructions are issued to memory pipeline
• SP and SFU pipeline

• Issue stage
• Barrier operations are executed
• SIMT stack is updated
• Register dependency is tracking (Scoreboard)
• Warps wait for barrier (__synthreads()) at issue stage
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The Execution in the SIMT core

• After fetching an instruction
• The instruction is decoded
• Source operand registers are fetched from the register file
• Determine SIMT execution mask values

• SIMD execution
• Execution proceeds in a single-instruction, multiple-data manner
• Each thread executes on the function unit associated with a lane 

provided the SIMT execution set is set

• Function unit
• Special function unit (SFU), load/store unit, floating-point, integer 

function unit, Tensor core
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ALU Pipelines
• SIMD execution unit

• SP units executes ALU instructions except some special ones
• SFU units executes special functional instructions (sine, log …)
• Different types of instructions takes varying execution cycles
• A SIMT core has one SP and SFU unit
• Each unit has an independent issue port from the operand 

collector.

• Writeback
• Each pipeline has a result bus for writeback
• Except SP and SFU shares a result bus
• Time slots on the shared bus is pre-allocated
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Scoreboard

• Dynamically scheduling instructions so that they can execute 
out of order when there are no conflicts and the hardware is 
available

• Solutions for WAR:
• Stall writeback until registers have been read
• Read registers only during Read Operands stage

• Solution for WAW:
• Detect hazard and stall issue of new instruction until other instruction 

completes

• Instructions with hazards -> not ready flag in I-Buffer
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SIMT Execution Masking

• A control flow graph (CFG)
• Initially four threads in the warp
• A/1111 indicates all four threads are

executing the code in Basic Block A
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SIMT Execution Masking

• SIMT Execution masking
• Tackle the nested control flow
• Skipping computation entirely while all threads in a warp avoid a control 

flow path
• Serialize execution of threads following different paths within a given warp
• An arrow with a hollow head indicates the thread is masked off
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SIMT Stack
• SIMT stack includes

• A reconvergence program counter (RPC)
• The address of the next instruction to 

execute (Next PC)
• An active mask
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w[] = {2, 4, 8, 10};
A: v = w[threadIdx.x];
B: if (v < 9)
C:      v = 1;

else
D: v = 20;
E:  w = bar[threadIdx.x] + v

Tim
e

A T1 T2 T3 T4

B T1 T2 T3 T4

C T1 T2

D

T3

T4

E T1 T2 T3 T4

Serialize 
operations in 
different paths

One stack per warp
SIMT Stack

PC RPC Active Mask
E - 1111
D E 0001
C E 1110



SIMT Stack
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Warp Scheduling

• Hide long execution latency

• Warp scheduler selects an instruction
of a warp that is ready to execute

• Instruction-level parallelism (ILP)
• Pick instructions of the same warp

• Thread-level parallelism (TLP)
• Choose instructions across different warps

• Multiple Warp schedulers on a SIMT Core

• Impact on the SIMT Core utilization
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Loose Round Robin (LRR) Scheduling

• Scan through warps and select the one ready warp (R)

• If warp is not ready (N), skip that one and go to the next one

• Warp all runs on the same chance

• Problems
• Potentially all warps reach 

memory access phase
together and get stall

40

R N R R R N R R

Warps

Select Logic

Execution Units



Two-Level (TL) Scheduling

• Warps are divided into two 
groups

• Pending warps (potentially 
waiting for long latency instructions)

• Active warps (ready to execute)
• Warps move between pending

and active warps
• Active warps are issued in LRR

• Overlap warps with
memory access and ALU
instructions 
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Greedy-Then-Oldest Scheduling

• Select instructions of a single warp until it stalls

• Then pick the oldest warp to the next

• Improve the cache locality of the greedy warp
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Thread Block (CTA) Scheduling

• A CTA is issued to one SIMT core at a time

• Scans through SIMT cores to issue a CTA to a SIMT core with 
available resources at round-robin manner

• Threads (available warp buffer)
• The shared memory space
• The register file 

• Multiple concurrent kernels
• Different kernels can be executed across SIMT cores
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Register File

• 256 KB register files on a SIMT core
• How many registers can be used by one thread ?

• Maximum number of warps per SIMT core is 64
• 32 threads per warp
• 256 KB / 64 / 32 / 32-bit = 32

• Need “4 ports” (e.g. FMA) -> increase area greatly
• What is the solution ?

• Banked single ported register file
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Operand Collector
• Operand collector aims to increase register file bandwidth

• A valid bit, a register identifier, a ready bit, and operand data

• Arbiter selects operand that don’t conflict on a given cycle

45GPGPU-Sim, MICRO



Register Bank Conflict

• On cycle 4, issue instruction i2
after a delay due to bank 
conflict

• Low utilization of register banks

• Solutions ?
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Bank 0 Bank 1 Bank 2 Bank 3
… … … …

W1:r4 W1:r5 W1:r6 W1:r7
W1:r0 W1:r1 W1:r2 W1:r3
W0:r4 W0:r5 W0:r6 W0:r7
W0:r0 W0:r1 W0:r2 W0:r3

Cycle Warp Instruction

0 W3 i1:     mad     r2, r5, r4, r6     

1 W0 i2:     add      r5, r5, r1

4 W1 i2:     add      r5, r5, r1

1 2 3 4 5 6

0 W3:i1:r4

1 W3:i1:r5 W0:i2:r1 W0:i2:r5 W0:i2:r5 W1:i2:r1 W1:i2:r5

2 W3:i1:r6 W3:i1:r2

3

Ba
nk

Cycle



Register Bank Conflict

• Swizzle banked register layout

• W0:r0 -> bank 0, W1:r0 -> bank 1,
W2:r0 -> bank 2, W3:r0 -> bank 3

• Save 1 cycle against the naïve bank
layout. Could we do better ?
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Bank 0 Bank 1 Bank 2 Bank 3
… … … …

W1:r7 W1:r4 W1:r5 W1:r6
W1:r3 W1:r0 W1:r1 W1:r2
W0:r4 W0:r5 W0:r6 W0:r7
W0:r0 W0:r1 W0:r2 W0:r3

Cycle Warp Instruction

0 W3 i1:     mad     r2, r5, r4, r6     

1 W0 i2:     add      r5, r5, r1

4 W1 i2:     add      r5, r5, r1

1 2 3 4 5 6

0

1 W3:i1:r5 W0:i2:r1 W0:i2:r5 W3:i1:r2 W1:i2:r1

2 W3:i1:r6 W0:i2:r5 W1:i2:r5

3 W3:i1:r4

Ba
nk

Cycle



Takeaway Questions

• How does GPU hide the instruction fetch latency?
• (A) Use SIMT stack
• (B) Use multiple instruction fetcher
• (C) Use instruction buffer

• What is the purpose of the SIMT stack?
• (A) Record the register location
• (B) Handle the branch divergence 
• (C) Increase the speed of SIMT execution
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Takeaway Questions

• What are correct descriptions of SIMT execution model?
• (A) Every thread in a warp tackles the same instruction
• (B) Threads within a warp can walk different control paths 

concurrently
• (C) Need to duplicate scalar value to each thread in a warp

• How does GPU hide long memory access latency?
• (A) Increase the number of concurrent threads
• (B) Interleaving the execution on SMs and memory access
• (C) Using the warp buffer
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