
Accelerator
Architectures for

Machine Learning
Lecture 7: GPGPU Architecture

Tsung Tai Yeh
Tuesday: 3:30 – 6:20 pm

Classroom: ED-222

1

Acknowledgements and Disclaimer
• Slides was developed in the reference with

Joel Emer, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, ISCA 2019
tutorial
Efficient Processing of Deep Neural Network, Vivienne Sze, Yu-Hsin
Chen, Tien-Ju Yang, Joel Emer, Morgan and Claypool Publisher, 2020
Yakun Sophia Shao, EE290-2: Hardware for Machine Learning, UC
Berkeley, 2020
CS231n Convolutional Neural Networks for Visual Recognition,
Stanford University, 2020
CS224W: Machine Learning with Graphs, Stanford University, 2021

2

Outline

• GPU hardware basics
• Programming Model
• The SIMT Core

• Warp Scheduling
• Functional Unit
• Operand collector

3

What is GPU?
• GPU = Graphics Processing Units

• Accelerate computer graphics rendering and rasterization

• Highly programmable (OpenGL, OpenCL, CUDA, HIP etc..)

• Why does GPU use GDDR memory?
• DDR RAM -> low latency access, GDDR RAM -> high bandwidth

4

CPU GPU

Cache

Memory

System
Memory

(DDR RAM)

Graphics
Memory

(GDDR RAM)

CPU GPU

bus

Discrete
GPU

Integrated
GPU

Discrete GPU

• A (PCIe) bus connecting the CPU and GPU

• Separate DRAM memory spaces
• CPU (system memory) and the GPU (device memory)

• DDR for CPU vs. GDDR for GPU
• CPU DRAM optimizes for

low latency access
• GPU DRAM is optimized for

high throughput

5

System
Memory

(DDR RAM)

Graphics
Memory

(GDDR RAM)

CPU GPU

bus

Discrete
GPU

Integrated GPU

• Have a single DRAM memory space

• Often found on low-power mobile devices
• Ex. AMD APU
• Private cache -> cache coherence

6

CPU GPU

Cache

Memory

Integrated
GPU

CPU vs GPU

7

Cores Clock
Speed

Memory Price Speed

CPU (Intel
Core i7-
7700k)

4 4.2 GHz DDR4 RAM $385 ~540 GFLOPs F32

GPU (Nvidia
RTX 3090 Ti)

10496 1.7 GHz DDR6 24 GB $1499 36 TFLOPs F32

CPU: A small number of complex cores, the clock speed
of each core is high, great for sequential tasks
GPU: A large number of simple cores, the clock speed of
each core is low, great for parallel tasks

Why do we use GPU for computing ?
• What is difference between CPU and GPU?

• GPU uses a large portion of silicon on the computation against CPU
• GPU (2nJ/op) is more energy-efficient than CPU (200 pJ/op) at peak

performance
• Need to map applications on the GPU carefully (Programmers’ duties)

8

CPU GPU

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

Modern GPU Architecture

• A modern GPU is composed of many cores
• Streaming multiprocessors (SM) (Nvidia) or compute units (CU) (AMD)

• A GPU
• Executes a single-instruction

multiple-thread (SIMT) program
(kernel)

• A streaming multiprocessor
• Threads are interleaving on

each SM
• Has a local scratch memory

and data cache

9

Streaming
Multiprocessor

Streaming
Multiprocessor

Streaming
Multiprocessor

Modern GPU Architecture

• A modern GPU is composed of many cores
• Streaming multiprocessors (SM) (Nvidia) or compute units (CU) (AMD)

• A GPU
• Executes a single-instruction

multiple-thread (SIMT) program
(kernel)

• A streaming multiprocessor
• Threads are interleaving on

each SM
• Has a local scratch memory

and data cache

10

Streaming
Multiprocessor

Streaming
Multiprocessor

Streaming
Multiprocessor

GPGPU Programming Model
• CPU offloads “kernels” consisting of multiple threads to GPU

• CPU transfer data to GPU memory (discrete GPU)

• Need to transfer result data back to CPU main memory

11

CPU

GPU

CPU

Push
kernels

Done

Could GPU spawn kernels
within GPU? (Recursive calls)

Yes, CUDA dynamic parallelism

Could a GPU execute multiple
kernels?
Yes, GPU supports “concurrent
execution”

GPU Thread Hierarchy

• Group threads in a warp (32 threads)
• A thread block contains multiple warps/threads
• A thread block can have 1024 threads at most
• A “grid” can have multiple blocks
• The threads executing on a single core

• Can communicate through a scratchpad memory
• Synchronize using fast barrier operations

• How to declare threads/blocks in GPU codes?
• Blocks are organized as three dimensional grid of

thread block

12https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

SIMT Execution Model
• All threads in warps/wavefront execute the same instruction

• GPU runs warps/wavefront in lockstep on SIMT hardware

• Challenges: How to handle branch operations when different
threads in a warp go to different path through program ?

13

w[] = {2, 4, 8, 10};
A: v = w[threadIdx.x];
B: if (v < 5)
C: v = 1;

else
D: v = 20;
E: w = bar[threadIdx.x] + v

Tim
e

A T1 T2 T3 T4

B T1 T2 T3 T4

C T1 T2

D T3 T4

E T1 T2 T3 T4

Serialize
operations in
different paths

SIMT Execution Model

• SIMT vs SIMD
• SIMD: HW pipeline width must be known by SW
• SIMT: Pipeline width hidden from SW

14

Scalar
Thread 0

Scalar
Thread 1

Scalar
Thread 31

Warp Common PC

…

Warp 7
Warp 9

Warp 0

SIMT Pipeline

CUDA Programming Syntax
• Declaration Specifiers

• Syntax for kernel launch
• Foo<<<256, 128>>>(…); //256 thread blocks, 128 threads each

• Built in variables for thread identification
• dim3 threadIdx.x, threadIdx.y, threadIdx.z;
• dim3 blockIdx.x, blockIdx.y, blockIdx.z;
• dim3 blockDim.x, blockDim.y, blockDim.z;

15

Execution on Callable from:
__global__ void vadd(…) Device Host
__device__ void bar(…) Device Device
__host__ void func(…) Host Host

Example: SAXPY C Code

16

void saxpy_serial(int n, float a, float *x, float *y)
{
for (int i = 0; i < n; ++i)

y[i] = a*x[i] + y[i];
}

int main() {
// omitted: allocate and initialize memory
saxpy_serial(n, 2.0, x, y); // Invoke serial SAXPY
kernel
// omitted: using result

}

SAXPY CUDA Code

17

__global__ void saxpy(float A[N][N], float B[N][N], float C[N][N]) {
int i = blockIdx.x * blockDim.x + threadIdx.x;
if(i<n) y[i]=a*x[i]+y[i];

}

int main() {
// omitted: allocate and initialize memory
int nblocks = (n + 255) / 256;

cudaMalloc((void**) &d_x, n);
cudaMalloc((void**) &d_y, n);
cudaMemcpy(d_x,h_x,n*sizeof(float),cudaMemcpyHostToDevice);
cudaMemcpy(d_y,h_y,n*sizeof(float),cudaMemcpyHostToDevice);
saxpy<<<nblocks, 256>>>(n, 2.0, d_x, d_y);
cudaMemcpy(h_y,d_y,n*sizeof(float),cudaMemcpyDeviceToHost);
// omitted: using result

}

CUDA Program Compilation
• NVCC compiler separates the host

and device codes
• nvcc abc.cu –o abc

• Ptxas
• Assembler of CUDA programs
• Output PTX instruction sets

• NVProf
• Performance profiler for CUDA programs
• Show runtime information of CUDA

programs
• nvprof –print-gpu-trace ./a.out

18

Mixed mode
coded

Host split Device split

Host code Device code

Clang for
CUDA

IR
Optimizer

NVPTX
Codegen

PTX Assembly
Host code
generator

Host compiler

Binaryhttp://llvm.org/devmtg/2015-10/slides/Wu-OptimizingLLVMforGPGPU.pdf

GPU Instruction Sets
• Nvidia

• PTX ISAs – virtual ISAs, RISC-like ISAs, a limitless set of virtual
registers

• SASS ISAs – actual ISAs supported by the hardware, no fully
document

• AMD
• TeraScale->GCN->RDNA ISAs
• Open-source ISAs – specified to AMD GPU architectures

• ARM
• Mali Bifrost, Valhall GPU architecture
• Proprietary ISAs

• Why ISAs matter ?
• Determine the computer architecture (IP) design

19

Parallel Thread Execution (PTX) Instructions

20

__global__ void vecAdd(double *a, double *b, double *c, int n){
int id = blockIdx.x*blockDim.x+threadIdx.x;
if (id < n)

c[id] = a[id] + b[id];
}

ld.param.u64 %rd1, [_Z6vecAddPdS_S_i_param_0]; // load parameter a
ld.param.u64 %rd2, [_Z6vecAddPdS_S_i_param_1]; // load parameter b
ld.param.u64 %rd3, [_Z6vecAddPdS_S_i_param_2]; // load parameter c
ld.param.u32 %r2, [_Z6vecAddPdS_S_i_param_3]; // load parameter d
mov.u32 %r3, %ctaid.x; // blockIdx.x
mov.u32 %r4, %ntid.x; // blockDim.x
mov.u32 %r5, %tid.x; // threadIdx.x
mad.lo.s32 %r1, %r4, %r3, %r5; // id = blockIdx.x * blockDim.x + threadIdx.x
setp.ge.s32 %p1, %r1, %r2; // if (id < n)
@%p1 bra BB0_2;

Parallel Thread Execution (PTX) Instructions

21

__global__ void vecAdd(double *a, double *b, double *c, int n){
int id = blockIdx.x*blockDim.x+threadIdx.x;
if (id < n)

c[id] = a[id] + b[id];
}

cvta.to.global.u64 %rd4, %rd1; // convert memory address to generic address, %rd1: a
mul.wide.s32 %rd5, %r1, 8;
add.s64 %rd6, %rd4, %rd5; // calculate memory location of b
cvta.to.global.u64 %rd7, %rd2; // %rd2: b
add.s64 %rd8, %rd7, %rd5; // calculate memory location of a
ld.global.f64 %fd1, [%rd8]; // load a
ld.global.f64 %fd2, [%rd6]; // load b
add.f64 %fd3, %fd2, %fd1; // c = a + b
cvta.to.global.u64 %rd9, %rd3; // %rd3: c
add.s64 %rd10, %rd9, %rd5; // memory address of c
st.global.f64 [%rd10], %fd3; // store result of c back to memory

Dump out PTX ISA

• Dump out an native kernel
• nvcc --ptx [file.cu]

• Dump out kernel of CUDA libraries (cuBLAS, cuDNN
etc..)

• cuobjdump --dump-ptx [file.cu] -lcublas_static -
lcublasLt_static -lculibos

• cuobjdump --dump-ptx [file.cu] –lcudnn_static -lcublas_static
-lcublasLt_static -lculibos

• Dump out native SASS ISAs
• cuobjdump --dump-sass [file.cu]

22

https://docs.nvidia.com/cuda/parallel-thread-execution/index.html

Takeaway Questions

• What are features of the GPU?
• (A) Large L1 cache
• (B) Needs the memory with high memory bandwidth
• (C) The frequency of SIMT core is high

• How many threads in a warp declared by this kernel?
Foo<<<256, 4>>>

• (A) 256
• (B) 32
• (C) 4

23

Modern GPU Architecture
• The GPU thread hierarchy

• A warp (32 threads) -> a thread block (CTA) (< 32 warps) -> grid

• Each SM has a shared memory
(16 – 64 KB) and a data cache

• Threads within a CTA can
communicate with each other via
a per SM shared memory

• The shared memory acts as a
software controlled cache

• Allocate shared memory using
__shared__ in CUDA

24

Streaming
Multiprocessor

Streaming
Multiprocessor

Streaming
Multiprocessor

Modern GPU Architecture

• Synchronization
• Threads within a CTA can synchronize using hardware-supported

barrier instructions (__syncthreads())
• Threads in different CTAs can

communicate, but do so through
a global address space that is
accessible to all threads

25

Streaming
Multiprocessor

Streaming
Multiprocessor

Streaming
Multiprocessor

The SIMT Core
• SIMT front end

• The instruction fetch: fetch, I-cache, Decode, and I-buffer
• The instruction issue: I-buffer, Scoreboard, Issue, SIMT stack

• SIMD data path
• Operand collector, ALU, Memory

26

SIMT Front End SIMD Datapath

ALUALUALU

I-Cache Decode
I-Buffer

Score
Board

Issue
Operand
Collector

MEM

ALU
Fetch SIMT-Stack

Done (WID)

Branch Target PC
Pred.Active

Mask
Scheduler 1

Scheduler 2

Scheduler 3

GPGPU-Sim, MICRO

The Execution in the SIMT core
• In each cycle, the hardware selects a warp for scheduling

• The warp’s program counter is used to access an instruction memory
to find the next instruction to execute for the warp

• An on-chip warp buffer holds multiple warps
for a GPU SM. (Why ?)

27

Scalar
Thread 0

Scalar
Thread 1

Scalar
Thread 31

Warp Common PC

…

Warp 7
Warp 9

Warp 0

SIMT Pipeline

Interleave warp execution hides the memory latency …

SIMT Pipeline
• 5 stage In-Order SIMT pipeline

• Register values of all threads stays in core

28

SIMT
Front End SIMD Datapath

Fetch
Decode

Schedule
Branch

Done (Warp ID)

Memory Subsystem Icnt.
NetworkSMem L1 D$ Tex $ Const$

Reg
File

GPGPU-Sim, MICRO

Schedule
+ Fetch Decode Register

Read Execute Memory Writeback

Inside a SIMT Core
• Fetch, Warp Issue, and Operand Schedulers

• Scoreboard ->data hazard and SIMT stack->control flow

• Large register file

• Multiple SIMD functional units

29

SIMT Front End SIMD Datapath

ALUALUALU

I-Cache Decode
I-Buffer

Score
Board

Issue
Operand
Collector

MEM

ALU
Fetch SIMT-Stack

Done (WID)

Branch Target PC
Pred.Active

Mask
Scheduler 1

Scheduler 2

Scheduler 3

GPGPU-Sim, MICRO

Fetch + Decode

• I-Cache
• Fetch instructions of warps in a round

robin manner
• Read-only, set associative
• FIFO or LRU replacement

• I-Buffer
• Store instructions fetched from I-cache
• Each warp has two I-buffer entries
• Valid bit indicates non-issued decode instructions
• Ready bit indicates instructions are ready to

be issued to the execution pipeline
30

Inst. W1 r
Inst. W2
Inst. W3

v
rv
rv

To
Fetch

Issue

Decode Score-
Board

Issue
ARB

PC1
PC2
PC3

A
R
B

SelectionT
o

I-
C

a
c

h
e

Valid[1:N]

I-Cache Decode
I-Buffer

Fetch
Valid[1:N]

v: valid bit
r: ready bit

GPGPU-Sim, MICRO

Instruction Issue
• A round-robin arbiter

• Choose instructions of a warp from I-Buffer to
issue to the rest of the pipeline

• Allow dual issue

• Instruction issue
• Memory instructions are issued to memory pipeline
• SP and SFU pipeline

• Issue stage
• Barrier operations are executed
• SIMT stack is updated
• Register dependency is tracking (Scoreboard)
• Warps wait for barrier (__synthreads()) at issue stage

31

Inst. W1 r
Inst. W2
Inst. W3

v
rv
rv

To
Fetch

Issue

Decode Score-
Board

Issue
ARB

v: valid bit
r: ready bit

GPGPU-Sim, MICRO

The Execution in the SIMT core

• After fetching an instruction
• The instruction is decoded
• Source operand registers are fetched from the register file
• Determine SIMT execution mask values

• SIMD execution
• Execution proceeds in a single-instruction, multiple-data manner
• Each thread executes on the function unit associated with a lane

provided the SIMT execution set is set

• Function unit
• Special function unit (SFU), load/store unit, floating-point, integer

function unit, Tensor core
32

ALU Pipelines
• SIMD execution unit

• SP units executes ALU instructions except some special ones
• SFU units executes special functional instructions (sine, log …)
• Different types of instructions takes varying execution cycles
• A SIMT core has one SP and SFU unit
• Each unit has an independent issue port from the operand

collector.

• Writeback
• Each pipeline has a result bus for writeback
• Except SP and SFU shares a result bus
• Time slots on the shared bus is pre-allocated

33

Scoreboard

• Dynamically scheduling instructions so that they can execute
out of order when there are no conflicts and the hardware is
available

• Solutions for WAR:
• Stall writeback until registers have been read
• Read registers only during Read Operands stage

• Solution for WAW:
• Detect hazard and stall issue of new instruction until other instruction

completes

• Instructions with hazards -> not ready flag in I-Buffer

34

SIMT Execution Masking

• A control flow graph (CFG)
• Initially four threads in the warp
• A/1111 indicates all four threads are

executing the code in Basic Block A

35

SIMT Execution Masking

• SIMT Execution masking
• Tackle the nested control flow
• Skipping computation entirely while all threads in a warp avoid a control

flow path
• Serialize execution of threads following different paths within a given warp
• An arrow with a hollow head indicates the thread is masked off

36

SIMT Stack
• SIMT stack includes

• A reconvergence program counter (RPC)
• The address of the next instruction to

execute (Next PC)
• An active mask

37

w[] = {2, 4, 8, 10};
A: v = w[threadIdx.x];
B: if (v < 9)
C: v = 1;

else
D: v = 20;
E: w = bar[threadIdx.x] + v

Tim
e

A T1 T2 T3 T4

B T1 T2 T3 T4

C T1 T2

D

T3

T4

E T1 T2 T3 T4

Serialize
operations in
different paths

One stack per warp
SIMT Stack

PC RPC Active Mask
E - 1111
D E 0001
C E 1110

SIMT Stack

38

A/1111

B/1110

C/1000 D/0110

E/1110

G/1111

F/0001

Re-converge PC Next PC Active Mask

- G 1111

G F 0001

G B 1110

Initial State

Re-converge PC Next PC Active Mask

- G 1111

G F 0001

G E 1110

E D 0110

E C 1000

After Divergent Branch

Re-converge PC Next PC Active Mask

- G 1111

G F 0001

G E 1110

After Reconvergence

TOS

TOS

TOS

Top-of-Stack (TOS)

Warp Scheduling

• Hide long execution latency

• Warp scheduler selects an instruction
of a warp that is ready to execute

• Instruction-level parallelism (ILP)
• Pick instructions of the same warp

• Thread-level parallelism (TLP)
• Choose instructions across different warps

• Multiple Warp schedulers on a SIMT Core

• Impact on the SIMT Core utilization

39

I-Cache

I-Buffer

Warp Scheduler

Warp 0
Warp 1

Warp 63

…

W
ar

p
Sl

ot

SIMT Core

Loose Round Robin (LRR) Scheduling

• Scan through warps and select the one ready warp (R)

• If warp is not ready (N), skip that one and go to the next one

• Warp all runs on the same chance

• Problems
• Potentially all warps reach

memory access phase
together and get stall

40

R N R R R N R R

Warps

Select Logic

Execution Units

Two-Level (TL) Scheduling

• Warps are divided into two
groups

• Pending warps (potentially
waiting for long latency instructions)

• Active warps (ready to execute)
• Warps move between pending

and active warps
• Active warps are issued in LRR

• Overlap warps with
memory access and ALU
instructions

41

P P P P P P P P

Pending Warps

Select Logic

Execution Units

A A A A A

Active Warps

Greedy-Then-Oldest Scheduling

• Select instructions of a single warp until it stalls

• Then pick the oldest warp to the next

• Improve the cache locality of the greedy warp

42

R N R R R N R R

Warps

Select

Execution Units

Thread Block (CTA) Scheduling

• A CTA is issued to one SIMT core at a time

• Scans through SIMT cores to issue a CTA to a SIMT core with
available resources at round-robin manner

• Threads (available warp buffer)
• The shared memory space
• The register file

• Multiple concurrent kernels
• Different kernels can be executed across SIMT cores

43

Register File

• 256 KB register files on a SIMT core
• How many registers can be used by one thread ?

• Maximum number of warps per SIMT core is 64
• 32 threads per warp
• 256 KB / 64 / 32 / 32-bit = 32

• Need “4 ports” (e.g. FMA) -> increase area greatly
• What is the solution ?

• Banked single ported register file

44

Operand Collector
• Operand collector aims to increase register file bandwidth

• A valid bit, a register identifier, a ready bit, and operand data

• Arbiter selects operand that don’t conflict on a given cycle

45GPGPU-Sim, MICRO

Register Bank Conflict

• On cycle 4, issue instruction i2
after a delay due to bank
conflict

• Low utilization of register banks

• Solutions ?

46

Bank 0 Bank 1 Bank 2 Bank 3
… … … …

W1:r4 W1:r5 W1:r6 W1:r7
W1:r0 W1:r1 W1:r2 W1:r3
W0:r4 W0:r5 W0:r6 W0:r7
W0:r0 W0:r1 W0:r2 W0:r3

Cycle Warp Instruction

0 W3 i1: mad r2, r5, r4, r6

1 W0 i2: add r5, r5, r1

4 W1 i2: add r5, r5, r1

1 2 3 4 5 6

0 W3:i1:r4

1 W3:i1:r5 W0:i2:r1 W0:i2:r5 W0:i2:r5 W1:i2:r1 W1:i2:r5

2 W3:i1:r6 W3:i1:r2

3

Ba
nk

Cycle

Register Bank Conflict

• Swizzle banked register layout

• W0:r0 -> bank 0, W1:r0 -> bank 1,
W2:r0 -> bank 2, W3:r0 -> bank 3

• Save 1 cycle against the naïve bank
layout. Could we do better ?

47

Bank 0 Bank 1 Bank 2 Bank 3
… … … …

W1:r7 W1:r4 W1:r5 W1:r6
W1:r3 W1:r0 W1:r1 W1:r2
W0:r4 W0:r5 W0:r6 W0:r7
W0:r0 W0:r1 W0:r2 W0:r3

Cycle Warp Instruction

0 W3 i1: mad r2, r5, r4, r6

1 W0 i2: add r5, r5, r1

4 W1 i2: add r5, r5, r1

1 2 3 4 5 6

0

1 W3:i1:r5 W0:i2:r1 W0:i2:r5 W3:i1:r2 W1:i2:r1

2 W3:i1:r6 W0:i2:r5 W1:i2:r5

3 W3:i1:r4

Ba
nk

Cycle

Takeaway Questions

• How does GPU hide the instruction fetch latency?
• (A) Use SIMT stack
• (B) Use multiple instruction fetcher
• (C) Use instruction buffer

• What is the purpose of the SIMT stack?
• (A) Record the register location
• (B) Handle the branch divergence
• (C) Increase the speed of SIMT execution

48

Takeaway Questions

• What are correct descriptions of SIMT execution model?
• (A) Every thread in a warp tackles the same instruction
• (B) Threads within a warp can walk different control paths

concurrently
• (C) Need to duplicate scalar value to each thread in a warp

• How does GPU hide long memory access latency?
• (A) Increase the number of concurrent threads
• (B) Interleaving the execution on SMs and memory access
• (C) Using the warp buffer

49

