Accelerator Architectures for Machine Learning

Lecture 3: Quantization Tuesday: 3:30 – 6:20 pm Classroom: ED-302

Acknowledgements and Disclaimer

- Slides was developed in the reference with Joel Emer, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, ISCA 2019 tutorial Efficient Processing of Deep Neural Network, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, Morgan and Claypool Publisher, 2020 Yakun Sophia Shao, EE290-2: Hardware for Machine Learning, UC Berkeley, 2020 CS231n Convolutional Neural Networks for Visual Recognition, Stanford University, 2020
- 6.5940, TinyML and Efficient Deep Learning Computing, MIT
- NVIDIA, Precision and performance: Floating point and IEEE 754 Compliance for NVIDIA GPUs, TB-06711-001_v8.0, 2017

Outline

- K-Means-based Quantization
- Linear Quantization
- Binary and Ternary Quantization

Memory is Expensive !!

Data movement -> Move memory reference -> More energy

Operation	Energy [pJ]	Relative Energy Cost
32 bit int ADD	0.1	
32 bit float ADD	0.9	
32 bit Register File	1	
32 bit int MULT	3.1	
32 bit float MULT	3.7	
32 bit SRAM Cache	5	
32 bit DRAM Memory	640	
Rough Energy Cost For Vario	ous Operations in 45nm 0.9V	1 10 100 1000 10000
1	- 20	00 ¥+

This image is in the public domain

Computing's Energy Problem (and What We Can Do About it) [Horowitz, M., IEEE ISSCC 2014]

Low Bit-Width Operations are Cheap

Less Bit-Width -> Less energy

Energy and Area Cost learning efficient by lowering the precision of data ?

	Operation	Energy (pJ)	Area(um²)
	8b Add	0.03	36
	16b Add	0.05	67
	32b Add	0.1	137
	16b FP Add	0.4	1360
	32b FP Add	0.9	4184
	16b FP Mult	1.1	1640
	32b FP Mult	3.7	7700 🖌 4.7
173X	32b SRAM Read (8KB)	5	
	32b DRAM Read	640	

45 nm Process, Horowitz, ISSCC, 2014

What is Quantization ?

Quantization

 The process of constraining an input from a continuous or large set of values to a discrete set

Original Image

16-Color Image

Images are in the public domain.

Numeric Data Types

• Fixed-point number

(using 2's complement representation)

IEEE 765 Single Precision Float Point

- Sign determines the sign of the number
- Exponent (8 bit) represent -127 (all 0s) and +128 (all 1s)
- Significand (23 fraction bits), total precision is 24 bits (23 + 1 implicit leading bit) log₁₀(2²⁴) ≈ 7.225 digital bit

Sign Exponent (8 bits) Mantissa/Fraction (23 bits)

$$value = (-1)^{sign} \times 2^{(e-127)} \times (1 + \sum_{i=1}^{23} b_{(23-i)} 2^{-i})$$

IEEE 765 FP32 Case Study 1

Numeric Data Type

- Question: What is the decimal "11.375" in FP32 format ?
 11.375
 0.375 x 2 = 0.750 = 0 + 0.750 => b₋₁ = 0
 - = 11 + 0.375
 - $=(1011)_{2}+(0.011)_{2}$
 - $= (1011.011)_2$
 - $= (1.011011)_2 \times 2^3$
- The exponent is 3 and biased form
 - $= (3 + 127) = 130 = 1000\ 0010$

Sign Exponent (8 bits)Mantissa/Fraction (23 bits)

 $0.750 \times 2 = 1.500 = 1 + 0.500 => b_{-2} = 1$

0.500 x 2 = 1.000 = 1 + 0.000 => b₋₃ = 1

Floating-Point Number

• Exponent Width -> Range; Fraction Width-> Precision

12

Number Representation

Range

1.2E-38 to 3.4E+38

6.1E-5 to 6.6E+4

2147483648 to 2147483647

-32,768 to 32,767

-128 ~ 127

Reduced Bit Width

FP32 vs FP16 vs BF16

FP32 – single precision

 With 6-9 significant decimal digits precision

FP16 – half precision

- Uses in some neural network applications
- With 4 significant decimal digits precision

• BF16

- A truncated FP32
- Allow for fast conversion to and from an FP32
- With 3 significant decimal digits

Format	Bits	Exponent	Fraction
FP32	32	8	23
FP16	16	5	10
BF16	16	8	7

https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-thesecret-to-high-performance-on-cloud-tpus 15

Choosing bFloat16

Motivation

- The physical size of a hardware multiplier scales with the square of the mantissa width
- Mantissa bit length FP32: 23, FP16: 10, BF16: 7

• BF16

- 8 X smaller than an FP32 multiplier
- Has the same exponent size as FP32
- No require special handling (loss scaling) in the FP16 conversion
- XLA compiler's automatic format conversion
- In side the MXU, multiplications are performed in BF16 format
- Accumulations are performed in full FP32 precision

https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus

Nvidia's TF32

Nvidia's TF32

- 19-bit (BF19)
- 1-bit sign, 8-bit exponent 10-bit fraction
- Fuse BF16 and FP16
 - BF16: 8-bit exponent +
 - FP16: 10-bit fraction
- Nvidia A100 Tensor Core
 - TF32: 156 TFLOPS
 - FP16/BF16: 312 TFLOPS

https://zhuanlan.zhihu.com/p/449857213

Microsoft MSFP

Microsoft MSFP

- Used in Brainwave FPGA
- 8-bit shared exponent
- 1-bit sign, 3-bit fraction
- A group of INT4 vector shares 8-bit exponent

MAC Area & Energy

https://zhuanlan.zhihu.com/p/449857213

FP8 and Tesla CFloat

• FP8 (1-5-2)

- Large loss in MobileNet v2
- Hybrid FP8 (HFP8)
 - Use FP(1-4-3) in forward
 - Use FP(1-5-2) in backward

Tesla Dojo Cfloat (configurable float)

- Configurable exponent and mantissa
- Use software to choose appropriate Cfloat format
 - CF16
 - CF8 (1-4-3), CF8 (1-5-2)

c. Trans-precision Inference Accuracy of FP32 models in FP8 1-5-2 precision			
FP32 Model	Baseline	FP8 1-5-2	
MobileNet_v2 ImageNet	71.81	52.51	
ResNet50 ImageNet	76.44	75.31	
DensetNet121 ImageNet	74.76	73.64	
MaskRCNN	33.58	32.83	
$COCO^{\dagger}$	29.27	28.65	

Box and Mask average precision

https://proceedings.neurips.cc/paper/2019/file/65fc9f b4897a89789352e211ca2d398f-Paper.pdf

How to Determine Bit Width on DNN?

- For accuracy, DNN operations decide bit width to achieve sufficient precision
- Which DNN operations affect the accuracy ?
 - For inference: weights, activations, and partial sums
 - For training: weights, activations, partial sums, gradients, and weight update

Dynamic Fixed Point

- Allow "f" to vary based on data type and layer
- In large layers, the outputs are the result of many accumulations
- The value of network parameters are much smaller than layer output
 -> varying bit widths on parameters and outputs

Impact on Accuracy

- The accuracy drops in the small bit width when using static fixed point
- Stable accuracy variation is shown in dynamic fixed point (why ?) Static vs Dynamic Fixed Point

Top-1 accuracy of CaffeNet on ImageNet

Impact on Accuracy

 Small bit width cannot adapt to every DNN models very well (training)

	Layer outputs	CONV parameters	FC parameters	Fixed point accuracy
LeNet (Exp 1)	4-bit	4-bit	4-bit	99.0%
LeNet (Exp 2)	4-bit	2-bit	2-bit	98.8%
SqueezeNet	8-bit	8-bit	8-bit	57.1%
CaffeNet	8-bit	8-bit	8-bit	56.0%
GoogleNet	8-bit	8-bit	8-bit	66.6%

Gysel et al., Ristretto, ICLR 2016

Precision Varies from Layer to Layer

- Accuracy varies with the different bit widths in layers
- How to find out the best bit width in each layer while maintaining high accuracy ?

AlexNet

Error rate	Bit per layer
1%	10-8-8-8-8-6-4
2%	10-8-8-8-8-5-4
5%	10-8-8-7-7-5-3
10%	9-8-8-7-7-5-3

Judd et. al., ArXiv 2016

Takeaway Questions

- What are advantages to use BF16 instead of FP16 ?
 - (A) Fast conversion from FP32
 - (B) Get more precise value
 - (C) Represent few different values
- What are benefits to use lower precision data type on neural network ?
 - (A) Reduce the latency of DNN models
 - (B) Save the memory space
 - (C) Lower the power consumption of the accelerator

What is Quantization ?

 Quantization is the process of constraining an input from a continuous or large set of values to a discrete set

The difference between an input value and its quantized value is referred to as quantization error.

Quantization [Wikipedia]

Images are in the public domain. "Palettization"

Data Quantization

Quantization

Maps data from a full precision to reduced one

Quantization error

 Measures the average difference between the original full precision and quantized values

Types of Quantization

Uniform Quantization

- Quantized values are equally spaced out
- x* can take on are {2, 6, 10, 14} with level = 4
- Decision boundaries di are used to decide the quantization value that x should be mapped to

Types of Quantization

Non-uniform quantization

- Spacing can be computed e.g. logarithmic or with look-up-table
- Fewer unique values can make weight sharing and compression

Storage

• Integer Weights; Floating-Point Codebook

Computation

• Floating-Point Arithmetic

weights

(32-bit float)			
2.09	-0.98	1.48	0.09
0.05	-0.14	-1.08	2.12
-0.91	1.92	0	-1.03
1.87	0	1.53	1.49

-31

weights cluster index fine-tuned Fine-tuning centroids (32-bit float) (2-bit int) centroids **Quantized Weight** 2.09 -0.98 1.48 1.96 0.09 3 0 2 3: 2.00 1 0.05 -0.14 -1.08 2.12 1.50 1.48 2: cluster 1 1 0 3 -0.91 1.92 -1.03 -0.04 0 0 3 0 0.00 1 1: 0: -1.00 -0.97 1.87 0 1.53 1.49 3 2 1 2 ×lr gradient -0.03 -0.01 0.03 0.02 0.12 0.02 -0.03 -0.07 0.04 -0.02 0.12 group by reduce 0.03 0.01 0.01 -0.01 -0.02 0.02 4 -0.01 0.02 0.04 0.01 0.02 -0.01 0.01 0.04 -0.02 0.04 -0.07 -0.02 0.01 -0.02 -0.01 -0.02 -0.01 0.01 -0.03

- Weights are decompressed using a lookup table during runtime inference
- Only saves storage cost of a neural network model
- All the computation and memory access are still floating-point

Accuracy vs. compression rate for AlexNet on ImageNet dataset

Deep Compression [Han et al., ICLR 2016]

What is Linear Quantization ?

- An affine mapping of integers to real numbers
- Storage: Integer Weights; Computation: Integer Arithmetic

-0.05	0.09
0.05	-0.14
0.16	-0.22
-0.27	о

0.09

0.04

0.41

0

-0.01 -0.02

0.46 0.42

Binary	Decimal
01	1
00	0
11	-1
10	-2

Linear Quantization

• An affine mapping of integers to real numbers (r = S(q - Z))

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]
Linear Quantization

37

Scale of Linear Quantization

An affine mapping of integers to real numbers (r = S(q - Z))

Scale of Linear Quantization

• An affine mapping of integers to real numbers (r = S(q - Z))

Zero Point of Linear Quantization

• An affine mapping of integers to real numbers (r = S(q - Z))

40

Zero Point of Linear Quantization

• An affine mapping of integers to real numbers (r = S(q - Z))

41

Symmetric Linear Quantization

• Full range mode

$$S = \frac{r_{\max} - r_{\min}}{q_{\max} - q_{\min}}$$

Bit Width	qmin	q _{max}
2	-2	1
3	-4	3
4	-8	7
N	-2 ^{N-1}	2 ^{N-1} -1

- $S = \frac{r_{\min}}{q_{\min} Z} = \frac{-|r|_{\max}}{q_{\min}} = \frac{|r|_{\max}}{2^{N-1}}$ use full range of quantized integers
- example: PyTorch's native quantization, ONNX

Symmetric Linear Quantization

$$S = \frac{r_{\max} - r_{\min}}{q_{\max} - q_{\min}}$$

S	_	r _{max}	_	$ r _{\max}$	_	$ r _{\text{max}}$	
5	_	$q_{\rm max} - Z$	_	$q_{\rm max}$	_	$2^{N-1} -$	1

 example: TensorFlow, NVIDIA TensorRT, Intel DNNL

Bit Width	qmin	q _{max}	
2	-2	1	
3	-4	3	
4	-8	7	
N	-2 ^{N-1}	2 ^{N-1} -1	

Asymmetric vs. Symmetric

- The quantized range is fully used.
- The implementation is more complex, and zero points require additional logic in hardware.
- The quantized range will be wasted for biased float range.
 - Activation tensor is non-negative after ReLU, and thus symmetric quantization will lose 1 bit effectively.
- The implementation is much simpler.

Linear Quantized Matrix Multiplication

• An affine mapping of integers to real numbers (r = S(q - Z))

 $\mathbf{Y} = \mathbf{W}\mathbf{X}$

$$S_{\mathbf{Y}}(\mathbf{q}_{\mathbf{Y}} - Z_{\mathbf{Y}}) = S_{\mathbf{W}}(\mathbf{q}_{\mathbf{W}} - Z_{\mathbf{W}}) \cdot S_{\mathbf{X}}(\mathbf{q}_{\mathbf{X}} - Z_{\mathbf{X}})$$

$$\mathbf{q}_{\mathbf{Y}} = \frac{S_{\mathbf{W}}S_{\mathbf{X}}}{S_{\mathbf{Y}}} \left(\mathbf{q}_{\mathbf{W}} - Z_{\mathbf{W}}\right) \left(\mathbf{q}_{\mathbf{X}} - Z_{\mathbf{X}}\right) + Z_{\mathbf{Y}}$$

$$\mathbf{q}_{\mathbf{Y}} = \frac{S_{\mathbf{W}}S_{\mathbf{X}}}{S_{\mathbf{Y}}} \left(\mathbf{q}_{\mathbf{W}}\mathbf{q}_{\mathbf{X}} - Z_{\mathbf{W}}\mathbf{q}_{\mathbf{X}} - Z_{\mathbf{X}}\mathbf{q}_{\mathbf{W}} + Z_{\mathbf{W}}Z_{\mathbf{X}} \right) + Z_{\mathbf{Y}}$$

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]

Linear Quantized Matrix Multiplication

- An affine mapping of integers to real numbers (r = S(q Z))
 - Consider the following matrix multiplication

$$\mathbf{Y} = \mathbf{W}\mathbf{X}$$

$$\mathbf{q}_{\mathbf{Y}} = \underbrace{\frac{S_{\mathbf{W}}S_{\mathbf{X}}}{S_{\mathbf{Y}}}}_{\mathbf{N}} \left(\mathbf{q}_{\mathbf{W}}\mathbf{q}_{\mathbf{X}} - Z_{\mathbf{W}}\mathbf{q}_{\mathbf{X}} - Z_{\mathbf{X}}\mathbf{q}_{\mathbf{W}} + Z_{\mathbf{W}}Z_{\mathbf{X}} \right) + \begin{bmatrix} Z_{\mathbf{Y}} \\ Z_{\mathbf{Y}} \end{bmatrix}$$
Rescale to
N-bit Integer Multiplication
N-bit Integer
N-bit Integer
Addition N-bit Integer

Linear Quantized Matrix Multiplication

• Consider the following matrix multiplication.

 $\mathbf{Y} = \mathbf{W}\mathbf{X}$ $\mathbf{q}_{\mathbf{Y}} = \underbrace{\frac{S_{\mathbf{W}}S_{\mathbf{X}}}{S_{\mathbf{Y}}}}_{S_{\mathbf{Y}}} \left(\mathbf{q}_{\mathbf{W}}\mathbf{q}_{\mathbf{X}} - Z_{\mathbf{W}}\mathbf{q}_{\mathbf{X}} - Z_{\mathbf{X}}\mathbf{q}_{\mathbf{W}} + Z_{\mathbf{W}}Z_{\mathbf{X}} \right) + Z_{\mathbf{Y}}$ $\cdot \text{ Empirically, the scale } \frac{S_{\mathbf{W}}S_{\mathbf{X}}}{S_{\mathbf{Y}}} \text{ is always in the interval (0, 1).}$ $\cdot \mathbf{Fixed-point Multiplication}$ $\cdot \frac{S_{\mathbf{W}}S_{\mathbf{X}}}{S_{\mathbf{Y}}} = 2^{-n}M_{0}, \text{ where } M_{0} \in [0.5, 1)$ $\cdot \mathbf{Bit Shift}$

Quantization and Training of Neural Networks for Efficient Integer-Arithmetic-Only Inference [Jacob et al., CVPR 2018]

Linear Quantized Matrix Multiplication $\mathbf{Y} = \mathbf{W}\mathbf{X}$

- An affine mapping of integers to real numbers (r = S(q Z))
 - Now, we consider the following fully-connected layer with bias

 $\mathbf{Y} = \mathbf{W}\mathbf{X} + \mathbf{b}$

$$S_{\mathbf{Y}} \left(\mathbf{q}_{\mathbf{Y}} - Z_{\mathbf{Y}} \right) = S_{\mathbf{W}} \left(\mathbf{q}_{\mathbf{W}} - Z_{\mathbf{W}} \right) \cdot S_{\mathbf{X}} \left(\mathbf{q}_{\mathbf{X}} - Z_{\mathbf{X}} \right) + S_{\mathbf{b}} \left(\mathbf{q}_{\mathbf{b}} - Z_{\mathbf{b}} \right)$$

$$\downarrow Z_{\mathbf{W}} = 0$$

$$S_{\mathbf{Y}} \left(\mathbf{q}_{\mathbf{Y}} - Z_{\mathbf{Y}} \right) = S_{\mathbf{W}} S_{\mathbf{X}} \left(\mathbf{q}_{\mathbf{W}} \mathbf{q}_{\mathbf{X}} - Z_{\mathbf{X}} \mathbf{q}_{\mathbf{W}} \right) + S_{\mathbf{b}} \left(\mathbf{q}_{\mathbf{b}} - Z_{\mathbf{b}} \right)$$

49

- An affine mapping of integers to real numbers (r = S(q Z))
 - Now, we consider the following fully-connected layer with bias

 $\mathbf{Y} = \mathbf{W}\mathbf{X} + \mathbf{b}$

$$S_{\mathbf{Y}} \left(\mathbf{q}_{\mathbf{Y}} - Z_{\mathbf{Y}} \right) = S_{\mathbf{W}} \left(\mathbf{q}_{\mathbf{W}} - Z_{\mathbf{W}} \right) \cdot S_{\mathbf{X}} \left(\mathbf{q}_{\mathbf{X}} - Z_{\mathbf{X}} \right) + S_{\mathbf{b}} \left(\mathbf{q}_{\mathbf{b}} - Z_{\mathbf{b}} \right)$$

$$\downarrow Z_{\mathbf{W}} = 0$$

$$S_{\mathbf{Y}} \left(\mathbf{q}_{\mathbf{Y}} - Z_{\mathbf{Y}} \right) = S_{\mathbf{W}} S_{\mathbf{X}} \left(\mathbf{q}_{\mathbf{W}} \mathbf{q}_{\mathbf{X}} - Z_{\mathbf{X}} \mathbf{q}_{\mathbf{W}} \right) + S_{\mathbf{b}} \left(\mathbf{q}_{\mathbf{b}} - Z_{\mathbf{b}} \right)$$

$$\downarrow Z_{\mathbf{b}} = 0, \quad S_{\mathbf{b}} = S_{\mathbf{W}} S_{\mathbf{X}}$$

$$S_{\mathbf{Y}} \left(\mathbf{q}_{\mathbf{Y}} - Z_{\mathbf{Y}} \right) = S_{\mathbf{W}} S_{\mathbf{X}} \left(\mathbf{q}_{\mathbf{W}} \mathbf{q}_{\mathbf{X}} - Z_{\mathbf{X}} \mathbf{q}_{\mathbf{W}} + \mathbf{q}_{\mathbf{b}} \right)$$

- An affine mapping of integers to real numbers (r = S(q Z))
 - Now, we consider the following fully-connected layer with bias

- An affine mapping of integers to real numbers (r = S(q Z))
 - Now, we consider the following fully-connected layer with bias

Linear Quantized Convolution Layer

- An affine mapping of integers to real numbers (r = S(q Z))
 - Now, we consider the following convolution layer

Note: both q_b and q_{bias} are 32 bits.

Linear Quantized Convolution Layer

- An affine mapping of integers to real numbers (r = S(q Z))
 - Now, we consider the following convolution layer

Note: both \boldsymbol{q}_{b} and \boldsymbol{q}_{bias} are 32 bits.

Binary/Ternary Quantization

• Could we push the quantization precision to 1 bit?

$$y_i = \sum_{j} W_{ij} \cdot x_j$$

= 8×5 + (-3)×2 + 5×0 + (-1)×1

input	weight	operations	memory	computation
R	\mathbb{R}	+ ×	1×	1×

Binary/Ternary Quantization

• If weights are quantized to +1 and -1

$$y_i = \sum_j W_{ij} \cdot x_j$$
$$= 5 - 2 + 0 - 1$$

=					×	5
	8	-3	5	-1		2
						0
						1
=					×	5
=	1	-1	1	-1	×	5 2
=	1	-1	1	-1	×	5 2 0

input	weight	operations	memory	computation
\mathbb{R}	\mathbb{R}	+ ×	1×	1×
R	B	+ -	~32× less	~2× less

BinaryConnect: Training Deep Neural Networks with Binary Weights during Propagations [Courbariaux *et al.*, NeurIPS 2015] XNOR-Net: ImageNet Classification using Binary Convolutional Neural Networks [Rastegari *et al.*, ECCV 2016]

Binarization

Deterministic Binarization

• directly computes the bit value based on a threshold, usually 0, resulting in a sign function.

$$q = \operatorname{sign}(r) = \begin{cases} +1, & r \ge 0\\ -1, & r < 0 \end{cases}$$

Stochastic Binarization

- use global statistics or the value of input data to determine the probability of being -1 or +1
 - e.g., in Binary Connect (BC), probability is determined by hard sigmoid function $\sigma(r)$

$$q = \begin{cases} +1, & \text{with probability } p = \sigma(r) \\ -1, & \text{with probability } 1 - p \end{cases}, & \text{where } \sigma(r) = \min(\max(\frac{r+1}{2}, 0), 1) \quad \bigcup_{r=1}^{1} \prod_{r=1}^{r} \prod$$

harder to implement as it requires the hardware to generate random bits when quantizing.

Minimizing Quantization Error in Binarization

Binary Net

Binary Connect

- Weights {-1, 1} (Bipolar binary), Activation 32-bit float
- Accuracy loss: 19 % on AlexNet

Binarized Neural Networks

- Weights {-1, 1}, Activations {-1, 1}
- Both of operands are binary, the multiplication turns into an XNOR
- Accuracy loss: 29.8 % on AlexNet

for each i in width:

C += A[row][i] * B[i][col]

for each i in width:

C += popcount(XNOR(A[row][i] * B[i][col]))

XNOR

Β

 $\mathbf{0}$

0

1

1

Popcount (110010001) = 4

Α

 $\mathbf{0}$

()

1

Out

0

()

1

Case Study: Binary Multiplication

- A = 10010, B = 01111 (0 is really -1 here)
- Dot product:

• A * B = (1 * -1) + (-1 * 1) + (-1 * 1) + (1 * 1) + (-1 * 1) = -3

• P = XNOR (A, B) = 00010, popcount(P) = 1

- Result = 2 * P N, where N is the total number of bits
- 2 * P N = 2 * 1 5 = **-3**

• If both activations and weights are binarized

$$y_i = \sum_j W_{ij} \cdot x_j$$

= 1×1 + (-1)×1 + 1×(-1) + (-1)×1
= 1 + (-1) + (-1) + (-1) = -2

• If both activations and weights are binarized

$$y_i = \sum_j W_{ij} \cdot x_j$$

= 1×1 + (-1)×1 + 1×(-1) + (-1)×1
= 1 + (-1) + (-1) + (-1) = -2

W	X	Y=WX	bw	bx	XNOR(b _w , b _x)
1	1	1	1	1	1
1	-1	-1	1	0	0
-1	-1	1	0	0	1
-1	1	-1	0	1	0

• If both activations and weights are binarized

$$y_{i} = \sum_{j} W_{ij} \cdot x_{j}$$

$$= 1 \times 1 + (-1) \times 1 + 1 \times (-1) + (-1) \times 1$$

$$= 1 \times 1 + (-1) + (-1) + (-1) = -2$$

$$= 1 + 0 + 0 + 0 = 1$$

$$?$$

W	X	Y=WX	bw	bx	XNOR(b _w , b _x)
1	1	1	1	1	1
1	-1	-1	1	0	0
-1	-1	1	0	0	1
-1	1	-1	0	1	0

• If both activations and weights are binarized

W	X	Y=WX	bw	bx	XNOR(b _w , b _x)
1	1	1	1	1	1
1	-1	-1	1	0	0
-1	-1	1	0	0	1
-1	1	-1	0	1	0

• If both activations and weights are binarized

$$y_i = -n + 2 \cdot \sum_j W_{ij} \operatorname{xnor} x_j \quad \rightarrow \quad y_i = -n + \operatorname{popcount} (W_i \operatorname{xnor} x) \ll 1$$

= -4 + 2 × (1 xnor 1 + 0 xnor 1 + 1 xnor 0 + 0 xnor 1)
= -4 + 2 × (1 + 0 + 0 + 0) = -2

→ popcount: return the number of 1

W	X	Y=WX	bw	bx	XNOR(b _w , b _x)
1	1	1	1	1	1
1	-1	-1	1	0	0
-1	-1	1	0	0	1
-1	1	-1	0	1	0

If both activations and weights are binarized

 $y_i = -n + \text{popcount} (W_i \operatorname{xnor} x) \ll 1$

= -4 + popcount(1010 xnor 1101) ≪ 1

$$= -4 + popcount(1000) \ll 1 = -4 + 2 = -2$$

input	weight	operations	memory	computation
R	R	+ ×	1×	1×
R	B	+ -	~32× less	~2× less
B	B	xnor, popcount	~32× less	~58× less

Minimizing quantization error in binarization

Neural Network	Quantization	Bit-V	ImageNet	
neural network	Quantization	w	Α	Delta
	BWN	1	32	0.2%
AlexNet	BNN	1	1	-28.7%
	XNOR-Net	1	1	-12.4%
CoogleNiet	BWN	1	32	-5.80%
GoogleNet	BNN	1	1	-24.20%
ResNet-18	BWN	1	32	-8.5%
	XNOR-Net	1	1	-18.1%

* BWN: Binary Weight Network with scale for weight binarization

* BNN: Binarized Neural Network without scale factors

* XNOR-Net: scale factors for both activation and weight binarization

Binarized Neural Networks: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1. [Courbariaux *et al.*, Arxiv 2016] XNOR-Net: ImageNet Classification using Binary Convolutional Neural Networks [Rastegari *et al.*, ECCV 2016]

Ternary Weight Networks (TWN) Weights are quantized to +1, -1 and 0

Ternary Weight Networks [Li et al., Arxiv 2016]

Ternary Weight Networks (TWN)

 Instead of using fixed scale r_t, TTQ introduces two trainable parameters w_p and w_n to represent the positive and negative scales in the quantization.

$$q = \begin{cases} w_p, & r > \Delta \\ 0, & |r| \le \Delta \\ -w_n, & r < -\Delta \end{cases}$$

ImageNet Top-1 Accuracy	Full Precision	1 bit (BWN)	2 bit (TWN)	ττο
ResNet-18	69.6	60.8	65.3	66.6

Trained Ternary Quantization [Zhu et al., ICLR 2017]

What do we Learn from Quantization?

- Quantization can improve DNN computational throughput while maintaining accuracy
- Layers on DNN models can be offered with different bit widths
- Varying bit width requires the support of the hardware
- No systematic approach to figure out the proper bit width in layers of DNN models
- What else ?

Takeaway Questions

- What are purposes of data quantization ?
 - (A) Constrain the value of inputs to a set of discrete values
 - (B) Create more values
 - (C) Improve the degree of parallelism on DNN training
- Why training requires large bit width ?
 - (A) The training needs to compute more data
 - (B) Avoid the value underflow and overflow
 - (C) Gradient and weight update have a larger range