Accelerator Architectures for Architectures for Machine Learning Lecture 6: Digital DNN Accelerator Tsung Tai Yeh Tuesday: 3:30 – 6:20 pm Classroom: ED-302

1

Acknowledgements and Disclaimer

- Slides was developed in the reference with Joel Emer, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, ISCA 2019 tutorial Efficient Processing of Deep Neural Network, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, Morgan and Claypool Publisher, 2020 Yakun Sophia Shao, EE290-2: Hardware for Machine Learning, UC Berkeley, 2020 CS231n Convolutional Neural Networks for Visual Recognition, Stanford University, 2020
 - CS7960 Neuromorphic Architectures, University of Utah, 2019

Outline

- DaDianNao
- GraphCore IPU
- Wafer-scale AI chip Cerebras
- SambaNova Reconfigurable Dataflow Unit (RDU)
- Coarse grained reconfigurable array (CGRA)

DianNao

DianNao

- Bottleneck
 - The access of large sets of input/weights/outputs
- Design methodology
 - Tiling is used to maximize reuse of the data that is brought into buffers
 - Place data in memory and prefetch "tile" into buffers
 - Each data type has a different requirement -> multiple buffers
 - The ALUs must be time-multiplexed across several neurons

DianNao Architecture

DianNao

- The NFU can handle 16 neurons in parallel (if a neuron has > 16 inputs?)
- **Split buffers** inputs/output/weight
- Staggered pipeline NFU-1 (pooling) NFU-2 (CONV), NFU-3 (ACT.)
- The compute unit has 256 parallel multipliers (16 inputs for 16 neurons)
- 16 adder-trees per neuron
- Each tree has 15 adders to aggregate the results of 16 multipliers

DianNao, ASPLOS, 2014

DianNao Architecture

DianNao

- The sum-of-products is sent to the activation function
- The ACT -> piecewise linear interpolation
- The non-linear function is split into 16 linear segments
- A look-up table tracks the end-points of each segment -> 8-stage pipeline
- Control processor has instructions that specify how data is loaded/accessed in buffers

DianNao, ASPLOS, 2014

DianNao

DaDianNao

 Use 16b fixed-point arithmetic, reduce area/power by ~7x when using 32b float-point math

Туре	Area (μm^2)	Power (μW)
16-bit truncated fixed-point multiplier	1309.32	576.90
32-bit floating-point multiplier	7997.76	4229.60

 Table 2. Characteristics of multipliers.

Fixed Point Error Rates

Туре	Error Rate
32-bit floating-point	0.0311
16-bit fixed-point	0.0337

Other details

All these improvement are because DienDao removes the memory access bottleneck

- The NFU is composed of 8 pipeline stages
- Peak activity is nearly 500 GOP/s
- 44 KB of RAM capacity
- Buffers are about 60% of area/power, while NFU is ~30%
- Energy is 21X better than a SIMD baseline where has high cost of memory accesses
- Tiling to reduce memory traffic
- Big performance boots as well: higher computational density, tiling, prefetching

DaDianNao Philosophy

- Avoid going to off-chip memory altogether
- Keeps the weights on-chip in eDRAM banks (why eDRAM not SRAM?)
- Many chips as required to keep all weights in on-chip eDRAM bank
- Every operation is spread across several "tiles" to maximize parallelism

DaDianNao Philosophy II

- Near data processing -> a computation is performed on the NFU next to the eDRAM that has the necessary weight
- When those neurons produce their output
- These outputs are broadcast to all the tiles that need these as inputs to the next layer

DaDianNao Philosophy III

- A chip has 16 tiles that share two 2 MB eDRAM banks (input from previous layer and the output of the current layer)
- 32 MB eDRAM banks for weights
- The NFU needs to receive 512 B/cycle to stay busy during the classifier layer -> each eDRAM bank has a read width of 512 bytes (wiring overhead)

DaDianNao Layouts

Figure 5: Tile-based organization of a node (left) and tile architecture (right). A node contains 16 tiles, two central eDRAM banks and fat tree interconnect; a tile has an NFU, four eDRAM banks and input/output interfaces to/from the central eDRAM banks. Each eDRAM bank size is 512 KB (3 cyc); central eDRAM bank is 2MB (10 cyc); total node storage is 36 MB; HT bw is 6.4 x 4 GB/s (80ns).

GraphCore IPU

GraphCore IPUs

GraphCore Intelligent Processing Units (IPUs)

- Unlike GPU that is dedicated to accelerate large dense matrix
- IPUs supports **dynamic sparse training** and unstructured computation such as path tracing in 3D computer graphics
- Multiple tile processors
- Poplar programming model
 - Dedicated compiler (PopC)
 - Mapping compute graph to tile processors
 - Compute kernels (Codelets)

https://hc33.hotchips.org/assets/program/conference/day2/HC2021.Graphcore.SimonKnowles.v04.pdf ¹⁰

Graphcore IPU Approach

- Post-Dennard, the silicon is power-limited
 - we can put more logic on the die than we can power (dark silicon)

• IPU architecture approach

 Replace dark silicon logic with on-chip RAM that has lower power density

From: Knowles, Simon. Designing Processors for Intelligence. 2017. UC Berkeley EECS Events, https://www.youtube.com/watch?v=7XtBZ4Hsi_M.

Graphcore IPU approach

GPU approach

• Shared memory model with caches and memory hierarchy to reduce latency

• IPU approach

• Move as much memory as possible into the chip local to the logic

Graphcore IPU Abstraction

• Tile processors

- Each tile is a multi-threaded processor and has its local memory
- Tiles communicate through all-to-all, stateless exchange

• A tensor vertex

Can be distributed over many tiles

Distributed memory architecture

- 1472 tiles with 6 threads sharing 624 KiB of local SRAM ™
- Total of 896 MiB and 250Tflop/s in 8832 worker threads
- 7.8TB/s exchange between tiles
- Tiles have no shared memory or caches

Graphcore Architecture White paper, https://www.graphcore.ai/products/ipu

Execution Model

- Tile workers execute instructions independently in parallel (MIMD),
- Wait for sync, followed by all-to-all data exchange phase (hardware implementation of **Bulk Synchronous Parallel (BSP)** Model)
- No concurrency hazards (races, deadlocks etc.)
- Compiler faces hard job of scheduling and *load-balancing* compute-chunks on tile workers

Jia, Zhe, et al. 'Dissecting the Graphcore IPU Architecture via Microbenchmarking'. ArXiv:1912.03413, Dec. 2019. arXiv.org, http://arxiv.org/abs/1912.03413.

Tile Processor

- 32b instructions, single or dual issue
- Two execution paths:
 - MAIN:
 - Control flow, integer/address arithmetic, load/store to/from either path
 - AUX:
 - Floating-point arithmetic for tensor operations + special instructions like log, tanh, PRNG etc.

Tile Processor

- Fine-grained multithreading that switches between 6 threads on every cycle in round-robin fashion
 - Issued worker programs run in a slot at 1/6 of the clock, so they can't see the pipeline, i.e., mem access, branches etc. all appear to take one cycle per instruction
 - This makes worker execution simple for the compiler to predict for easier load balancing

23

N + 1 barrel threading

- 7 program contexts
- 6 round-robin pipeline slots

The supervisor program

- A fragment of the control program
- Orchestrating the update of vertices
- Execute in all slots not yielded to workers
- Dispatch workers by **RUN** instruction
- A **worker program** is a codelet updating a vertex
 - Execute in 1 slot at 1/6 of clock
 - Returns its slot to the supervisor by EXIT instruction

'Graphcore IPUs'. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.

Sparse Load/Store

Large on-die SRAM memory

- 896 MiB on-die SRAM at 47TB/s (data-side)
- Access arbitrarily-structured data which fits on chip

Ld/St instructions

- Support sparse gather in parallel with arithmetic at full speed via compact pointer lists
- 16b absolute offsets to a base
- 4b cumulative delta offsets to a base

Global Program Order

Tile processors

- Execute asynchronously until they need to exchange data
- Each tile executes a list of atomic codelets in one compute phase

Bulk Synchronous Parallel

• Repeat {Sync; Exchange; Compute}

Why no HBM Memory ?

- Memory bandwidth limits how fast Al can complete
- GPU and TPU
 - Solve for bandwidth and capacity using HBM
 - HBM is expensive, capacity-limited, and adds 100W+ to the processor thermal envelope

• IPU

 Solves for bandwidth with SRAM, and for capacity with DDR

'Graphcore IPUs'. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.

IPU hardware helps software

- Simple mechanisms allow software evolution
 - Native graph abstraction
 - Codelet-level parallelism
 - Pipeline-oblivious threads
 - BSP removes concurrency hazards
 - Stateless all-to-all exchange
 - Cacheless, uniform, near/far memory

Takeaway Questions

- How does DaDianDao hide memory access latency ?
 - (A) Increase the size of the memory
 - (B) Increase the number of eDRAM banks
 - (C) Increase the number of tiles
- Why GraphCore IPU employ large SRAM instead of HBM?
 - (A) Achieve high bandwidth
 - (B) Large memory capacity
 - (C) Save silicon area

Wafer-scale AI chip --Cerebras

Largest AI chip

- 46,225 mm² silicon
- 1.2 trillion transistors
- 400,000 AI optimized cores
- 18 Gigabytes of on-chip memory
- 9 Pbyte/s memory bandwidth
- 100 Pbit/s fabric bandwidth
- TSMC 16 nm process

Cerebras WSE

21.1 Billion Transistors 815 mm² silicon

GPU

Why big chips ?

- Big chips process data more quickly
 - Cluster scale performance on a single chip
 - GB of fast memory 1 clock cycle from core
 - On-chip interconnect orders of magnitude faster than off-chip
 - Model-parallel, linear performance scaling
 - Training at scale, with any batch size, at full utilization

Cerebras Architecture

- Core optimized for neural network primitives
- Flexible, programmable core
 - NN models are evolving

Designed for sparse compute

 Workloads contain fine-grained sparsity (where are these sparsity from ?)

Local memory

reusing weight & activations

Fast interconnect

• Layer-to-layer with high bandwidth and low latency

Cerebras programmable core

- Flexible cores optimized for tensor operations
 - General ops for control processing
 - e.g. arithmetic, logical, LD/ST, branch
 - Optimized tensor ops for data processing
 - Tensor operands
 - e.g. fmac [Z] = [Z], [W], a 3D 3D 2D

Sparse compute engine

- Nonlinear activations naturally create fine-grained sparsity
- Dataflow scheduling in hardware
 - Triggered by data
 - Filters out sparse zero data
 - Skips unnecessary processing
- Fine-grained execution datapaths
 - Small cores with independent instructions
 - Efficiently processes dynamic, non-uniform work

X
Cerebras memory architecture

Traditional memory designs

- Centralized shared memory is slow & far away
- Requires high data reuse (caching)
- Local weights and activations are local -> low data reuse

Cerebras memory architecture

- All memory is fully distributed along compute
- Datapath has full performance from memory

Memory uniformly distributed across cores

High-bandwidth low-latency interconnect

- 2D mesh topology effective for local communication
 - High bandwidth and low latency for local communication
 - All HW-based communication avoids SW overhead
 - Small single-word message

Challenges of wafer scale

• Building a 46,225 mm², 1.2 trillion transistor chip

Challenges include

- Cross-die connectivity
- Yield
- Thermal expansion
- Package assembly
- Power and cooling

Challenge 1: cross die connectivity

- Standard fabrication process requires die to be independent
- Scribe line separates each die
- Scribe line used as mechanical barrier for die cutting for test structures

Cross-die wires

- Add wires across scribe line with TSMC
- Extend 2D mesh across die
- Same connectivity between cores and across scribe lines create a homogeneous array
- Short wires enable ultra high bandwidth with low latency

Challenges II: Yield

- Impossible to yield full wafer with zero defects
 - Silicon and process defects are inevitable even in mature process

Redundant cores

- Uniform small cores
- Redundant cores and fabric links
- Redundant cores replace defective cores
- Extra links reconnect fabric to restore logical 2D mesh

Challenge III: Thermal expansion in package

- Silicon and PCB expand at different rates under temperature
- Size of wafer would result in too much mechanical stress using traditional package technology

Connecting wafer to PCB

- Developed custom connector to connect wafer to PCB
- Connector absorbs the variation while maintaining connectivity

Challenge IV: Package assembly

- Package includes
 - PCB
 - Connector
 - Wafer
 - Cold plate
- All components require precise alignment
- Main PCB Board
- Developed custom machines and process

Challenge V: Power and cooling

Concentrated high density exceeds traditional power & cooling capacities

• Power delivery

 Current density too high for power plane distribution in PCB

Heat removal

 Heat density too high for direct air cooling

Using the 3rd dimension

• Power delivery

 Current flow distributed in 3rd dimension perpendicular to water

Heat removal

• Water carries heat from wafer through cold plate

SambaNova Reconfigurable Dataflow Unit (RDU)

Plasticine Architecture

Plasticine architecture

• A reconfigurable architecture for parallel patterns (Raghu, ISCA 2017)

• Pattern Compute Unit (PCU)

• Reconfigurable pipeline with multiple stages of SIMD functional units (FUs)

• Pattern Memory Unit (PMU)

- A banked scratchpad memory
- The compiler
 - Maps the computation of inner loops to PCUs
 - Most operands are transferred directly between FUs without scratchpad access or inter-PCU communication

Plasticine Architecture Overview

- Calculates address occurs while the PCU is working
- Each DRAM channel is accessed using several address generators (AG) on two sides of the chip
- Multiple AGs connect to an address coalescing unit for memory requests

Plasticine PCU Architecture 2. Each vector communicates one

Pattern Compute Unit (PCU)

- **1. Scalar**: uses to communicate single words of data
- word per line in the PCU
- 3. Control signals at the start or end of execution of a PCU
- Each stage's SIMD lane contains a FU and associated pipeline register (PR)

51

Plasticine PMU Architecture

• Pattern Memory Unit (PMU)

- Contains a scratchpad memory and address calculation
- Calculates address only needs simple scalar math
- Has simpler FUs than ones in PCUs

Reconfigurable Dataflow Unit (RDU)

• SambaNova RDU

- Pattern Compute Units
 - BF16 with FP32 accumulation
 - Support FP32, Int32, Int16, Int8
- Pattern Memory Unit
 - Memory transformation
- Dataflow optimization
 - Tiling
 - Nested pipelining
 - Operator parallel streaming

Dataflow Exploits Data Locality / Parallelism

• Software-hardware co-design architecture

- Dataflow captures data locality and parallelism
- Flexible time and space scheduling to achieve higher utilization
- Flexible memory system and interconnect to sustain high compute throughput
- Custom dataflow pipeline

Chip and Architecture Overview

• RDU Tile

- Compute and memory components
- A programmable interconnect

Tile resource management

- Combine adjacent tiles to form a larger logical tile
- Each tile controlled independently
- Allow different applications on separate tiles concurrently

Memory access

- Direct access to TBs DDR4 off-chip memory
- Memory-mapped access to host memory

55

RDU Tile

Pattern Compute Unit (PCU)

Pattern Compute Unit (PCU)

- Compute engine
- Reconfigurable SIMD data path
 - For dense and sparse tensor algebra in FP32, BF16, and integer data format
- Programmable counters
 - Program loop iterators
- Tail unit
 - Accelerates functions such as exp, sigmoid

Pattern Memory Unit (PMU)

Pattern Memory Unit (PMU)

- On-chip memory system
- Banked SRAM arrays
 - Write and read multiple high bandwidth SIMD data stream concurrently
- Address ALUs
 - Address calculation for arbitrarily complex accesses
- Data align
 - Tensor layout transformation

Switch and On-chip Interconnect

• Switch

- Programmable packet-switched interconnect fabric
- Independent data and control buses
 - Suit different traffic classes

Programmable routing

- Flexible chip bandwidth allocation to concurrent stream
- Programmable counters
 - Outer loop iterators
 - On-chip metric collection

Interface to I/O Subsystem

Address ALUs

Address calculation for arbitrarily complex accesses

Coalescing Units

 Enable transparent access to memories across RDUs and host memory

Address space manager

 Programmable, variable length segments

Pipelined in Space + Fused

Spatial Dataflow within an RDU

The dataflow removes

Memory traffic and host communication overhead

CGRA

Coarse grained reconfigurable array (CGRA)

Coarse grained reconfigurable array (CGRA)

- Multiple processing elements (PEs)
- Each PE has ALU-like functional unit
- Array configurations vary by
 - Array size
 - Functional units
 - Interconnection network
 - Register file architectures
- CGRAs can achieve power-efficiency of several 10s of GOps/sec per Watt (why?)
 - Samsung SRP processor (embedded and multimedia apps)

Key features of CGRA accelerators

Software-pipelining execution mapping

- Accelerate loops with low parallelism
- Loops with loop-carried dependence, loops with high branch divergence

Avoid von-Neumann architecture bottleneck

- CGRAs are not subjected to dynamic fetch and decoding of instructions
- CGRA instructions are in a pre-decoded form in the instruction memory
- PE transfers data directly among each another
- Without going through a centralized registers and memory

Data dependency graph

Mapping data dependency graph to CGRA Loop: t1 = (a[i]+b[i]-k)*c[i] d[i] = ~t1 & 0xFFFF

Data dependency graph

Mapping data dependency graph to CGRA Loop: t1 = (a[i]+b[i]-k)*c[i] d[i] = ~t1 & 0xFFFF

Data dependency graph

Mapping data dependency graph to CGRA Loop: t1 = (a[i]+b[i]-k)*c[i] d[i] = ~t1 & 0xFFFF

Data dependency graph

Mapping data dependency graph to CGRA Loop: t1 = (a[i]+b[i]-k)*c[i] d[i] = ~t1 & 0xFFFF

Takeaway Questions

- What are challenges to build a large chip for NN applications ?
 - (A) Power and cooling
 - (B) Fault tolerance for defected dies
 - (C) Package assembly
- How does Cerebras tackle the DNN sparsity ?
 - (A) Customized sparse core
 - (B) Data-driven dataflow scheduling
 - (C) Filters out sparse zero data

Takeaway Questions

- What are hardware components used by RDU ?
 - (A) Pattern computer unit (PCU)
 - (B) Pattern memory unit (PMU)
 - (C) Interconnect network router
- What are features of CGRAs ?
 - (A) Customized PEs
 - (B) Software-pipelining execution mapping
 - (C) Reconfigurable dataflow