o =

e o

"~ Accelerator
Architectures for
p* Machine Learning

.

Lecture 4: Pruning & Sparsity

Tuesday: 3:30 - 6:20 pm
Classroom: ED-302

Acknowledgements and Disclaimer

* Slides was developed in the reference with
Joel Emer, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, ISCA 2019 tutorial
Efficient Processing of Deep Neural Network, Vivienne Sze, Yu-Hsin Chen, Tien-Ju
Yang, Joel Emer, Morgan and Claypool Publisher, 2020
Yakun Sophia Shao, EE290-2: Hardware for Machine Learning, UC Berkeley, 2020

CS231n Convolutional Neural Networks for Visual Recognition, Stanford University,
2020

* 6.5940, TinyML and Efficient Deep Learning Computing, MIT

* NVIDIA, Precision and performance: Floating point and IEEE 754 Compliance for
NVIDIA GPUs, TB-06711-001_v8.0, 2017

Outline

* Neural Network Pruning

* Pruning granularity

* Pruning criterion

* Pruning ratio

* Fine-tune/train pruned neural network

Pruning Happens in Human Brain

* Neural Network Pruning
* Reduce the network connections
« Small weight while maintaining training accuracy

1000 Trillion Synapses

50 Trillion Synapses

500 Tr|II|on Synapses

New born Teenager

N i Christopher A Walsh, Peter Huttenlocher
1 year Old (1931 - 2013). Nature, 502(7470), 2013 4

Approaches to Reduce Model Sizes

* Weight sharing 2.03, 2.11-1.98, 1.94
 Trained quantization

e Quantization

» Quantizing the weight and 2.0
activation
* Fine-tune in float format
» Reduce to fixed-point format pyS S X ess memory

footprint

What is Neural Network Pruning ?

* Neural Network Pruning

* Reducing the parameter counts
of neural networks

« Decreasing the storage
requirements

* Improving computation
efficiency of neural network

Pruning

LY =

="

Neural Network Pruning

* Make neural network smaller by removing synapses and neurons

[Train Connectivity]

<

Prune Connections

7

[Train Weights

Accuracy Loss

© Pruning

Pruning+Finetuing @ Iterative Pruning and Finetuing

0.5%

0.0 p-wamam
-0.5%
-1.0%
-1.5%
-2.0%
-2.5%
-3.0%
-3.5%
-4.0%

-
~ -
-

B
-
N -
~

-4.5%

40% 50% 60% 70% 80% 90%

100%
Pruning Ratio (Parameters Pruned Away)

=
Learning Both Weights and Connections for Efficient Neural Network [Han et al., NeurlPS 2015]

Neural Network Pruning

* Make neural network smaller by removing synapses and neurons

#Parameters MACs
Neural Network
Before Pruning After Pruning Reduction Reduction

AlexNet 61 M 6.7 M 9 X 3 X
VGG-16 138 M 10.3 M 12 X 5X
GoogleNet 7M 2.0M 3.5 X 5X
ResNet50 26 M 747 M 3.4 X 6.3 X
SqueezeNet 1M 0.38 M 3.2 X 3.5 X

Efficient Methods and Hardware for Deep Learnina [Han S.. Stanford Universityl

Pruning in the Industry

« Hardware support for sparsity

Compressed 4-bit 16-bit
DNN Model Virtual weight| WeIght | peal weight
& Look-up | MPledlctton
3
Sparse Format Index | Result
Input Fo 4-bit Accum 16-bit “
Image Relative Index 1 Absolute Index

2X

Effective

EIE [Han et al., ISCA 2016]

CCCCC«(
CCCC(
CCCCCK
CCCCC(
CCCC«(
CCCCCK

o ' paam — | n
ESE [Han et al., FPGA 2017) Lj.-.
AN o i l-l

QMafﬂy C_mdr'\sng ?Rowpmlmchm Less Partial Matrices Dense Matrix Sparse Matrlx A]OO Spar51ty

I

ﬁ}ﬁ Optimized Tensor Core
t TR

3 1
® Hul Ifman Tree Scheduler

e e 2:4 sparsity in A100 GPU

SpArch [Zhang et al., HPCA 2020) 2X peak performance, 1.5X measured BERT speedup
SpAtten [Wang et al., HPCA 2021]

Neural Network Pruning

* In general, we could formulate the pruning as
follows:

arg min L(x; W)p)
P
subject to

IWpllo <N

« L represents the objective function for neural
network training;

« X is input, W is original weights, W is pruned
weights;

. ||Wp||0 calculates the #nonzeros in Wp, and N is
the target #nonzeros.

arg min L(x; W)
w

|

arg min L(x; W)
WP

st [Wpllg <N

10

Pruning at Different Granularities

* A simple example of 2D weight matrix

. Preserved
Pruned

Fine-grained/Unstructured Coarse-grained/Structured
* More flexible pruning index choice * Less flexible pruning index choice (a subset
« Hard to accelerate (irregular) of the fine-grained case)

* Easy to accelerate (just a smaller matrix!) 11

Pruning at Different Granularities

The case of convolutional layers

« The weights of convolutional layers have 4 dimensions [c¢
 ¢;: input channels (or channels)

Cis kh’ kw] :

0’

* C,. output channels (or filters)
* k;: kernel size height
* k,: kernel size width

* The 4 dimensions give us more choices to select pruning granularities

12

Pruning at Different Granularities

k, =3

The case of convolutional layers - n

. N B Preserved I

* Some of the commonly used pruning granularities G 0
] Pruned > —>

Irreqular <

Fine-grained Pattern-based Vector-level Kernel-level Channel-level
Pruning Pruning Pruning Pruning Pruning

g 6l il

like Tetris :)

13
Exploring the granularity of sparsity in convolutional neural networks [Mao et al., CVPR-W]

Pruning at Different Granularities

* Fine-grained pruning
 Flexible pruning indices
» Large compression ratio (flexibly find redundant weight)
« Can deliver speedup on some customized hardware (EIE),

but not GPU

Neural Network ;

AlexNet
VGG-16
GoogleNet

ResNet50

Efficien

Before Pruning
61 M
138 M
7™

26 M

t Methods and Hardware for Deep Learnina [Han S.. Stanford University]

#Parameters
After Pruning
6.7 M
10.3 M
20M

747 M

Reduction

9X

12X

3.5 X

3.4 X

14

Pruning at Different Granularities

* Pattern-based pruning: N:M sparsity
* N:M sparsity means that in each contiguous M elements, N
of them is pruned
* A classic case is 2:4 sparsity (50% sparsity)
* It is supported by NVIDIA's Ampere GPU, 2X speedup

non-zero 2-bit
values indices

T

+
A

-

Dense Matrix Compressed Matrix

Accelerating Inference with Sparsity Using the NVIDIA Ampere Architecture and NVIDIA Tensor RT

Pruning at Different Granularities

* Pattern-based pruning: N:M sparsity

« Usually maintains accuracy

Network Data Set Metric
ResNet-50 ImageNet Top-1
ResNeXt-101_32x8d ImageNet Top-1
Xception ImageNet Top-1
SSD-RN50 C0C02017 bbAP
MaskRCNN-RN50 CO0C02017 bbAP
FairSeq Transformer EN-DEWMT 14 BLEU
BERT-Large SQuAD v1.1 F1

Dense FP16

76.1

79.3

79.2

24.8

37.9

28.2

21.9

Sparse FP16
76.2
79.3
79.2
24.8
37.9
28.5

7.9

Accelerating Inference with Sparsity Using the NVIDIA Ampere Architecture and NVIDIA TensorRT

16

Pruning at Different Granularities

* Channel pruning

* Reduce channel numbers (leading to an neural network with
smaller # of channels) -> speedup

* Con: smaller compression ratio

Sparsity=0.3 I B Sparsity=0.5
Sparsity=0.3 I B Sparsity=0.3
Sparsity=0.3 I < 1 Sparsity=0.7
Sparsity=0.3 [I Sparsity=0.2
Sparsity=0.3 I B Sparsity=0.3

Uniform Shrink Channel Prune

Pruning Criterion

* What synapses and neurons should we prune ?
* The less important parameters should be removed
* What is the less important parameter in a neural network?

Example
=/():+f) f(+) =ReLU(-), W= [10,-8,0.1]

\Qi)

H'I.\-I
_—

I
mj>/

wix; + b

- If one weight will be removed, which one?

18

Magnitude-based Pruning

* Magnitude-based pruning

« Considers weights with large absolute values are more
iImportant than other weights

 Remove weights with small magnitudes

fmap
1111
1111
1111

filter
-8 3|2
1(-3]-2
1(1]1

Without Pruning

Importance = | W|

fmap
1 (11
1 (11
1 (11

Magnitude-based Pruning

filter

-8

3

2

x| 0

-3

-2

0

0

0

= -8

Error =-4

19

Magnitude-based Pruning

* Row-wise pruning
* The L1-norm magnitude can be defined as

Importance = Z |w;|, where W is the structural set S of parameters W

€S
Example
3 | -2 L1-norm [3]+[-2] S 00
1 |-5 Row-wise |1]+-5 6 1| -5
Weight Importance Pruned Weight

Learning Both Weights and Connections for Efficient Neural Network [Han et al., NeurlPS 2015]

20

Magnitude-based Pruning

* A heuristic pruning criterion
* The Lp-norm magnitude can be defined as

P
WS, = (E | w, |”) , where W® is a structural set of parameters

€S
Example
V13
3 | -2 L2-norm _Jori-2r J13 0 0
: 26
1 -5 Row-wise I v J26 1 -5
Weight Importance Pruned Weight

Learning Structured Sparsity in Deep Neural Networks [Wen et al., NeurlPS 2016]

Feature-Based Pruning

* Feature-based pruning
* Pruning based on the impact of the output feature map
* Achieve higher accuracy than magnitude-based pruning
« Complex evaluating the impact of the weights

fmap filter fmap filter
1 (1|1 8|1 3|2 1111 8100
111 (1| *%|1(|-3[|-2|=_4 11|11 1]0]0|=_4
1|11 1|11 1|11 111 Eroreo

Without Pruning Feature-based Pruning

22

Scaling-based Pruning

* A scaling factor
 Associated with each filter in convolutional layers
 Trainable parameter

* The filters/output channels with small scaling factor
magnitude will be pruned

: Channel . : Channel .

Weight Scaling Factor Activation Weight Scaling Factor Activation
oo | SadCRUE o0 | SdCIRRRIP cranvcio
_

= _ .

0.29

Filter 2 : : :
A _ ,
| -
ilter | |

|

d
1]

Filter N-1

"

X 056

y,

Learning Efficient Convolutional Networks through Network Slimming [Liu et al., ICCV 2017]

Scaling-based Pruning

* A scaling factor

* The scaling factor can be used from batch normalization
layer , Z, — i

Channel ; Channel
Weight Scaling Factor Activation Weight Scaling Factor Activation

® 17 — (% | Y
- 5
- TP~ oo | LT

Filter N-1 '—’ LRI Channel N-1 4

S

}

Filter 0

"

Filter 1 0.10

"

0]
111

Filter 2 029

—

Filter 3 X 082

-'

}

Filter N-1

"

¥ 056

Learning Efficient Convolutional Networks through Network Slimming [Liu et al., ICCV 2017]

24

Pruning Neurons

* When removing neurons from a neural network model
* The less useful neurons are removed

Weight Matrix

Neuron Pruning
in Linear Layer

Channel Pruning
in Convolution Layer

25

Percentage-of-Zero-Based Pruning

* ReLU activation will generate zeros in the output activation

* The Average Percentage of Zero activations (APoZ) can be exploited to
measure the importance of the neurons

Width = 4 ' ‘ Width = 4 ’ ‘
0 0105 1 0105 0|0 |00 080 0.5/ 0 |0.2/0.1| 01|/05 0|0 | 0 |080.1/0
< <
1(1.2|0.6/0.3|0.2| [0.2/0.3| 0 0.7| 0 10.6/0.1 ’1010212 0 008 0|1)| 020 0|03
Output = | | £ . |
Activations § 0 05 003 |01/0| 01|05 [1.2{ 1|0 (0.2 51.2 0 0.2/0.3 |0.1/0 0.1/1.0/ | 0 |0.4| 0 0.5
0.2/0 0 08| (0.1]0.6/0.7/0.1 |0.5] 0 |0.3(0.5 0.2/04 0,0 /02/010/0| 02/ 01|03 0
Channel = 3 Batch = 2 Channel = 3
S+6 5+7 2 6+38 14
Average Percentage of Zeros (APoZ) -t :1 —— :I_ L B
2-4-4 32 2:4-4 32 2:4-4 32
Channel 0 Channel 1 Channel 2

Network Trimming: A Data-Driven Neuron Pruning Approach towards Efficient Deep Architectures [Hu et al., ArXiv 2017]

26

Percentage-of-Zero-Based Pruning

* The Average Percentage of Zero activations (APoZ) can be exploited to

measure the importance of the neurons

* The neuron with smaller APoZ is more important

Width = 4 Width = 4
0 (01/05/1]|0.105 0|0 0|0 08/ 0 0.5/ 0 |0.2/0.1| |0.1]05/0 |0 00801 0
A] g
"11.2/0.6/0.3/0.2| |0.2/0.3| 0 0.7/ 0 10.6/0.1 11010212/ 0 0(08/0|1]|02 0003
Output £ €
Activations]E":? 0 (05 0|03 |0.1/0| 0|05 (1.2 10|02 51.2 0 (0.2|0.3| |0.1| 0 |0.1(1.0/ | O |0.4| O 0.5
02/ 0|0 (0.8 |10.106/0.7/0.1| |10.5| 0 |0.3/0.5 0204/ 00 02/0 10/0 02/ 003 0
Channel =3 Batch = 2 Channel =3
5+6 11 5+7 12
A P t f Z APoZ = =—| | = =
verage Percentage of Zeros (APo2Z) A T a.4- 1
Channel 0 Channel 1 hannel

Network Trimming: A Data-Driven Neuron Pruning Approach towards Efficient Deep Architectures [Hu et al., ArXiv 2017]

27

Regression-based Pruning

« Minimize reconstruction error of the correspondlng layer’s
outputs e S—

28

Regression-based Pruning

Let ci—1
Z=XW'=%) XW!

cf Cl() C(J
c=0 T TW | | — é 1 1 1 |
The problem can be formulate as b [o I T T T T
ci—1 A P P
: R R
. _ o 2 = _ T 2‘ } H : 3 H 3
argmin 12~ 21z = |12 z:;ﬁ X Wellz L X w7 z
C= L

subject to
11lo < N,
g is coefficient vector of length ¢, for channel T)

i 0 Co
selection. g.=0means channelcispruned. B B X T =,
N. is the number of nonzero channels.

Solve the problem by: 7

* Fix W, solve g for channel selection

* Fix p, solve W to minimize reconstruction error

Channel Pruning for Accelerating Very Deep Neural Networks [He et al., ICCV 2017]
29

Takeaway Questions

* How does feature-based pruning work?
* (A) Removing weights with small magnitudes
* (B) Pruning through complex evaluation
* (C) Removing inputs with small magnitudes

* What are goals of neural network pruning ?
* Less number of weights
* Less number of inputs
* Less bits per weights

30

Takeaway Questions

* What are benefits of network pruning ?
* Reduce the size of input data
* Small size of filter data
* Shorten the time to complete the DNN model inference

31

Pruning Ratio

* How should we find per-layer pruning ratios ?
* Non-uniform pruning is better than uniform shrinking

Uniform Shrink

<

Channel Prune

ImageNet Accuracy (%)

70.5 1
70.0 1
69.5 1
69.0 A
68.5 A
68.0 A

67.5 1"

Pruning (AMC)

s'.."

. =" Uniform Scaling

50

70

110

Latené(;/ (ms)

32

Finding Pruning Ratios

* Analyze the sensitivity of each layer
* Pruning ratios are varied across different layers
« Some layers are more sensitive (e.g., first layer, why?)
« Some layers are more redundant

* Need to perform sensitivity analysis to determine the per-
layer pruning ratio

33

Finding Pruning Ratios

» The process of Sensitivity Analysis (* VGG-11 on CIFAR-10 dataset)
« Pick a layer L; in the model

« Prune the layer L; with pruning ratio r € {0,0.1,0.2,...,0.9} (or other strides)
« Observe the accuracy degrade AAcc. for each pruning ratio

100
\

86
AAcc

~l
N

The higher pruning rate
o Lo The more accuracy loss

Accuracy (%)
(9]
o

B
B

30
10% 20% 30% 40% 50% 60% 70% 80% 90%

Pruning Rate (Percentage of Weights Pruned Away) 34

Finding Pruning Ratios
* The process of Sensitivity Analysis (" VGG-11 on CIFAR-10 dataset)
« Pick a layer L; in the model
* Prune the layer L; with pruning ratio r € {0,0.1,0.2,...,0.9} (or other strides)

* Observe the accuracy degrade AAcci for each pruning ratio
* Repeat the process for all layers

100
(£ e o O —(— —0
< 86 T——a_ 0
o> 72 I
S
8 58 o LO » L1 \
0 12 L3 L ¥
< 4| o514 oL5 \
\\
30 ’

10% 20% 30% 40% 50% 60% 70% 80% 90%
Pruning Rate (Percentage of Weights Pruned Away)

Finding Pruning Ratios

* The process of Sensitivity Analysis (* VGG-11 on CIFAR-10 dataset)
« Pick a layer L; in the model

« Prune the layer L; with pruning ratio » € {0,0.1,0.2,...,0.9} (or other strides)

* Observe the accuracy degrade AAccf. for each pruning ratio
* Repeat the process for all layers

1009\
g 86
§ 72
5 58 o L0 © L1
o oL2 o L3
< 4| 514 oOL5
30

10% 20% 30% 40% 50% 60% 70% 80% 90%
Pruning Rate (Percentage of Weights Pruned Away)

Finding Pruning Ratios

» The process of Sensitivity Analysis (" VGG-11 on CIFAR-10 dataset)
« Pick a layer L; in the model
* Prune the layer L; with pruning ratio r € {0,0.1,0.2,...,0.9} (or other strides)
« Observe the accuracy degrade AAcc.. for each pruning ratio
* Repeat the process for all layers

Some layers are less sensitive to pruning

100 4

o oO— O

86 —
72

58 o L1

Accuracy (%)

O
O
e Po o

30
10% 20% 30% 40% 50% 60% 70% 80% 90%

Pruning Rate (Percentage of Weights Pruned Away)

Finding Pruning Ratios
* The process of Sensitivity Analysis (* VGG-11 on CIFAR-10 dataset)
« Pick a layer L; in the model
* Prune the layer L; with pruning ratio » € {0,0.1,0.2,...,0.9} (or other strides)

« Observe the accuracy degrade AAcc.. for each pruning ratio
* Repeat the process for all layers

100 |
g 86

> 72 Some layers are more sensitive to pruning

©

S5 58| © L0 © L1

3 o L2 o L3

< 44 oL4 OL5

30
10% 20% 30% 40% 50% 60% 70% 80% 90%

Pruning Rate (Percentage of Weights Pruned Away)

Finding Pruning Ratios

* The process of Sensitivity Analysis (* VGG-11 on CIFAR-10 dataset)
« Pick a layer L; in the model
* Prune the layer L; with pruning ratio r € {0,0.1,0.2,...,0.9} (or other strides)

« Observe the accuracy degrade AAcc.. for each pruning ratio
* Repeat the process for all layers

* Pick a degradation threshold 7" such that the overall pruning rate is desired

100J\
-~ 86| ’ ’
2 .
> 72 threshold 7
©
5 58 © LO O L1
o oL2 ©oL3
< 4| 514 0L5
30

10% 20% 30% 40% 50% 60% 70% 80% 90%
Pruning Rate (Percentage of Weights Pruned Away)

Finding Pruning Ratios

* The process of Sensitivity Analysis (* VGG-11 on CIFAR-10 dataset)
* Pick a layer L; in the model
« Prune the layer L; with pruning ratio r € {0,0.1,0.2,...,0.9} (or other strides)

« Observe the accuracy degrade AAcc. for each pruning ratio
* Repeat the process for all layers

 Pick a degradation threshold 7 such that the overall pruning rate is desired

100(L
e
> 72 threshold T : :
e : N
5 58| © L0 O L1 _ REEE
3 o L2 o L3 Pruning rates: | !
< 4] 514 oL5 : '

30 . -

10% 20% 30% 40% 50% 60% 70% 80% 90%

Pruning Rate (Percentage of Weights Pruned Away) 40

Automatic Pruning

« Given an overall compression ratio, how do we choose per-
layer pruning ratios ?
 Sensitivity analysis ignores the interaction between layers

« Conventionally, such process relies on human expertise and trails and
errors

41

AMC: AutoML for Model Compression

* Pruning as a reinforcement learning problem

Model Compression by Human:
Labor Consuming, Sub-optimal

[@ ! E
o o A e EReward = -Error,
) — o/ Critic |« Layer t+1
¢ e I P ?%
. Act \ction: Compress with /l,/l,/l,/l =
AMC Engine CLOY Sparsity ratio a:(e.g. 50%) . : P Layer t
- : r PP P 50%
e @ /1:
o o | 4 : Layer t-1
™) o @ . Embedding - . !]
S — Em:beddlng st=[N,C;H,Wi,i...] / 30%
[® . ‘ ' :
ig e Agent: DDPG *
Model Compression by Al Environment: Channel Pruning

Automated, Higher Compression Rate, Faster

AMC: AutoML for Model Compression and Acceleration on Mobile Devices [He et al., ECCV 2018]

AMC: AutoML for Model Compression

* AMC uses the following steps for the reinforcement
learning problem

« State: 11 features (including layer indices, channel numbers,
kernel sizes, FLOPs, ...)

» Action: A continuous number (pruning ratio)a € [0,1)

« Agent: Deep Deterministic Policy Gradient (DDPG) agent,
because it supports continuous action output

 Reward: R —Error, if satisfies constrains
| —o0, if not

43

Density
#Non-zero weights/total#weights

AMC: AutoML for Model Compression

50%

B ResNet50 Density Pruned by Human Expert Human*
- ResNet50 Density Pruned by AMC (the lower the better)

L~

L AutoML

B

>

o~
1

30% A

(smaller the better)
20% A

10% -

0%

ResBlockl ResBlock?2 ResBlock3 ResBlock4

44

AMC: AutoML for Model Compression

Model MAC Top-1

1.0 MobileNet 569M 70.6% 119.0ms

70.5% 64.4ms 1.8x 14.3MB

70.2% 99.7ms 2.0x 13.2MB

0.75 MobileNet 325M 68.4% 69.5ms 1.7X 14.8MB

* Measured with TF-Lite on Samsung Galaxy S7 Edge, which has Qualcomm Snapdragon SoC
Single core, Batch size = 1(mobile, latency oriented)
45

NetAdapt

A rule-based iterative/progressive method

« Aim to find a per-layer pruning ratio to meet a global
resource constraint (e.g., latency, energy, ...)

* The process is done iteratively

—> NetAdapt }—>

NetAdapt: Platform-Aware Neural Network Adaptation for Mobile Applications [Yang et al., ECCV 2018] 46

NetAdpt

» For each iteration, we aim to reduce the latency by a certain amount AR (manually defined)
« For each layer L, (k in A-Z in the figure)

* Prune the layer s.t. the latency reduction meets AR (based on a pre-built lookup table)
» Short-term fine-tune model (10k iterations); measure accuracy after fine-tuning
* Choose and prune the layer with the highest accuracy
* Repeat until the total latency reduction satisfies the constraint
* Long-term fine-tune to recover accuracy

ACICA Acce (Accc) Acco ... Accz
[Short-term fine-tune ‘
A A B C D & "
I T S— - - [
l | || |
— SN ———) — ﬁ
L e S [H W 1 } ! I L il S
] A A 4]ﬁ Jﬁ,] fine-tune ;]
A : L ,
T A _a Y
. ﬁ ﬁ | Em = L
/'Y A y 4
original model prune each layer to reduce AR Final model

NetAdapt: Platform-Aware Neural Network Adaptation for Mobile Applications [Yang et al., ECCV 2018]

NetAdpt

* The iterative nature allows us to obtain a serial of
models with different costs
* # of models = # of iterations

59%
57% A
55% -
53% 1 model series
51% -
49% A
47% A
45% A
43% -
41%

AMultipliers

A 1.7x Faster
0.3% Higher Accuracy #MorphNet
® NetAdapt

A

Top-1 Accuracy

A 1.6x Faster
0.3% Higher Accuracy

3 5 7 9 11 13
Latency (ms)

NetAdapt: Platform-Aware Neural Network Adaptation for Mobile Applications [Yang et al., ECCV 2018] 48

Fine-tuning Pruned Neural Networks

* How to improve performance of sparse (pruned) models ?

* Fine-tuning the pruned neural networks will help recover the
accuracy and push the pruning ratio higher

* Learning rate for fine-tuning is usually 1/100 or 1/10 of the
original learning rate

O Pruning Pruning+Finetuing
[Train Connectivity] 0.5%
" S —— s
-0.5% -~
< g
- -1.5%
Prune Connections b Q
5 -25% .
J |7 3 R
< -3.5% i
[Train Weights] -4.5% Q
40% 50% 60% 70% 80% 90% 100%

Pruning Ratio (Parameters Pruned Away)

Learning Both Weights and Connections for Efficient Neural Network [Han et al., NeurlPS 2015] 49

lterative Pruning

* [terative pruning gradually increases the target sparsity Iin
each iteration
* lterative pruning and fine-tuning resists to the large pruning ratio

O Pruning Pruning+Finetuing @ Iterative Pruning and Finetuing

[Train Connectivity] 0.5%

0w 0 1T b L
-0.5% -
< g
- -1.5%
Prune Connections e Q
5 -25% .
4 L 3 s
< -35% .
’ Q
[Train Weights -4.5% A
’ 40% 50% 60% 70% 80% 90% 100%

Pruning Ratio (Parameters Pruned Away)

50
Learning Both Weights and Connections for Efficient Neural Network [Han et al., NeurlPS 2015]

Regularization

* When training neural networks or fine-tuning quantized
neural network, regularization is added
* Penalized non-zero parameters
* Encourage smaller parameters

* The most common regularization for improving
performance of pruning is L1/L2 regularization

L1-Regularization

L'=Lx;W)+ 1| W|
L2-Regularization

L' = L(x; W) + 1||W||?

51

Summary of Neural Network Pruning

* Introduction to pruning
* What is the purpose of pruning ?

* Determine the pruning granularity
* Fine-grain, channel-level pruning

* Determine the pruning criterion
« What synapses/neurons should we prune ?

* Determine the pruning ratio
« What should target sparsity be for each layer

* Fine-tune/train pruned neural network
* How to improve performance of pruned models

52

Takeaway Questions

* How to find prune ratios appropriately ?
* (A) Randomly guess
* (B) Sensitivity analysis
* (C) Refer to the ratio in the batch normalization
* What are potential techniques used by automatic pruning ?
* Word embedding

* |terative training
e Reinforcement learning

53

