&

> Accelerator 4§
. Architectures for 3
 Machine Learning

e

) " -
3 3
et : s 23 N
. 8 « T Lokt t A . o0 -
o H r v o - € b
\ ; e i 1t ey - B
% 4 . !

%
¢

L]

Lecture 6: Digital DNN Accelerator

Tsung Tai Yeh
Tuesday: 3:30 - 6:20 pm
Classroom: ED-302

Acknowledgements and Disclaimer

* Slides was developed in the reference with
Joel Emer, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, ISCA 2019
tutorial
Efficient Processing of Deep Neural Network, Vivienne Sze, Yu-Hsin
Chen, Tien-Ju Yang, Joel Emer, Morgan and Claypool Publisher, 2020
Yakun Sophia Shao, EE290-2: Hardware for Machine Learning, UC
Berkeley, 2020
CS231n Convolutional Neural Networks for Visual Recognition,
Stanford University, 2020
CS7960 Neuromorphic Architectures, University of Utah, 2019

Outline

* DaDianNao

* GraphCore IPU

» Wafer-scale Al chip — Cerebras

 SambaNova Reconfigurable Dataflow Unit (RDU)
» Coarse grained reconfigurable array (CGRA)

DianNao

DianNao

* Bottleneck
* The access of large sets of input/weights/outputs

* Design methodology

* Tiling is used to maximize reuse of the data that is brought into
buffers

* Place data in memory and prefetch “tile” into buffers
* Each data type has a different requirement -> multiple buffers
* The ALUs must be time-multiplexed across several neurons

DianNao Architecture

> Control Processor (CP)

d g Instructions

 DianNao

* The NFU can handle 16 neurons in
parallel (if a neuron has > 16 inputs?)

e Split buffers — inputs/output/weight

 Staggered pipeline — NFU-1 (pooling)
NFU-2 (CONV), NFU-3 (ACT.)

* The compute unit has 256 parallel
multipliers (16 inputs for 16 neurons)

e 16 adder-trees per neuron e oL0S 2014

* Each tree has 15 adders to aggregate the results of 16 mu'ltipliers

6

NFU-1 NFU-2 NFU-3

aJejJalu| Alowan

DianNao Architecture

 DianNao

* The sum-of-products is sent to the
activation function

* The ACT -> piecewise linear
interpolation

* The non-linear function is split into
16 linear segments

* A look-up table tracks the end-points
of each segment -> 8-stage pipeline

aoejiau| Asoway

v

> Control Processor (CP)

a Instructions

NFU-1 NFU-2

Ul]
Bl
i
J

NFU-3

_\|

Inst. g
>

IEN

NBout

DianNao, ASPLOS, 2014

e Control processor has instructions that specify how data is

loaded/accessed in buffers

DianNao

e DaDianNao

» Use 16b fixed-point arithmetic, reduce area/power by ~7x when
using 32b float-point math

Type Area (um?) Power (uW)
[6-bit truncated fixed-point multiplier 1309.32 576.90
32-bit floating-point multiplier 7997.76 4229.60

Table 2. Characteristics of multipliers.

Fixed Point Error Rates

Type Error Rate
32-bit floating-point 0.0311
16-bit fixed-point 0.0337

Table 1. 32-bit floating-point vs. 16-bit fixed-point accuracy for
MNIST (metric: error rate).
=10

B floating—point
-8 - O fixed-point

|
o
1

log(MSE)

Glass lonos. Iris Robot Vehicle Wine GeoMean

Figure 12. 32-bir floating-point vs. 16-bit fixed-point accuracy
for UCI data sets (metric: log(Mean Squared Error)).

I]
i All these improvement are because

Other details DienDao removes the memory .
i access bottleneck i

* The NFU is composed of 8 pipeline stages

* Peak activity is nearly 500 GOP/s

* 44 KB of RAM capacity

 Buffers are about 60% of area/power, while NFU is ~30%

* Energy is 21X better than a SIMD baseline where has high cost of
memory accesses

* Tiling to reduce memory traffic

* Big performance boots as well: higher computational density, tiling,
prefetching

10

DaDianNao Philosophy

* Avoid going to off-chip memory altogether

» Keeps the weights on-chip in eDRAM banks (why eDRAM not SRAM?)
* Many chips as required to keep all weights in on-chip eDRAM bank

* Every operation is spread across several “tiles” to maximize

parallelism Datg

T NFU s——

input output
neurons neurons

11

DaDianNao Philosophy |

* Near data processing -> a computation is performed on the NFU next
to the eDRAM that has the necessary weight

* When those neurons produce their output

* These outputs are broadcast to all the tiles that need these as inputs

to the next layer Data
to SB l

NFU

16 16
input output

neurons heurons

12

DaDianNao Philosophy [l

* A chip has 16 tiles that share two 2 MB eDRAM banks (input from
previous layer and the output of the current layer)

* 32 MB eDRAM banks for weights

* The NFU needs to receive 512 B/cycle to stay busy during the
classifier layer -> each eDRAM bank has a read width of 512 bytes
(wiring overhead) Data

NFU

16 503
input output

neurons neurons

13

DaDianNao Layouts

Data
to SB
b~ 4
TZ) NFU s—
input ” ", output
neurons neurons

Figure 5: Tile-based organization of a node (left) and tile archi-
tecture (right). A node contains 16 tiles, two central eDRAM banks
and fat tree interconnect; a tile has an NFU, four eDRAM banks
and input/output interfaces to/from the central eDRAM banks.

Each eDRAM bank size is 512 KB (3 cyc); central eDRAM bank is
2MB (10 cyc); total node storage is 36 MB; HT bw is 6.4 x 4 GB/s (80ns). 14

GraphCore |IPU

GraphCore IPUs

* GraphCore Intelligent Processing Units (IPUs)
* Unlike GPU that is dedicated to accelerate large dense matrix

* |[PUs supports dynamic sparse training and unstructured
computation such as path tracing in 3D computer graphics

e Multiple tile processors —
* Poplar programming model tensor '°1%®
e Dedicated compiler (PopC) Vemces/

t1

* Mapping compute graph to

15

e
tile processors /
* Compute kernels (Codelets) " F

https://hc33.hotchips.org/assets/program/conference/day2/HC2021 Graphcore.SimonKnowles.v04.pdf *°

Graphcore IPU Approach

* Post-Dennard, the silicon is power-limited
e we can put more logic on the die than we can power (dark silicon)

* IPU architecture approach

* Replace dark silicon logic with on-chip RAM that has lower power

density _
Die area Power Die area Power
RAM RAM

RAM
DARK

(HPC,

GPU Graphics) IPU

FPU

From: Knowles, Simon. Designing Processors for Intelligence. 2017. UC Berkeley EECS Events, https://www.youtube.com/watch?v=7XtBZ4Hsi_M.

Graphcore |IPU approach

* GPU approach

* Shared memory model with caches and memory hierarchy to reduce latency

* IPU approach
* Move as much memory as possible into the chip local to the logic
GPU IPU
“Tiles”
Y Y
FPU FPU

FPU

RAM
FPU

RAM
FPU

Graphcore IPU Abstraction

* Tile processors
* Each tile is a multi-threaded processor and has its local memory
* Tiles communicate through all-to-all, stateless exchange

* A tensor vertex

e Can be distributed over many o o o o
tiles = = | Thes =

]

‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1-25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075. 19

Distributed memory architecture

e 1472 tiles with 6 threads

sharing 624 KiB of local SRAM = tiles = = =
* Total of 896 MiB and W (—

250Tflop/s in 8832 worker Core A= == icnlpr'connect
threads ' - e
» 7.8TB/s exchange between . f T
tiles _; L_fjgf:‘“:"i_‘Tile Exchange
* Tiles have no shared memory T 11 51
or caches

Graphcore Architecture White paper, https://www.graphcore.ai/products/ipu

Execution Model

* Tile workers execute instructions independently in parallel (MIMD),

» Wait for sync, followed by all-to-all data exchange phase (hardware
implementation of Bulk Synchronous Parallel (BSP) Model)

* No concurrency hazards (races, deadlocks etc.)

* Compiler faces hard job of scheduling -
and load-balancing compute-chunks I
on tile workers — |
I I

. Time

Sync Exchange Compute Waiting

Jia, Zhe, et al. ‘Dissecting the Graphcore IPU Architecture via Microbenchmarking’. ArXiv:1912.03413, Dec. 2019. arXiv.org, http://arxiv.org/abs/1912.03413.

Tile Processor

e 32b instructions, single or dual
Issue

* Two execution paths:
* MAIN:

* Control flow, integer/address arithmetic,

load/store to/from either path
* AUX:

* Floating-point arithmetic for tensor
operations + special instructions like

log, tanh, PRNG etc.

MEM

64 64

INSTR
B!
—— ——
- i '
32 32 4 64 64 64
MRF WRF
12 x 32b 64 x 64b
32 32 32 64 1024
' J
MAIN AUX
INTS FLOATS
—=
1
vy I
ADDRS
MEM

‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1-25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075. 22

Slots

Tile Processor 11111

* Fine-grained multithreading that switches
between 6 threads on every cycle in
round-robin fashion

* [ssued worker programs run in a slot at 1/6 of

the clock, so they can’t see the pipeline, i.e.,
mem access, branches etc. all appear to take one cycle per
instruction

* This makes worker execution simple for the compiler to predict for
easier load balancing

Cycles

‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1-25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075. 23

N + 1 barrel threading

e 7 program contexts
* 6 round-robin pipeline slots

* The supervisor program
* A fragment of the control program
* Orchestrating the update of vertices
e Execute in all slots not yielded to workers
* Dispatch workers by RUN instruction

* A worker program is a codelet updating a

vertex
* Execute in 1 slot at 1/6 of clock

MAIN

INTS

e

4 64

WRF

64 x 64b
1024

e Returns its slot to the supervisor by EXIT instruction

‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1-25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.

ADDRS
MEM

2 -
IQ—0

AUX

FLOATS

24

Sparse Load/Store

* Large on-die SRAM memory
* 896 MiB on-die SRAM at 47TB/s (data-side)
* Access arbitrarily-structured data which fits on chip

 Ld/St instructions

» Support sparse gather in parallel with arithmetic at full speed via
compact pointer lists

e 16b absolute offsets to a base
 4b cumulative delta offsets to a base

‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1-25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.

25

Global Program Order

* Tile processors
* Execute asynchronously until they need to exchange data
* Each tile executes a list of atomic codelets in one compute phase

* Bulk Synchronous Parallel
* Repeat {Sync; Exchange; Compute}
* Hardware global sync. In ~150 cycles on chip, 15 ns/hop between chips

TR A0 |1 3l

Fragment of the BSP trace for BERT-L Exchanqe
26

‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1-25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.

—— cycles

=

Exchange Mechanics Tie 32b/cycle send

RX select TX and receive

* IPU POPLAR compiler

e Schedule transmit, receive
and select at precise cycles
from sync

 Knowing all pipeline delays MR ieGiay
receive mux per tile

pipelined transport
up/down columns

* Data movement

* At full bandwidth

] Exchange spine 1600 x 36b
* No queues, arblters, or

paCket overheads one 36b pipelined send channel

per tile and 10 block

‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1-25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075. 27

Why no HBM Memory ?

* Memory bandwidth limits how fast
Al can complete -

* GPU and TPU 100

* Solve for bandwidth and capacity using
HBM B 10
* HBM is expensive, capacity-limited, and
adds 100W+ to the processor thermal :
envelope

* |PU 0.1

e Solves for bandwidth with SRAM, and
for capacity with DDR

1000

HBMZ‘
80GB

Colossus Mk2 \
SRAM
100 1000 10000 100000
GB/s

‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1-25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075. 28

IPU hardware helps software

e Simple mechanisms allow software evolution
* Native graph abstraction
* Codelet-level parallelism
* Pipeline-oblivious threads
* BSP removes concurrency hazards
e Stateless all-to-all exchange
* Cacheless, uniform, near/far memory

‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1-25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.

29

Takeaway Questions

* How does DaDianDao hide memory access latency ?

* (A) Increase the size of the memory
* (B) Increase the number of eDRAM banks
* (C) Increase the number of tiles

* Why GraphCore IPU employ large SRAM instead of HBM?
 (A) Achieve high bandwidth
 (B) Large memory capacity
* (C) Save silicon area

30

Water-scale Al chip --
Cerebras

Largest Al chip

* 46,225 mm? silicon
e 1.2 trillion transistors
* 400,000 Al optimized cores

* 18 Gigabytes of on-chip memory

* 9 Pbyte/s memory bandwidth
e 100 Pbit/s fabric bandwidth
* TSMC 16 nm process

[>] ¥ ¥

21.1 Billion Transistors
815 mm? silicon

GPU

Cerebras WS- N

32

Why big chips ?

* Big chips process data more quickly
* Cluster scale performance on a single chip
* GB of fast memory 1 clock cycle from core
* On-chip interconnect orders of magnitude faster than off-chip
* Model-parallel, linear performance scaling
* Training at scale, with any batch size, at full utilization

33

Cerebras Architecture

* Core optimized for neural network primitives

* Flexible, programmable core
* NN models are evolving

* Designed for sparse compute

» Workloads contain fine-grained sparsity (where are these sparsity
from ?)

* Local memory
* reusing weight & activations

* Fast interconnect
* Layer-to-layer with high bandwidth and low latency

34

Cerebras programmable core

* Flexible cores optimized for

tensor operations Fabriicisvaim
* General ops for control processing oy THRger
* e.g. arithmetic, logical, LD/ST, § ==
i
branCh — Registers ~— g
* Optimized tensor ops for data e
processing | Datapath || 2

L

* Tensor operands

e e.g. fmac [Z] = [Z], [W], a
3D 3D 2D

Sparse compute engine

000000000000
000000060

* Nonlinear activations naturally f
create fine-grained sparsity Dense Network

* Dataflow scheduling in hardware
* Triggered by data
* Filters out sparse zero data
 Skips unnecessary processing

* Fine-grained execution datapaths
* Small cores with independent instructions
* Efficiently processes dynamic, non-uniform work

6660

RelU

000000000000
00000000

Sparse Network

36

0000

Cerebras memory architecture

* Traditional memory designs

* Centralized shared memory is slow & far
away

* Requires high data reuse (caching)
* Local weights and activations are local ->

H/'H BN EEEEEEEEE

low data reuse

* Cerebras memory architecture
* All memory is fully distributed along compute
e Datapath has full performance from memory

Memory uniformly distributed across cores

W Core £} Memory

37

High-bandwidth low-latency interconnect

* 2D mesh topology effective for local communication
* High bandwidth and low latency for local communication
* All HW-based communication avoids SW overhead
e Small single-word message

38

Challenges of wafer scale

* Building a 46,225 mm?, 1.2 trillion transistor chip

* Challenges include
* Cross-die connectivity
* Yield
* Thermal expansion
* Package assembly
* Power and cooling

39

Challenge 1: cross die connectivity

 Standard fabrication process requires
die to be independent

* Scribe line separates each die

e Scribe line used as mechanical
barrier for die cutting for test
structures

40

Cross-die wires

e Add wires across scribe line with
TSMC

e Extend 2D mesh across die

* Same connectivity between cores
and across scribe lines create a
homogeneous array

* Short wires enable ultra high
bandwidth with low latency

INNANN

41

Challenges Il: Yield

No Defects Defect
* Impossible to yield full wafer with i
zero defects |
* Silicon and process defects are = = = = = [\ =
inevitable even in mature process [T _TTIIT _ T/ TIIIENTTIT
= = = =haade [) =
* Redundant cores Bl i
* Uniform small cores — - = = = =
e Redundant cores and fabric links I TI00T i
Redundant cores replace defective =T S
co res Hardware remaps and reconnects using extra links
* Extra links reconnect fabric to Core I Exvacore W Defective core

restore logical 2D mesh

42

Challenge Ill: Thermal expansion in package

* Silicon and PCB expand at different rates under temperature

e Size of wafer would result in too much mechanical stress
using traditional package technology

Silicon

Die Reticle Die Reticle

EXPANSION

Main PCB Board

43

Connecting wafer to PCB

* Developed custom connector to connect wafer to PCB

* Connector absorbs the variation while maintaining
connectivity

(00701 111]] LILEL VLANAAY

EXPANSION

Main PCB Board

44

Challenge IV: Package assembly

-
* Package includes

Silicon

* PCB
e Connector [111111 [1]]]]Connect] |
* Wafer

* Cold plate

Main PCB Board

* All components require
precise alignment

* Developed custom machines and process

45

Challenge V: Power and cooling

* Concentrated high density exceeds traditional power &

cooling capacities S
+ Power delivery e e —
* Current density too high i

for power plane
distribution in PCB

* Heat removal CURRENT FLOW i d LD

* Heat density too high for Main PCB Board
direct air cooling

Connectbr |]

46

Using the 3™ dimension

* Power delivery

* Current flow distributed in
3@ dimension perpendicular
to water Cold Plate

[(e RER-ENNR/ Y
MOTd HILLVM

MOTd HILLVYM
MOTd HILLYM

Silicon

e Heat removal

e \Water carries heat from
wafer through cold plate

Connector

Main PCB Board

CURRENT FLOW CURRENT FLOW
47

SambaNova Reconfigurable
Dataflow Unit (RDU)

Plasticine Architecture

* Plasticine architecture
* A reconfigurable architecture for parallel patterns (raghu, isca 2017)

e Pattern Compute Unit (PCU)

» Reconfigurable pipeline with multiple stages of SIMD functional units (FUs)
e Pattern Memory Unit (PMU)

* A banked scratchpad memory
* The compiler

* Maps the computation of inner loops to PCUs

* Most operands are transferred directly between FUs without scratchpad
access or inter-PCU communication

49

Plasticine Architecture Overview

* Calculates address occurs while the PCU is working

 Each DRAM channel is accessed using several address generators (AG)
on two sides of the chip

* Multiple AGs connect to an address coalescing unit for memory
requests

AG S

J?.I" I?.L S S |« ‘I?l‘ -] | AG
=4 oLe]ef 4e)

PMU PCU ‘ PMU PCU PMU PCU Coalescing
| nit

Coalescing
nit

T— PCU PMU PCU PMU PCU PMU

e PMU PCU PMU | PCU PMU ‘ PCU i Raghu, ISCA 2017

50

1. Scalar: uses to communicate single

o . words of data

Pl asticine PCU ArCh ltecture 2. Each vector communicates one
word per line in the PCU

3. Control signals at the start or end

* Pattern Compute Unit (PCU) of execution of a PCU
* Each stage’s SIMD lane contains a FU and associated pipeline
register (PR)

Scalar
Inputs

Scalar
Outputs
»

Scalar

&
>
-
— —
—
& l[’
4 L.
BN R
oy
=
.
A
>
| L
}-—

Vector
Outputs

l

2
v

|-
-

"~ Control

Oulpgts

51
Raghu, ISCA 2017

Plasticine PMU Architecture

e Pattern Memory Unit (PMU)
e Contains a scratchpad memory and address calculation
* Calculates address only needs simple scalar math
e Has simpler FUs than ones in PCUs

Scalar
Scratchpad

Inputs S crlar oSctala;
= utputs
FIFO W wd SRAM f : »
. Vector
Vector . Banking SRAM Outputs
E’ FIFO y :
Vector L4 i Buffering
Inputs _ Logic
Vector ‘
' FIFO
Control

Inputs Counters) Control
C;"“:' Cﬂ‘_ Outputs
oC 5 4
. | Raghu, ISCA 2017

Reconfigurable Dataflow Unit (RDU)

e SambaNova RDU

* Pattern Compute Units ()PyTorch | P TensorFlow | User Graph | User Kemel
e BF16 with FP32 accumulation

Dataflow Graph Analyzer Template Compiler
* Support FP32, Int32, Intl16, Int8
. Dataflow Graphs Spatial Templates
* Pattern Memory Unit
° Memory tra nsfo rmation Dataflow Optimizer, Compiler, & Assembler
* Dataflow optimization Runfime
* Tiling
* Nested pipelining 9§QSWPMQNOVO°

* Operator parallel streaming

53

Dataflow Exploits Data Locality / Parallelism

» Software-hardware co-design architecture
» Dataflow captures data locality and parallelism
* Flexible time and space scheduling to achieve higher utilization

* Flexible memory system and interconnect to sustain high compute
throughput

* Custom dataflow pipeline

54

Chip and Architecture Overview

4 N\
i TILEO TILE 1
 RDU Tile
\ FL" J
* Compute and memory components g » \
* A programmable interconnect
] TILE 2 TILE 3
* Tile resource management
% 7 J

* Combine adjacent tiles to form a

|arger Iogical tile [Virtual Memory Manager]

* Each tile controlled independently | Top-Level Interconnect |

* Allow different applications on separate PCle
tiles concurrently m -

* Memory access ‘ t

* Memory-mapped access to host memory (TBs) Scale-Out

* Direct access to TBs DDR4 off-chip memory [— J [Host J

RDU Tile

TILEO TILE 1

. E, ot
)

TILE 2

. .
[Virtual Memory Manager J\\

[Top-Level Interconnect]

D T

t

DRAM
(TBs)

Host
Scale-Out

f

\

Tiled architecture with reconfigurable SIMD pipelines, distributed scratchpads, and programmed switches

Software-Driven Architecture

S S S S I»
-y
Codalescing
Unit
—AGEE— S S S S I'
lq
— AG — S 5 S s I—
et
]— -
Coalescing
Unit
i S 5 S I-
1 1] 1
1 I 1
. | Address Pattem

Coalescing Coalescing
Unit Unit

Generation
Unit

S l Switch

Unit

Memory

\

Pattern
Compute
Unit

56

Pattern Compute Unit (PCU)

* Pattern Compute Unit (PCU)

* Compute engine

G

Configurable

#
* Reconfigurable SIMD data SIMD data path
path s b -»
* For dense and sparse tensor [y SRS _’
[ALU ’ :‘ Control
Outputs
T

—

algebra in FP32, BF16, and Counters
integer data format

- OO0 0M®XI

Control

* Programmable counters inputs
* Program loop iterators

e Tail unit

T T

Configuration and Pipeline Control

ff \%

* Accelerates functions such as
exp, sigmoid

57

Pattern Memory Unit (PMU)

* Pattern Memory Unit (PMU)

* On-chip memory system
* Banked SRAM arrays

* Write and read multiple
high bandwidth SIMD data
stream concurrently

 Address ALUs

* Address calculation for
arbitrarily complex accesses

* Data align

e Tensor layout
transformation

/
\
Data Address ALUs
Inputs E>[y
%r—\ S Y G ~
Data
Outputs
7
Counters Data Data
— Align Align
il U
Control Control
Inputs Outputs

\

J

LI

I

Configuration and Pipeline Control

)

l

J

58

Switch and On-chip Interconnect

e Switch

* Programmable packet-switched interconnect fabric

* Independent data and
control buses

e Suit different traffic
classes
* Programmable routing

 Flexible chip bandwidth
allocation to concurrent
stream

* Programmable counters
e Quter loop iterators
* On-chip metric collection

Configuration and Pipeline Control

Dat .'
Ingu?s E> E> E>
Router

Router Pipeline Crossbar

Control =
Inputs
A

Counters

Data
Outputs

Control
Outputs

59

Interface to I/O Subsystem

e Address ALUs

* Address calculation for arbitrarily complex accesses

* Coalescing Units

* Enable transparent
access to memories
across RDUs and host
memory

* Address space manager

* Programmable, variable
length segments

~) CURequest =
—) Scheduler —)

d

Data
Outputs

J

Requests
to 1O

Control Virtual (—
Memory Outputs
Manager \ 5

Configuration and Pipeline Control

=

60

Operator Mapping (Softmax)

SOFTMAX: Softmax(z;) = zeillf(ii_)
i j

Map n
exp

T TR
v

a=
.90 40|
ssas

e Ea
[N N

L]
L
[

Pipelined in Space + Fused

z — E[z]

LAYERNORM: ¥ = Var[x]+e*'r+ﬁ Fused
C

ssmn

HREEN| o

Spatial Dataflow within an RDU

* The dataflow removes
* Memory traffic and host communication overhead

CONVOLUTION GRAPH

A

63

CGRA

Coarse grained reconfigurable array (CGRA)

 Coarse grained reconfigurable array (CGRA)

* Multiple processing elements (PEs)
e Each PE has ALU-like functional
unit

* Array configurations vary by

* Array size

* Functional units

* Interconnection network

* Register file architectures

| _Instruction Memory

]

Data From Neighbors & Bus

|

Register
File

[! [’ [
|PE-1-1PE---1PE T-‘LEE
—_TTT I T
o, VNS W Em——-— . ¥ A e—— 1.
1 . ’ ‘ | f 1
PE 1~ PE-—1PE}| lePE_.
B T IR I I Fu
o . ') L1 L
E 1] = | | 1
g PE---PE- -'1LPE>: hP'E‘ /
i T T
g. !; 5 —_— il ;J (Creg]
: Pt als 3
O| |PE. |- PE~ ' PE. !-v'ms'/j
e o el e |tT_‘ Output To Neighbors
— | - - 1
— L] L] ; 3

* CGRAs can achieve power-efficiency of several 10s of GOps/sec per

Watt (why?)

e Samsung SRP processor (embedded and multimedia apps)

65

Key features of CGRA accelerators

 Software-pipelining execution mapping
* Accelerate loops with low parallelism

* Loops with loop-carried dependence, loops with high branch
divergence

 Avoid von-Neumann architecture bottleneck

* CGRAs are not subjected to dynamic fetch and decoding of
instructions

* CGRA instructions are in a pre-decoded form in the instruction
memory

* PE transfers data directly among each another
* Without going through a centralized registers and memory

66

Loop execution on the CGRA

Data dependency graph

Loop:
t1 = (afi]+bli]-k)*cJi]
d[i] = ~t1 & OxFFFF

Execution time: 1

o Mapping data
o dependency
graph to CGRA l

Loop execution on the CGRA

Data dependency graph

Loop:
t1 = (afi]+bli]-k)*cJi]
d[i] = ~t1 & OxFFFF

Execution time: 2

o Mapping data
o dependency
graph to CGRA l

Loop execution on the CGRA

Data dependency graph

Loop:
t1 = (afi]+bli]-k)*cJi]
d[i] = ~t1 & OxFFFF

Execution time: 3

o Mapping data
o dependency
» graph to CGRA l

Loop execution on the CGRA

Data dependency graph

Loop:
t1 = (afi]+bli]-k)*cJi]
d[i] = ~t1 & OxFFFF

Execution time: 6

o Mapping data
o dependency
graph to CGRA l

Takeaway Questions

* What are challenges to build a large chip for NN applications ?
* (A) Power and cooling
* (B) Fault tolerance for defected dies
* (C) Package assembly

* How does Cerebras tackle the DNN sparsity ?
 (A) Customized sparse core
* (B) Data-driven dataflow scheduling
* (C) Filters out sparse zero data

71

Takeaway Questions

* What are hardware components used by RDU ?
 (A) Pattern computer unit (PCU)
* (B) Pattern memory unit (PMU)
* (C) Interconnect network router

* What are features of CGRAs ?
 (A) Customized PEs
* (B) Software-pipelining execution mapping
* (C) Reconfigurable dataflow

72

