
Accelerator
Architectures for

Machine Learning
Lecture 6: Digital DNN Accelerator

Tsung Tai Yeh
Tuesday: 3:30 – 6:20 pm

Classroom: ED-302

1

Acknowledgements and Disclaimer
• Slides was developed in the reference with

Joel Emer, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, ISCA 2019
tutorial
Efficient Processing of Deep Neural Network, Vivienne Sze, Yu-Hsin
Chen, Tien-Ju Yang, Joel Emer, Morgan and Claypool Publisher, 2020
Yakun Sophia Shao, EE290-2: Hardware for Machine Learning, UC
Berkeley, 2020
CS231n Convolutional Neural Networks for Visual Recognition,
Stanford University, 2020
CS7960 Neuromorphic Architectures, University of Utah, 2019

2

Outline

• DaDianNao
• GraphCore IPU
• Wafer-scale AI chip – Cerebras
• SambaNova Reconfigurable Dataflow Unit (RDU)
• Coarse grained reconfigurable array (CGRA)

3

DianNao

DianNao

• Bottleneck
• The access of large sets of input/weights/outputs

• Design methodology
• Tiling is used to maximize reuse of the data that is brought into

buffers
• Place data in memory and prefetch “tile” into buffers
• Each data type has a different requirement -> multiple buffers
• The ALUs must be time-multiplexed across several neurons

5

DianNao Architecture

• DianNao
• The NFU can handle 16 neurons in

parallel (if a neuron has > 16 inputs?)
• Split buffers – inputs/output/weight
• Staggered pipeline – NFU-1 (pooling)

NFU-2 (CONV), NFU-3 (ACT.)
• The compute unit has 256 parallel

multipliers (16 inputs for 16 neurons)
• 16 adder-trees per neuron
• Each tree has 15 adders to aggregate the results of 16 multipliers

6

DianNao, ASPLOS, 2014

DianNao Architecture

• DianNao
• The sum-of-products is sent to the

activation function
• The ACT -> piecewise linear

interpolation
• The non-linear function is split into

16 linear segments
• A look-up table tracks the end-points

of each segment -> 8-stage pipeline
• Control processor has instructions that specify how data is

loaded/accessed in buffers 7

DianNao, ASPLOS, 2014

DianNao

• DaDianNao
• Use 16b fixed-point arithmetic, reduce area/power by ~7x when

using 32b float-point math

8

Fixed Point Error Rates

9

Other details

• The NFU is composed of 8 pipeline stages
• Peak activity is nearly 500 GOP/s
• 44 KB of RAM capacity
• Buffers are about 60% of area/power, while NFU is ~30%
• Energy is 21X better than a SIMD baseline where has high cost of

memory accesses
• Tiling to reduce memory traffic
• Big performance boots as well: higher computational density, tiling,

prefetching
10

All these improvement are because
DienDao removes the memory
access bottleneck

DaDianNao Philosophy

• Avoid going to off-chip memory altogether
• Keeps the weights on-chip in eDRAM banks (why eDRAM not SRAM?)
• Many chips as required to keep all weights in on-chip eDRAM bank
• Every operation is spread across several “tiles” to maximize

parallelism

11

DaDianNao Philosophy II

• Near data processing -> a computation is performed on the NFU next
to the eDRAM that has the necessary weight

• When those neurons produce their output
• These outputs are broadcast to all the tiles that need these as inputs

to the next layer

12

DaDianNao Philosophy III

• A chip has 16 tiles that share two 2 MB eDRAM banks (input from
previous layer and the output of the current layer)

• 32 MB eDRAM banks for weights
• The NFU needs to receive 512 B/cycle to stay busy during the

classifier layer -> each eDRAM bank has a read width of 512 bytes
(wiring overhead)

13

DaDianNao Layouts

14

GraphCore IPU

GraphCore IPUs

• GraphCore Intelligent Processing Units (IPUs)
• Unlike GPU that is dedicated to accelerate large dense matrix
• IPUs supports dynamic sparse training and unstructured

computation such as path tracing in 3D computer graphics
• Multiple tile processors
• Poplar programming model

• Dedicated compiler (PopC)
• Mapping compute graph to

tile processors
• Compute kernels (Codelets)

16https://hc33.hotchips.org/assets/program/conference/day2/HC2021.Graphcore.SimonKnowles.v04.pdf

Graphcore IPU Approach

• Post-Dennard, the silicon is power-limited
• we can put more logic on the die than we can power (dark silicon)

• IPU architecture approach
• Replace dark silicon logic with on-chip RAM that has lower power

density

From: Knowles, Simon. Designing Processors for Intelligence. 2017. UC Berkeley EECS Events, https://www.youtube.com/watch?v=7XtBZ4Hsi_M.

Die area Die area

GPU IPU

Power Power
RAM RAM

FPU

FPU

FPU

RAM

RAM

FPU

DARK
(HPC,

Graphics)

Graphcore IPU approach

• GPU approach
• Shared memory model with caches and memory hierarchy to reduce latency

• IPU approach
• Move as much memory as possible into the chip local to the logic

RAM
FPU

“Tiles”
RAM
FPU

RAM
FPU

RAM
FPU

RAM
FPU

RAM
FPU

RAM RAM

RAMRAM

FPU

IPUGPU

Graphcore IPU Abstraction

• Tile processors
• Each tile is a multi-threaded processor and has its local memory
• Tiles communicate through all-to-all, stateless exchange

• A tensor vertex
• Can be distributed over many

tiles

19‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.

Distributed memory architecture

• 1472 tiles with 6 threads
sharing 624 KiB of local SRAM

• Total of 896 MiB and
250Tflop/s in 8832 worker
threads

• 7.8TB/s exchange between
tiles

• Tiles have no shared memory
or caches

Tiles

Mem +
Core

Chip-
interconnect

Tile Exchange

Graphcore Architecture White paper, https://www.graphcore.ai/products/ipu

Execution Model

• Tile workers execute instructions independently in parallel (MIMD),
• Wait for sync, followed by all-to-all data exchange phase (hardware

implementation of Bulk Synchronous Parallel (BSP) Model)
• No concurrency hazards (races, deadlocks etc.)
• Compiler faces hard job of scheduling

and load-balancing compute-chunks
on tile workers

Jia, Zhe, et al. ‘Dissecting the Graphcore IPU Architecture via Microbenchmarking’. ArXiv:1912.03413, Dec. 2019. arXiv.org, http://arxiv.org/abs/1912.03413.

Tile Processor

• 32b instructions, single or dual
issue

• Two execution paths:
• MAIN:

• Control flow, integer/address arithmetic,
load/store to/from either path

• AUX:
• Floating-point arithmetic for tensor

operations + special instructions like
log, tanh, PRNG etc.

22‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.

Tile Processor

• Fine-grained multithreading that switches
between 6 threads on every cycle in
round-robin fashion
• Issued worker programs run in a slot at 1/6 of

the clock, so they can’t see the pipeline, i.e.,
mem access, branches etc. all appear to take one cycle per
instruction

• This makes worker execution simple for the compiler to predict for
easier load balancing

23

Slots

Cy
cl

es

‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.

N + 1 barrel threading

• 7 program contexts
• 6 round-robin pipeline slots
• The supervisor program

• A fragment of the control program
• Orchestrating the update of vertices
• Execute in all slots not yielded to workers
• Dispatch workers by RUN instruction

• A worker program is a codelet updating a
vertex
• Execute in 1 slot at 1/6 of clock
• Returns its slot to the supervisor by EXIT instruction

24‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.

Sparse Load/Store

• Large on-die SRAM memory
• 896 MiB on-die SRAM at 47TB/s (data-side)
• Access arbitrarily-structured data which fits on chip

• Ld/St instructions
• Support sparse gather in parallel with arithmetic at full speed via

compact pointer lists
• 16b absolute offsets to a base
• 4b cumulative delta offsets to a base

25‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.

Global Program Order

• Tile processors
• Execute asynchronously until they need to exchange data
• Each tile executes a list of atomic codelets in one compute phase

• Bulk Synchronous Parallel
• Repeat {Sync; Exchange; Compute}
• Hardware global sync. In ~150 cycles on chip, 15 ns/hop between chips

26
‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.

Exchange Mechanics

• IPU POPLAR compiler
• Schedule transmit, receive

and select at precise cycles
from sync

• Knowing all pipeline delays

• Data movement
• At full bandwidth
• No queues, arbiters, or

packet overheads

27‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.

Why no HBM Memory ?

• Memory bandwidth limits how fast
AI can complete

• GPU and TPU
• Solve for bandwidth and capacity using

HBM
• HBM is expensive, capacity-limited, and

adds 100W+ to the processor thermal
envelope

• IPU
• Solves for bandwidth with SRAM, and

for capacity with DDR
28‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.

IPU hardware helps software

• Simple mechanisms allow software evolution
• Native graph abstraction
• Codelet-level parallelism
• Pipeline-oblivious threads
• BSP removes concurrency hazards
• Stateless all-to-all exchange
• Cacheless, uniform, near/far memory

29‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.

Takeaway Questions

• How does DaDianDao hide memory access latency ?
• (A) Increase the size of the memory
• (B) Increase the number of eDRAM banks
• (C) Increase the number of tiles

• Why GraphCore IPU employ large SRAM instead of HBM?
• (A) Achieve high bandwidth
• (B) Large memory capacity
• (C) Save silicon area

30

Wafer-scale AI chip --
Cerebras

Largest AI chip

• 46,225 mm2 silicon
• 1.2 trillion transistors
• 400,000 AI optimized cores
• 18 Gigabytes of on-chip memory
• 9 Pbyte/s memory bandwidth
• 100 Pbit/s fabric bandwidth
• TSMC 16 nm process

32

Cerebras WSE

GPU

21.1 Billion Transistors
815 mm2 silicon

Why big chips ?

• Big chips process data more quickly
• Cluster scale performance on a single chip
• GB of fast memory 1 clock cycle from core
• On-chip interconnect orders of magnitude faster than off-chip
• Model-parallel, linear performance scaling
• Training at scale, with any batch size, at full utilization

33

Cerebras Architecture

• Core optimized for neural network primitives
• Flexible, programmable core

• NN models are evolving
• Designed for sparse compute

• Workloads contain fine-grained sparsity (where are these sparsity
from ?)

• Local memory
• reusing weight & activations

• Fast interconnect
• Layer-to-layer with high bandwidth and low latency

34

Cerebras programmable core

• Flexible cores optimized for
tensor operations
• General ops for control processing
• e.g. arithmetic, logical, LD/ST,

branch
• Optimized tensor ops for data

processing
• Tensor operands
• e.g. fmac [Z] = [Z], [W], a

3D 3D 2D 35

Sparse compute engine

• Nonlinear activations naturally
create fine-grained sparsity

• Dataflow scheduling in hardware
• Triggered by data
• Filters out sparse zero data
• Skips unnecessary processing

• Fine-grained execution datapaths
• Small cores with independent instructions
• Efficiently processes dynamic, non-uniform work

36

Cerebras memory architecture

• Traditional memory designs
• Centralized shared memory is slow & far

away
• Requires high data reuse (caching)
• Local weights and activations are local ->

low data reuse

• Cerebras memory architecture
• All memory is fully distributed along compute
• Datapath has full performance from memory

37

High-bandwidth low-latency interconnect

• 2D mesh topology effective for local communication
• High bandwidth and low latency for local communication
• All HW-based communication avoids SW overhead
• Small single-word message

38

Challenges of wafer scale

• Building a 46,225 mm2, 1.2 trillion transistor chip
• Challenges include

• Cross-die connectivity
• Yield
• Thermal expansion
• Package assembly
• Power and cooling

39

Challenge 1: cross die connectivity

• Standard fabrication process requires
die to be independent

• Scribe line separates each die
• Scribe line used as mechanical

barrier for die cutting for test
structures

40

Cross-die wires

• Add wires across scribe line with
TSMC

• Extend 2D mesh across die
• Same connectivity between cores

and across scribe lines create a
homogeneous array

• Short wires enable ultra high
bandwidth with low latency

41

Challenges II: Yield

• Impossible to yield full wafer with
zero defects
• Silicon and process defects are

inevitable even in mature process
• Redundant cores

• Uniform small cores
• Redundant cores and fabric links
• Redundant cores replace defective

cores
• Extra links reconnect fabric to

restore logical 2D mesh
42

Challenge III: Thermal expansion in package

• Silicon and PCB expand at different rates under temperature
• Size of wafer would result in too much mechanical stress

using traditional package technology

43

Connecting wafer to PCB

• Developed custom connector to connect wafer to PCB
• Connector absorbs the variation while maintaining

connectivity

44

Challenge IV: Package assembly

• Package includes
• PCB
• Connector
• Wafer
• Cold plate

• All components require
precise alignment

• Developed custom machines and process
45

Challenge V: Power and cooling

• Concentrated high density exceeds traditional power &
cooling capacities

• Power delivery
• Current density too high

for power plane
distribution in PCB

• Heat removal
• Heat density too high for

direct air cooling
46

Using the 3rd dimension

• Power delivery
• Current flow distributed in

3rd dimension perpendicular
to water

• Heat removal
• Water carries heat from

wafer through cold plate

47

SambaNova Reconfigurable
Dataflow Unit (RDU)

48

Plasticine Architecture

• Plasticine architecture
• A reconfigurable architecture for parallel patterns (Raghu, ISCA 2017)

• Pattern Compute Unit (PCU)
• Reconfigurable pipeline with multiple stages of SIMD functional units (FUs)

• Pattern Memory Unit (PMU)
• A banked scratchpad memory

• The compiler
• Maps the computation of inner loops to PCUs
• Most operands are transferred directly between FUs without scratchpad

access or inter-PCU communication

49

Plasticine Architecture Overview

• Calculates address occurs while the PCU is working
• Each DRAM channel is accessed using several address generators (AG)

on two sides of the chip
• Multiple AGs connect to an address coalescing unit for memory

requests

50

Raghu, ISCA 2017

Plasticine PCU Architecture

• Pattern Compute Unit (PCU)
• Each stage’s SIMD lane contains a FU and associated pipeline

register (PR)

51

1. Scalar: uses to communicate single
words of data

2. Each vector communicates one
word per line in the PCU

3. Control signals at the start or end
of execution of a PCU

Raghu, ISCA 2017

Plasticine PMU Architecture
• Pattern Memory Unit (PMU)

• Contains a scratchpad memory and address calculation
• Calculates address only needs simple scalar math
• Has simpler FUs than ones in PCUs

52
Raghu, ISCA 2017

Reconfigurable Dataflow Unit (RDU)

• SambaNova RDU
• Pattern Compute Units

• BF16 with FP32 accumulation
• Support FP32, Int32, Int16, Int8

• Pattern Memory Unit
• Memory transformation

• Dataflow optimization
• Tiling
• Nested pipelining
• Operator parallel streaming

53

Dataflow Exploits Data Locality / Parallelism

• Software-hardware co-design architecture
• Dataflow captures data locality and parallelism
• Flexible time and space scheduling to achieve higher utilization
• Flexible memory system and interconnect to sustain high compute

throughput
• Custom dataflow pipeline

54

Chip and Architecture Overview

• RDU Tile
• Compute and memory components
• A programmable interconnect

• Tile resource management
• Combine adjacent tiles to form a

larger logical tile
• Each tile controlled independently
• Allow different applications on separate

tiles concurrently
• Memory access

• Direct access to TBs DDR4 off-chip memory
• Memory-mapped access to host memory

55

RDU Tile

56

Pattern Compute Unit (PCU)

• Pattern Compute Unit (PCU)
• Compute engine

• Reconfigurable SIMD data
path
• For dense and sparse tensor

algebra in FP32, BF16, and
integer data format

• Programmable counters
• Program loop iterators

• Tail unit
• Accelerates functions such as

exp, sigmoid
57

Pattern Memory Unit (PMU)

• Pattern Memory Unit (PMU)
• On-chip memory system
• Banked SRAM arrays

• Write and read multiple
high bandwidth SIMD data
stream concurrently

• Address ALUs
• Address calculation for

arbitrarily complex accesses
• Data align

• Tensor layout
transformation 58

Switch and On-chip Interconnect

• Switch
• Programmable packet-switched interconnect fabric

• Independent data and
control buses
• Suit different traffic

classes
• Programmable routing

• Flexible chip bandwidth
allocation to concurrent
stream

• Programmable counters
• Outer loop iterators
• On-chip metric collection

59

Interface to I/O Subsystem

• Address ALUs
• Address calculation for arbitrarily complex accesses

• Coalescing Units
• Enable transparent

access to memories
across RDUs and host
memory

• Address space manager
• Programmable, variable

length segments
60

Operator Mapping (Softmax)

61

Pipelined in Space + Fused

62

Fused

Spatial Dataflow within an RDU

• The dataflow removes
• Memory traffic and host communication overhead

63

CGRA

Coarse grained reconfigurable array (CGRA)

• Coarse grained reconfigurable array (CGRA)
• Multiple processing elements (PEs)
• Each PE has ALU-like functional

unit
• Array configurations vary by

• Array size
• Functional units
• Interconnection network
• Register file architectures

• CGRAs can achieve power-efficiency of several 10s of GOps/sec per
Watt (why?)

• Samsung SRP processor (embedded and multimedia apps)
65

Key features of CGRA accelerators

• Software-pipelining execution mapping
• Accelerate loops with low parallelism
• Loops with loop-carried dependence, loops with high branch

divergence
• Avoid von-Neumann architecture bottleneck

• CGRAs are not subjected to dynamic fetch and decoding of
instructions

• CGRA instructions are in a pre-decoded form in the instruction
memory

• PE transfers data directly among each another
• Without going through a centralized registers and memory

66

Loop execution on the CGRA

67

Loop:
t1 = (a[i]+b[i]-k)*c[i]
d[i] = ~t1 & 0xFFFF

Data dependency graph

Execution time: 1

1

2

Mapping data
dependency
graph to CGRA

Loop execution on the CGRA

68

Loop:
t1 = (a[i]+b[i]-k)*c[i]
d[i] = ~t1 & 0xFFFF

Data dependency graph

Execution time: 2

1

2

Mapping data
dependency
graph to CGRA 3

Loop execution on the CGRA

69

Loop:
t1 = (a[i]+b[i]-k)*c[i]
d[i] = ~t1 & 0xFFFF

Data dependency graph

Execution time: 3

1

2

Mapping data
dependency
graph to CGRA 3 4

5

Loop execution on the CGRA

70

Loop:
t1 = (a[i]+b[i]-k)*c[i]
d[i] = ~t1 & 0xFFFF

Data dependency graph

Execution time: 6

1

2

Mapping data
dependency
graph to CGRA 3 4

5 6 7

8

Takeaway Questions

• What are challenges to build a large chip for NN applications ?
• (A) Power and cooling
• (B) Fault tolerance for defected dies
• (C) Package assembly

• How does Cerebras tackle the DNN sparsity ?
• (A) Customized sparse core
• (B) Data-driven dataflow scheduling
• (C) Filters out sparse zero data

71

Takeaway Questions

• What are hardware components used by RDU ?
• (A) Pattern computer unit (PCU)
• (B) Pattern memory unit (PMU)
• (C) Interconnect network router

• What are features of CGRAs ?
• (A) Customized PEs
• (B) Software-pipelining execution mapping
• (C) Reconfigurable dataflow

72

