
Accelerator
Architectures for

Machine Learning
Lecture 3: Quantization
Tuesday: 3:30 – 6:20 pm

Classroom: ED-302

Acknowledgements and Disclaimer
• Slides was developed in the reference with

Joel Emer, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, ISCA 2019 tutorial
Efficient Processing of Deep Neural Network, Vivienne Sze, Yu-Hsin Chen, Tien-Ju
Yang, Joel Emer, Morgan and Claypool Publisher, 2020
Yakun Sophia Shao, EE290-2: Hardware for Machine Learning, UC Berkeley, 2020
CS231n Convolutional Neural Networks for Visual Recognition, Stanford University,
2020

• 6.5940, TinyML and Efficient Deep Learning Computing, MIT
• NVIDIA, Precision and performance: Floating point and IEEE 754 Compliance for

NVIDIA GPUs, TB-06711-001_v8.0, 2017

2

Outline

• K-Means-based Quantization
• Linear Quantization
• Binary and Ternary Quantization

3

Memory is Expensive !!

• Data movement -> Move memory reference -> More energy

4

Low Bit-Width Operations are Cheap

• Less Bit-Width -> Less energy

5

45 nm Process, Horowitz,
ISSCC, 2014

Energy and Area Cost

6

Operation Energy (pJ) Area(um2)
8b Add 0.03 36
16b Add 0.05 67
32b Add 0.1 137
16b FP Add 0.4 1360
32b FP Add 0.9 4184
16b FP Mult 1.1 1640
32b FP Mult 3.7 7700
32b SRAM Read (8KB) 5
32b DRAM Read 640

173X

4.7X

45 nm Process, Horowitz, ISSCC, 2014

Could we make the deep
learning efficient by lowering
the precision of data ?

What is Quantization ?

• Quantization
• The process of constraining an input from a continuous

or large set of values to a discrete set

7

Numeric Data Types

• Fixed-point number

8

IEEE 765 Single Precision Float Point

• Sign determines the sign of the number

• Exponent (8 bit) represent -127 (all 0s) and +128 (all 1s)

• Significand (23 fraction bits), total precision is 24 bits (23 + 1
implicit leading bit) log10(224) ≈ 7.225 digital bit

9

0 0 1 1 1 1 0 0 0 0 1 0
Sign Exponent (8 bits) Mantissa/Fraction (23 bits)

IEEE 765 FP32 Case Study 1

10

0 0 1 1 1 1 0 0 0 0 1 0
Sign Exponent (8 bits)

Sign = b31 = 0 ; (-1)0 = 1
e =120; 2(120 - 127) = 2-7

Value = 1 x 2-7 x 1.25 = 0.009765625

Mantissa/Fraction (23 bits)

Numeric Data Type
• Question: What is the decimal “11.375” in FP32 format ?

• The exponent is 3 and biased form
= (3 + 127) = 130 = 1000 0010

11

0.375 x 2 = 0.750 = 0 + 0.750 => b-1 = 0
0.750 x 2 = 1.500 = 1 + 0.500 => b-2 = 1
0.500 x 2 = 1.000 = 1 + 0.000 => b-3 = 1

11.375
= 11 + 0.375
= (1011)2 + (0.011)2
= (1011.011)2
= (1.011011)2 x 23

0 1 0 0 0 0 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sign Exponent (8 bits) Mantissa/Fraction (23 bits)

Floating-Point Number

• Exponent Width -> Range; Fraction Width-> Precision

12

Number Representation

13

S E M

1 8 23

FP32

S E M
1 5 10

FP16

S M
1 31

INT32

S M
1 15

INT16

S M
1 8

INT8

Range

1.2E-38 to 3.4E+38

6.1E-5 to 6.6E+4

2147483648 to 2147483647

−32,768 to 32,767

-128 ~ 127

Reduced Bit Width

14

0 1 0 0 0 0 1 1 0 1 0
Sign Exponent (8 bits) Mantissa/Fraction (23 bits)

0 1 0 0 0 0 0 0

32-bit
float

8-bit
INT

Sign Mantissa/Fraction (7 bits)

Integer
(4-bits)

Fractional
(3-bits)

FP32 vs FP16 vs BF16

Format Bits Exponent Fraction
FP32 32 8 23
FP16 16 5 10
BF16 16 8 7

15

• FP32 – single precision
• With 6-9 significant decimal

digits precision
• FP16 – half precision

• Uses in some neural network
applications

• With 4 significant decimal digits
precision

• BF16
• A truncated FP32
• Allow for fast conversion to

and from an FP32
• With 3 significant decimal digits https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-

secret-to-high-performance-on-cloud-tpus

Choosing bFloat16

• Motivation
• The physical size of a hardware multiplier scales with the square

of the mantissa width
• Mantissa bit length – FP32: 23, FP16: 10, BF16: 7

• BF16
• 8 X smaller than an FP32 multiplier
• Has the same exponent size as FP32
• No require special handling (loss scaling) in the FP16 conversion
• XLA compiler’s automatic format conversion
• In side the MXU, multiplications are performed in BF16 format
• Accumulations are performed in full FP32 precision

16https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus

Nvidia’s TF32

• Nvidia’s TF32
• 19-bit (BF19)
• 1-bit sign, 8-bit exponent

10-bit fraction
• Fuse BF16 and FP16

• BF16: 8-bit exponent +
• FP16: 10-bit fraction

• Nvidia A100 Tensor Core
• TF32: 156 TFLOPS
• FP16/BF16: 312 TFLOPS

17

https://zhuanlan.zhihu.com/p/449857213

Microsoft MSFP

• Microsoft MSFP
• Used in Brainwave FPGA
• 8-bit shared exponent
• 1-bit sign, 3-bit fraction
• A group of INT4 vector

shares 8-bit exponent

18
https://zhuanlan.zhihu.com/p/449857213

FP8 and Tesla CFloat

• FP8 (1-5-2)
• Large loss in MobileNet v2
• Hybrid FP8 (HFP8)

• Use FP(1-4-3) in forward
• Use FP(1-5-2) in backward

• Tesla Dojo Cfloat (configurable float)
• Configurable exponent and mantissa
• Use software to choose appropriate Cfloat format

• CF16
• CF8 (1-4-3), CF8 (1-5-2)

19

https://proceedings.neurips.cc/paper/2019/file/65fc9f
b4897a89789352e211ca2d398f-Paper.pdf

How to Determine Bit Width on DNN ?

• For accuracy, DNN operations decide bit width to
achieve sufficient precision

• Which DNN operations affect the accuracy ?
• For inference: weights, activations, and partial sums
• For training: weights, activations, partial sums, gradients,

and weight update

20

Dynamic Fixed Point
• Allow “f” to vary based on data type and layer

• In large layers, the outputs are the result of many accumulations

• The value of network parameters are much smaller than layer output
-> varying bit widths on parameters and outputs

21

0 1 1 0 0 1 1 08-bit
dynamic

fixed

Sign Mantissa (7 bits)

Integer
([7-f]-bits)

Fractional
(f-bits)

S = 0, m = 102, f = 3
12.75

0 1 1 0 0 1 1 0

Sign Mantissa (7 bits)

fractional
(f-bits)

S = 0, m = 102, f = 9
0.19921875

Impact on Accuracy

• The accuracy drops in the small bit width when using
static fixed point

• Stable accuracy variation is shown in dynamic fixed
point (why ?)

22Gysel et al., Ristretto, ICLR 2016

Top-1
accuracy of
CaffeNet on
ImageNet

Impact on Accuracy

• Small bit width cannot adapt to every DNN models very
well (training)

23

Layer outputs CONV
parameters

FC parameters Fixed point
accuracy

LeNet (Exp 1) 4-bit 4-bit 4-bit 99.0%
LeNet (Exp 2) 4-bit 2-bit 2-bit 98.8%
SqueezeNet 8-bit 8-bit 8-bit 57.1%
CaffeNet 8-bit 8-bit 8-bit 56.0%
GoogleNet 8-bit 8-bit 8-bit 66.6%

Gysel et al., Ristretto, ICLR 2016

Precision Varies from Layer to Layer

• Accuracy varies with the different bit widths in layers
• How to find out the best bit width in each layer while

maintaining high accuracy ?

24

Error rate Bit per layer
1% 10-8-8-8-8-8-6-4
2% 10-8-8-8-8-8-5-4
5% 10-8-8-8-7-7-5-3
10% 9-8-8-8-7-7-5-3

AlexNet

Judd et. al., ArXiv 2016

Takeaway Questions

• What are advantages to use BF16 instead of FP16 ?
• (A) Fast conversion from FP32
• (B) Get more precise value
• (C) Represent few different values

• What are benefits to use lower precision data type on
neural network ?

• (A) Reduce the latency of DNN models
• (B) Save the memory space
• (C) Lower the power consumption of the accelerator

25

What is Quantization ?

• Quantization is the process of constraining an input from a
continuous or large set of values to a discrete set

26

Data Quantization
• Quantization

• Maps data from a full precision to reduced one

• Quantization error
• Measures the average difference between the original full

precision and quantized values

27

x
0 2 4 6 8 10 12 14 16

d0 q0 d1 q1 d2 q2 d3 q3 d4

Uniform
Quantizationx = 1, 3, 7, 8, 15 x* = 2, 2, 6, 8, 14

E = [(x – x*)2]

Types of Quantization

• Uniform Quantization
• Quantized values are equally spaced out
• x* can take on are {2, 6, 10, 14} with level = 4
• Decision boundaries di are used to decide the quantization

value that x should be mapped to

28

x
0 2 4 6 8 10 12 14 16

d0 q0 d1 q1 d2 q2 d3 q3 d4

Types of Quantization

• Non-uniform quantization
• Spacing can be computed e.g. logarithmic or with look-up-table
• Fewer unique values can make weight sharing and

compression

29

d1

Non-Uniform
Quantizationx = 1, 3, 7, 8, 15 x* = 6, 6, 6, 8, 14

q0

x
0 8 9 10 14 16

d0 q1 d2 q2 d3

6

K-Means-based Weight Quantization

• Storage
• Integer Weights; Floating-Point Codebook

• Computation
• Floating-Point Arithmetic

30

K-Means-based Weight Quantization

31

K-Means-based Weight Quantization

• Fine-tuning
Quantized Weights

32

K-Means-based Weight Quantization

• Weights are decompressed using a lookup table during runtime inference

• Only saves storage cost of a neural network model

• All the computation and memory access are still floating-point

33

K-Means-based Weight Quantization

• Accuracy vs. compression rate for AlexNet on ImageNet dataset

34

What is Linear Quantization ?

• An affine mapping of integers to real numbers

• Storage: Integer Weights; Computation: Integer Arithmetic

35

Linear Quantization

• An affine mapping of integers to real numbers (r = S(q - Z))

36

Linear Quantization

37

• An affine mapping of integers to real numbers (r = S(q - Z))

Scale of Linear Quantization

• An affine mapping of integers to real numbers (r = S(q - Z))

38

Scale of Linear Quantization

• An affine mapping of integers to real numbers (r = S(q - Z))

39

Zero Point of Linear Quantization

• An affine mapping of integers to real numbers (r = S(q - Z))

40

Zero Point of Linear Quantization

• An affine mapping of integers to real numbers (r = S(q - Z))

41

Symmetric Linear Quantization

• Full range mode

42

Symmetric Linear Quantization

• Restricted range mode

43

Asymmetric vs. Symmetric

44

Linear Quantized Matrix Multiplication

• An affine mapping of integers to real numbers (r = S(q - Z))

45

Linear Quantized Matrix Multiplication

• An affine mapping of integers to real numbers (r = S(q - Z))
• Consider the following matrix multiplication

46

Linear Quantized Matrix Multiplication

47

Linear Quantized Matrix Multiplication

48

Linear Quantized Fully-Connected Layer

49

• An affine mapping of integers to real numbers (r = S(q - Z))
• Now, we consider the following fully-connected layer with bias

Linear Quantized Fully-Connected Layer

50

• An affine mapping of integers to real numbers (r = S(q - Z))
• Now, we consider the following fully-connected layer with bias

Linear Quantized Fully-Connected Layer

51

• An affine mapping of integers to real numbers (r = S(q - Z))
• Now, we consider the following fully-connected layer with bias

Linear Quantized Fully-Connected Layer

52

• An affine mapping of integers to real numbers (r = S(q - Z))
• Now, we consider the following fully-connected layer with bias

Linear Quantized Convolution Layer

53

• An affine mapping of integers to real numbers (r = S(q - Z))
• Now, we consider the following convolution layer

Linear Quantized Convolution Layer

54

• An affine mapping of integers to real numbers (r = S(q - Z))
• Now, we consider the following convolution layer

Binary/Ternary Quantization

• Could we push the quantization precision to 1 bit?

55

Binary/Ternary Quantization

• If weights are quantized to +1 and -1

56

Binarization

57

Minimizing Quantization Error in Binarization

58

Binary Net
• Binary Connect

• Weights {-1, 1} (Bipolar binary),
Activation 32-bit float

• Accuracy loss: 19 % on AlexNet

• Binarized Neural Networks
• Weights {-1, 1}, Activations {-1, 1}
• Both of operands are binary, the multiplication turns into an XNOR
• Accuracy loss: 29.8 % on AlexNet

59Courbariaux., NeurIPS, 2015

A B Out

0 0 1
1 0 0
0 1 0
1 1 1

XNOR

for each i in width:
C += A[row][i] * B[i][col]

for each i in width:
C += popcount(XNOR(A[row][i] * B[i][col]))

Popcount (110010001) = 4

Case Study: Binary Multiplication

• A = 10010, B = 01111 (0 is really -1 here)
• Dot product:

• A * B = (1 * -1) + (-1 * 1) + (-1 * 1) + (1 * 1) + (-1 * 1) = -3

• P = XNOR (A, B) = 00010, popcount(P) = 1
• Result = 2 * P – N, where N is the total number of bits
• 2 * P – N = 2 * 1 – 5 = -3

60
https://sushscience.wordpress.com/2017/10/01/understanding-binary-neural-networks/

XNOR-Net

• If both activations and weights are binarized

61

XNOR-Net

• If both activations and weights are binarized

62

XNOR-Net

• If both activations and weights are binarized

63

XNOR-Net

• If both activations and weights are binarized

64

XNOR-Net

• If both activations and weights are binarized

65

XNOR-Net

• If both activations and weights are binarized

66

XNOR-Net

• Minimizing quantization error in binarization

67

XNOR-Net

68

Ternary Weight Networks (TWN)

69

Ternary Weight Networks (TWN)

70

What do we Learn from Quantization?

• Quantization can improve DNN computational throughput while
maintaining accuracy

• Layers on DNN models can be offered with different bit widths

• Varying bit width requires the support of the hardware

• No systematic approach to figure out the proper bit width in
layers of DNN models

• What else ?

71

Takeaway Questions

• What are purposes of data quantization ?
• (A) Constrain the value of inputs to a set of discrete values
• (B) Create more values
• (C) Improve the degree of parallelism on DNN training

• Why training requires large bit width ?
• (A) The training needs to compute more data
• (B) Avoid the value underflow and overflow
• (C) Gradient and weight update have a larger range

72

