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Outline

• DaDianNao
• GraphCore IPU
• Wafer-scale AI chip – Cerebras
• SambaNova Reconfigurable Dataflow Unit (RDU)
• Coarse grained reconfigurable array (CGRA)

3



DianNao



DianNao

• Bottleneck
• The access of large sets of input/weights/outputs

• Design methodology
• Tiling is used to maximize reuse of the data that is brought into

buffers
• Place data in memory and prefetch “tile” into buffers
• Each data type has a different requirement -> multiple buffers
• The ALUs must be time-multiplexed across several neurons
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DianNao Architecture

• DianNao
• The NFU can handle 16 neurons in 

parallel (if a neuron has > 16 inputs?)
• Split buffers – inputs/output/weight
• Staggered pipeline – NFU-1 (pooling)

NFU-2 (CONV), NFU-3 (ACT. )
• The compute unit has 256 parallel

multipliers (16 inputs for 16 neurons)
• 16 adder-trees per neuron
• Each tree has 15 adders to aggregate the results of 16 multipliers
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DianNao Architecture

• DianNao
• The sum-of-products is sent to the

activation function
• The ACT -> piecewise linear 

interpolation
• The non-linear function is split into

16 linear segments
• A look-up table tracks the end-points

of each segment -> 8-stage pipeline
• Control processor has instructions that specify how data is 

loaded/accessed in buffers 7

DianNao, ASPLOS, 2014



DianNao

• DaDianNao
• Use 16b fixed-point arithmetic, reduce area/power by ~7x when 

using 32b float-point math
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Fixed Point Error Rates
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Other details

• The NFU is composed of 8 pipeline stages
• Peak activity is nearly 500 GOP/s
• 44 KB of RAM capacity
• Buffers are about 60% of area/power, while NFU is ~30%
• Energy is 21X better than a SIMD baseline where has high cost of 

memory accesses
• Tiling to reduce memory traffic
• Big performance boots as well: higher computational density, tiling,

prefetching
10

All these improvement are because 
DienDao removes the memory 
access bottleneck



DaDianNao Philosophy

• Avoid going to off-chip memory altogether
• Keeps the weights on-chip in eDRAM banks (why eDRAM not SRAM?)
• Many chips as required to keep all weights in on-chip eDRAM bank
• Every operation is spread across several “tiles” to maximize 

parallelism
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DaDianNao Philosophy II

• Near data processing -> a computation is performed on the NFU next 
to the eDRAM that has the necessary weight

• When those neurons produce their output
• These outputs are broadcast to all the tiles that need these as inputs

to the next layer
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DaDianNao Philosophy III

• A chip has 16 tiles that share two 2 MB eDRAM banks (input from 
previous layer and the output of the current layer)

• 32 MB eDRAM banks for weights
• The NFU needs to receive 512 B/cycle to stay busy during the

classifier layer -> each eDRAM bank has a read width of 512 bytes 
(wiring overhead)
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DaDianNao Layouts
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GraphCore IPU



GraphCore IPUs

• GraphCore Intelligent Processing Units (IPUs)
• Unlike GPU that is dedicated to accelerate large dense matrix
• IPUs supports dynamic sparse training and unstructured 

computation such as path tracing in 3D computer graphics
• Multiple tile processors
• Poplar programming model

• Dedicated compiler (PopC)
• Mapping compute graph to 

tile processors
• Compute kernels (Codelets)

16https://hc33.hotchips.org/assets/program/conference/day2/HC2021.Graphcore.SimonKnowles.v04.pdf



Graphcore IPU Approach

• Post-Dennard, the silicon is power-limited
• we can put more logic on the die than we can power (dark silicon)

• IPU architecture approach
• Replace dark silicon logic with on-chip RAM that has lower power 

density

From: Knowles, Simon. Designing Processors for Intelligence. 2017. UC Berkeley EECS Events, https://www.youtube.com/watch?v=7XtBZ4Hsi_M.
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Graphcore IPU approach

• GPU approach
• Shared memory model with caches and memory hierarchy to reduce latency

• IPU approach
• Move as much memory as possible into the chip local to the logic
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Graphcore IPU Abstraction 

• Tile processors
• Each tile is a multi-threaded processor and has its local memory
• Tiles communicate through all-to-all, stateless exchange

• A tensor vertex
• Can be distributed over many 

tiles

19‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.



Distributed memory architecture

• 1472 tiles with 6 threads 
sharing 624 KiB of local SRAM

• Total of 896 MiB and 
250Tflop/s in 8832 worker 
threads

• 7.8TB/s exchange between 
tiles

• Tiles have no shared memory 
or caches

Tiles

Mem +
Core

Chip-
interconnect

Tile Exchange

Graphcore Architecture White paper, https://www.graphcore.ai/products/ipu



Execution Model

• Tile workers execute instructions independently in parallel (MIMD), 
• Wait for sync, followed by all-to-all data exchange phase (hardware 

implementation of Bulk Synchronous Parallel (BSP) Model)
• No concurrency hazards (races, deadlocks etc.)
• Compiler faces hard job of scheduling 

and load-balancing compute-chunks 
on tile workers

Jia, Zhe, et al. ‘Dissecting the Graphcore IPU Architecture via Microbenchmarking’. ArXiv:1912.03413, Dec. 2019. arXiv.org, http://arxiv.org/abs/1912.03413.



Tile Processor

• 32b instructions, single or dual
issue

• Two execution paths:
• MAIN:

• Control flow, integer/address arithmetic, 
load/store to/from either path

• AUX: 
• Floating-point arithmetic for tensor 

operations + special instructions like 
log, tanh, PRNG etc.

22‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.



Tile Processor

• Fine-grained multithreading that switches 
between 6 threads on every cycle in 
round-robin fashion
• Issued worker programs run in a slot at 1/6 of 

the clock, so they can’t see the pipeline, i.e., 
mem access, branches etc. all appear to take one cycle per 
instruction

• This makes worker execution simple for the compiler to predict for 
easier load balancing
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‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.



N + 1 barrel threading

• 7 program contexts
• 6 round-robin pipeline slots
• The supervisor program

• A fragment of the control program
• Orchestrating the update of vertices
• Execute in all slots not yielded to workers
• Dispatch workers by RUN instruction

• A worker program is a codelet updating a 
vertex
• Execute in 1 slot at 1/6 of clock
• Returns its slot to the supervisor by EXIT instruction

24‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.



Sparse Load/Store

• Large on-die SRAM memory
• 896 MiB on-die SRAM at 47TB/s (data-side)
• Access arbitrarily-structured data which fits on chip

• Ld/St instructions
• Support sparse gather in parallel with arithmetic at full speed via 

compact pointer lists
• 16b absolute offsets to a base
• 4b cumulative delta offsets to a base

25‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.



Global Program Order

• Tile processors
• Execute asynchronously until they need to exchange data
• Each tile executes a list of atomic codelets in one compute phase

• Bulk Synchronous Parallel
• Repeat {Sync; Exchange; Compute}
• Hardware global sync. In ~150 cycles on chip, 15 ns/hop between chips

26
‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.



Exchange Mechanics

• IPU POPLAR compiler
• Schedule transmit, receive

and select at precise cycles
from sync

• Knowing all pipeline delays

• Data movement
• At full bandwidth
• No queues, arbiters, or

packet overheads

27‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.



Why no HBM Memory ?

• Memory bandwidth limits how fast
AI can complete

• GPU and TPU
• Solve for bandwidth and capacity using

HBM
• HBM is expensive, capacity-limited, and 

adds 100W+ to the processor thermal
envelope

• IPU
• Solves for bandwidth with SRAM, and 

for capacity with DDR
28‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.



IPU hardware helps software

• Simple mechanisms allow software evolution
• Native graph abstraction
• Codelet-level parallelism
• Pipeline-oblivious threads
• BSP removes concurrency hazards
• Stateless all-to-all exchange
• Cacheless, uniform, near/far memory

29‘Graphcore IPUs’. 2021 IEEE Hot Chips 33 Symposium (HCS), 2021, pp. 1–25. IEEE Xplore, https://doi.org/10.1109/HCS52781.2021.9567075.



Takeaway Questions

• How does DaDianDao hide memory access latency ?
• (A) Increase the size of the memory
• (B) Increase the number of eDRAM banks
• (C) Increase the number of tiles

• Why GraphCore IPU employ large SRAM instead of HBM?
• (A) Achieve high bandwidth
• (B) Large memory capacity
• (C) Save silicon area
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Wafer-scale AI chip --
Cerebras



Largest AI chip

• 46,225 mm2 silicon
• 1.2 trillion transistors
• 400,000 AI optimized cores
• 18 Gigabytes of on-chip memory
• 9 Pbyte/s memory bandwidth
• 100 Pbit/s fabric bandwidth
• TSMC 16 nm process

32

Cerebras WSE

GPU

21.1 Billion Transistors
815 mm2 silicon



Why big chips ?

• Big chips process data more quickly 
• Cluster scale performance on a single chip
• GB of fast memory 1 clock cycle from core
• On-chip interconnect orders of magnitude faster than off-chip
• Model-parallel, linear performance scaling
• Training at scale, with any batch size, at full utilization

33



Cerebras Architecture

• Core optimized for neural network primitives
• Flexible, programmable core

• NN models are evolving
• Designed for sparse compute

• Workloads contain fine-grained sparsity (where are these sparsity 
from ?)

• Local memory 
• reusing weight & activations

• Fast interconnect
• Layer-to-layer with high bandwidth and low latency

34



Cerebras programmable core

• Flexible cores optimized for 
tensor operations
• General ops for control processing
• e.g. arithmetic, logical, LD/ST, 

branch
• Optimized tensor ops for data

processing
• Tensor operands
• e.g. fmac [Z] = [Z], [W], a

3D     3D 2D 35



Sparse compute engine

• Nonlinear activations naturally 
create fine-grained sparsity

• Dataflow scheduling in hardware
• Triggered by data
• Filters out sparse zero data
• Skips unnecessary processing

• Fine-grained execution datapaths
• Small cores with independent instructions
• Efficiently processes dynamic, non-uniform work

36



Cerebras memory architecture

• Traditional memory designs
• Centralized shared memory is slow & far 

away
• Requires high data reuse (caching)
• Local weights and activations are local ->

low data reuse

• Cerebras memory architecture
• All memory is fully distributed along compute
• Datapath has full performance from memory

37



High-bandwidth low-latency interconnect

• 2D mesh topology effective for local communication
• High bandwidth and low latency for local communication
• All HW-based communication avoids SW overhead
• Small single-word message

38



Challenges of wafer scale

• Building a 46,225 mm2, 1.2 trillion transistor chip
• Challenges include

• Cross-die connectivity
• Yield
• Thermal expansion
• Package assembly
• Power and cooling

39



Challenge 1: cross die connectivity

• Standard fabrication process requires
die to be independent

• Scribe line separates each die
• Scribe line used as mechanical 

barrier for die cutting for test
structures

40



Cross-die wires

• Add wires across scribe line with 
TSMC

• Extend 2D mesh across die
• Same connectivity between cores

and across scribe lines create a 
homogeneous array

• Short wires enable ultra high
bandwidth with low latency

41



Challenges II: Yield

• Impossible to yield full wafer with
zero defects
• Silicon and process defects are 

inevitable even in mature process
• Redundant cores

• Uniform small cores
• Redundant cores and fabric links
• Redundant cores replace defective

cores
• Extra links reconnect fabric to 

restore logical 2D mesh
42



Challenge III: Thermal expansion in package

• Silicon and PCB expand at different rates under temperature 
• Size of wafer would result in too much mechanical stress 

using traditional package technology

43



Connecting wafer to PCB

• Developed custom connector to connect wafer to PCB
• Connector absorbs the variation while maintaining 

connectivity
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Challenge IV: Package assembly

• Package includes
• PCB
• Connector
• Wafer
• Cold plate

• All components require
precise alignment

• Developed custom machines and process
45



Challenge V: Power and cooling

• Concentrated high density exceeds traditional power & 
cooling capacities

• Power delivery
• Current density too high

for power plane 
distribution in PCB

• Heat removal
• Heat density too high for

direct air cooling
46



Using the 3rd dimension

• Power delivery
• Current flow distributed in 

3rd dimension perpendicular
to water

• Heat removal
• Water carries heat from

wafer through cold plate
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SambaNova Reconfigurable 
Dataflow Unit (RDU)
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Plasticine Architecture

• Plasticine architecture
• A reconfigurable architecture for parallel patterns (Raghu, ISCA 2017)

• Pattern Compute Unit (PCU)
• Reconfigurable pipeline with multiple stages of SIMD functional units (FUs)

• Pattern Memory Unit (PMU)
• A banked scratchpad memory

• The compiler
• Maps the computation of inner loops to PCUs
• Most operands are transferred directly between FUs without scratchpad 

access or inter-PCU communication
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Plasticine Architecture Overview

• Calculates address occurs while the PCU is working
• Each DRAM channel is accessed using several address generators (AG) 

on two sides of the chip
• Multiple AGs connect to an address coalescing unit for memory 

requests

50

Raghu, ISCA 2017



Plasticine PCU Architecture

• Pattern Compute Unit (PCU)
• Each stage’s SIMD lane contains a FU and associated pipeline 

register (PR)

51

1. Scalar: uses to communicate single 
words of data

2. Each vector communicates one 
word per line in the PCU

3. Control signals at the start or end 
of execution of a PCU

Raghu, ISCA 2017



Plasticine PMU Architecture
• Pattern Memory Unit (PMU)

• Contains a scratchpad memory and address calculation
• Calculates address only needs simple scalar math
• Has simpler FUs than ones in PCUs

52
Raghu, ISCA 2017



Reconfigurable Dataflow Unit (RDU)

• SambaNova RDU
• Pattern Compute Units

• BF16 with FP32 accumulation
• Support FP32, Int32, Int16, Int8

• Pattern Memory Unit
• Memory transformation

• Dataflow optimization
• Tiling
• Nested pipelining
• Operator parallel streaming

53



Dataflow Exploits Data Locality / Parallelism

• Software-hardware co-design architecture
• Dataflow captures data locality and parallelism 
• Flexible time and space scheduling to achieve higher utilization
• Flexible memory system and interconnect to sustain high compute 

throughput
• Custom dataflow pipeline

54



Chip and Architecture Overview

• RDU Tile
• Compute and memory components
• A programmable interconnect

• Tile resource management
• Combine adjacent tiles to form a 

larger logical tile
• Each tile controlled independently
• Allow different applications on separate

tiles concurrently
• Memory access

• Direct access to TBs DDR4 off-chip memory
• Memory-mapped access to host memory

55



RDU Tile
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Pattern Compute Unit (PCU)

• Pattern Compute Unit (PCU)
• Compute engine

• Reconfigurable SIMD data 
path
• For dense and sparse tensor

algebra in FP32, BF16, and
integer data format

• Programmable counters
• Program loop iterators

• Tail unit
• Accelerates functions such as

exp, sigmoid
57



Pattern Memory Unit (PMU)

• Pattern Memory Unit (PMU)
• On-chip memory system
• Banked SRAM arrays

• Write and read multiple
high bandwidth SIMD data
stream concurrently

• Address ALUs
• Address calculation for 

arbitrarily complex accesses
• Data align

• Tensor layout 
transformation 58



Switch and On-chip Interconnect

• Switch
• Programmable packet-switched interconnect fabric

• Independent data and 
control buses
• Suit different traffic 

classes 
• Programmable routing

• Flexible chip bandwidth
allocation to concurrent
stream

• Programmable counters
• Outer loop iterators
• On-chip metric collection

59



Interface to I/O Subsystem

• Address ALUs
• Address calculation for arbitrarily complex accesses

• Coalescing Units
• Enable transparent

access to memories 
across RDUs and host
memory

• Address space manager
• Programmable, variable

length segments
60



Operator Mapping (Softmax)

61



Pipelined in Space + Fused
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Fused



Spatial Dataflow within an RDU

• The dataflow removes 
• Memory traffic and host communication overhead
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CGRA



Coarse grained reconfigurable array (CGRA)

• Coarse grained reconfigurable array (CGRA)
• Multiple processing elements (PEs)
• Each PE has ALU-like functional

unit
• Array configurations vary by

• Array size
• Functional units
• Interconnection network
• Register file architectures

• CGRAs can achieve power-efficiency of several 10s of GOps/sec per 
Watt (why?)

• Samsung SRP processor (embedded and multimedia apps)
65



Key features of CGRA accelerators

• Software-pipelining execution mapping
• Accelerate loops with low parallelism
• Loops with loop-carried dependence, loops with high branch 

divergence
• Avoid von-Neumann architecture bottleneck

• CGRAs are not subjected to dynamic fetch and decoding of 
instructions

• CGRA instructions are in a pre-decoded form in the instruction 
memory

• PE transfers data directly among each another
• Without going through a centralized registers and memory
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Loop execution on the CGRA 
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Loop:
t1 = (a[i]+b[i]-k)*c[i]
d[i] = ~t1 & 0xFFFF

Data dependency graph

Execution time: 1

1

2

Mapping data 
dependency 
graph to CGRA



Loop execution on the CGRA 
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Loop:
t1 = (a[i]+b[i]-k)*c[i]
d[i] = ~t1 & 0xFFFF

Data dependency graph

Execution time: 2

1

2

Mapping data 
dependency 
graph to CGRA 3



Loop execution on the CGRA 
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Loop:
t1 = (a[i]+b[i]-k)*c[i]
d[i] = ~t1 & 0xFFFF

Data dependency graph

Execution time: 3

1

2

Mapping data 
dependency 
graph to CGRA 3 4
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Loop execution on the CGRA 
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Loop:
t1 = (a[i]+b[i]-k)*c[i]
d[i] = ~t1 & 0xFFFF

Data dependency graph

Execution time: 6

1

2

Mapping data 
dependency 
graph to CGRA 3 4

5 6 7
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Takeaway Questions

• What are challenges to build a large chip for NN applications ?
• (A) Power and cooling
• (B) Fault tolerance for defected dies 
• (C) Package assembly

• How does Cerebras tackle the DNN sparsity ?
• (A) Customized sparse core
• (B) Data-driven dataflow scheduling
• (C) Filters out sparse zero data
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Takeaway Questions

• What are hardware components used by RDU ?
• (A) Pattern computer unit (PCU)
• (B) Pattern memory unit (PMU)
• (C) Interconnect network router

• What are features of CGRAs ?
• (A) Customized PEs
• (B) Software-pipelining execution mapping
• (C) Reconfigurable dataflow
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