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Outline

• K-Means-based Quantization
• Linear Quantization
• Binary and Ternary Quantization
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Memory is Expensive !!

• Data movement -> Move memory reference -> More energy
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Low Bit-Width Operations are Cheap

• Less Bit-Width -> Less energy
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45 nm Process, Horowitz, 
ISSCC, 2014



Energy and Area Cost
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Operation Energy (pJ) Area(um2)
8b Add 0.03 36
16b Add 0.05 67
32b Add 0.1 137
16b FP Add 0.4 1360
32b FP Add 0.9 4184
16b FP Mult 1.1 1640
32b FP Mult 3.7 7700
32b SRAM Read (8KB) 5
32b DRAM Read 640

173X

4.7X

45 nm Process, Horowitz, ISSCC, 2014

Could we make the deep 
learning efficient by lowering 
the precision of data ?



What is Quantization ?

• Quantization
• The process of constraining an input from a continuous 

or large set of values to a discrete set
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Numeric Data Types

• Fixed-point number
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IEEE 765 Single Precision Float Point

• Sign determines the sign of the number

• Exponent (8 bit) represent -127 (all 0s) and +128 (all 1s)

• Significand (23 fraction bits), total precision is 24 bits (23 + 1 
implicit leading bit) log10(224) ≈ 7.225 digital bit
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0 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sign Exponent (8 bits) Mantissa/Fraction (23 bits)



IEEE 765 FP32 Case Study 1

10

0 0 1 1 1 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sign Exponent (8 bits)

Sign = b31 = 0 ; (-1)0 = 1
e  =120; 2(120 - 127) = 2-7

Value = 1 x 2-7 x 1.25 = 0.009765625   

Mantissa/Fraction (23 bits)



Numeric Data Type
• Question: What is the decimal “11.375” in FP32 format ?

• The exponent is 3 and biased form
= (3 + 127) = 130 = 1000 0010
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0.375 x 2 = 0.750 = 0 + 0.750 => b-1 = 0
0.750 x 2 = 1.500 = 1 + 0.500 => b-2 = 1
0.500 x 2 = 1.000 = 1 + 0.000 => b-3 = 1

11.375 
= 11 + 0.375 
= (1011)2 + (0.011)2
= (1011.011)2
= (1.011011)2 x 23

0 1 0 0 0 0 0 1 0 0 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sign Exponent (8 bits) Mantissa/Fraction (23 bits)



Floating-Point Number

• Exponent Width -> Range; Fraction Width-> Precision
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Number Representation
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S E M

1      8                    23

FP32

S E M
1   5              10

FP16

S M
1                 31

INT32

S M
1            15

INT16

S M
1       8

INT8

Range

1.2E-38 to 3.4E+38

6.1E-5 to 6.6E+4

2147483648 to 2147483647

−32,768 to 32,767

-128 ~ 127



Reduced Bit Width
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0 1 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sign Exponent (8 bits) Mantissa/Fraction (23 bits)

0 1 0 0 0 0 0 0

32-bit 
float

8-bit 
INT

Sign Mantissa/Fraction (7 bits)

Integer
(4-bits)

Fractional
(3-bits)



FP32 vs FP16 vs BF16

Format Bits Exponent Fraction
FP32 32 8 23
FP16 16 5 10
BF16 16 8 7
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• FP32 – single precision
• With 6-9 significant decimal

digits precision
• FP16 – half precision

• Uses in some neural network
applications

• With 4 significant decimal digits
precision

• BF16
• A truncated FP32
• Allow for fast conversion to

and from an FP32
• With 3 significant decimal digits https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-

secret-to-high-performance-on-cloud-tpus



Choosing bFloat16

• Motivation
• The physical size of a hardware multiplier scales with the square 

of the mantissa width
• Mantissa bit length – FP32: 23, FP16: 10, BF16: 7

• BF16
• 8 X smaller than an FP32 multiplier
• Has the same exponent size as FP32
• No require special handling (loss scaling) in the FP16 conversion
• XLA compiler’s automatic format conversion
• In side the MXU, multiplications are performed in BF16 format
• Accumulations are performed in full FP32 precision

16https://cloud.google.com/blog/products/ai-machine-learning/bfloat16-the-secret-to-high-performance-on-cloud-tpus



Nvidia’s TF32

• Nvidia’s TF32
• 19-bit (BF19)
• 1-bit sign, 8-bit exponent

10-bit fraction
• Fuse BF16 and FP16

• BF16: 8-bit exponent +
• FP16: 10-bit fraction

• Nvidia A100 Tensor Core
• TF32: 156 TFLOPS
• FP16/BF16: 312 TFLOPS
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https://zhuanlan.zhihu.com/p/449857213



Microsoft MSFP

• Microsoft MSFP
• Used in Brainwave FPGA
• 8-bit shared exponent
• 1-bit sign, 3-bit fraction
• A group of INT4 vector

shares 8-bit exponent
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https://zhuanlan.zhihu.com/p/449857213



FP8 and Tesla CFloat

• FP8 (1-5-2)
• Large loss in MobileNet v2
• Hybrid FP8 (HFP8)

• Use FP(1-4-3) in forward
• Use FP(1-5-2) in backward

• Tesla Dojo Cfloat (configurable float)
• Configurable exponent and mantissa
• Use software to choose appropriate Cfloat format

• CF16
• CF8 (1-4-3), CF8 (1-5-2) 
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https://proceedings.neurips.cc/paper/2019/file/65fc9f
b4897a89789352e211ca2d398f-Paper.pdf



How to Determine Bit Width on DNN ?

• For accuracy, DNN operations decide bit width to 
achieve sufficient precision

• Which DNN operations affect the accuracy ?
• For inference: weights, activations, and partial sums
• For training: weights, activations, partial sums, gradients, 

and weight update
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Dynamic Fixed Point
• Allow “f” to vary based on data type and layer

• In large layers, the outputs are the result of many accumulations

• The value of network parameters are much smaller than layer output 
-> varying bit widths on parameters and outputs
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0 1 1 0 0 1 1 08-bit 
dynamic 

fixed

Sign Mantissa (7 bits)

Integer
([7-f]-bits)

Fractional
(f-bits)

S = 0, m = 102, f = 3
12.75

0 1 1 0 0 1 1 0

Sign Mantissa (7 bits)

fractional
(f-bits)

S = 0, m = 102, f = 9
0.19921875



Impact on Accuracy

• The accuracy drops in the small bit width when using 
static fixed point

• Stable accuracy variation is shown in dynamic fixed 
point (why ?)

22Gysel et al., Ristretto, ICLR 2016

Top-1 
accuracy of 
CaffeNet on 
ImageNet



Impact on Accuracy

• Small bit width cannot adapt to every DNN models very 
well (training) 
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Layer outputs CONV 
parameters

FC parameters Fixed point 
accuracy

LeNet (Exp 1) 4-bit 4-bit 4-bit 99.0%
LeNet (Exp 2) 4-bit 2-bit 2-bit 98.8%
SqueezeNet 8-bit 8-bit 8-bit 57.1%
CaffeNet 8-bit 8-bit 8-bit 56.0%
GoogleNet 8-bit 8-bit 8-bit 66.6%

Gysel et al., Ristretto, ICLR 2016



Precision Varies from Layer to Layer

• Accuracy varies with the different bit widths in layers
• How to find out the best bit width in each layer while 

maintaining high accuracy ?
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Error rate Bit per layer
1% 10-8-8-8-8-8-6-4
2% 10-8-8-8-8-8-5-4
5% 10-8-8-8-7-7-5-3
10% 9-8-8-8-7-7-5-3

AlexNet

Judd et. al., ArXiv 2016



Takeaway Questions

• What are advantages to use BF16 instead of FP16 ?
• (A) Fast conversion from FP32
• (B) Get more precise value
• (C) Represent few different values

• What are benefits to use lower precision data type on 
neural network ?

• (A) Reduce the latency of DNN models
• (B) Save the memory space
• (C) Lower the power consumption of the accelerator

25



What is Quantization ?

• Quantization is the process of constraining an input from a 
continuous or large set of values to a discrete set

26



Data Quantization
• Quantization 

• Maps data from a full precision to reduced one

• Quantization error 
• Measures the average difference between the original full 

precision and quantized values
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x
0 2 4 6 8 10 12 14 16

d0 q0 d1 q1 d2 q2 d3 q3 d4

Uniform
Quantizationx = 1, 3, 7, 8, 15 x* = 2, 2, 6, 8, 14

E = [(x – x*)2]



Types of Quantization

• Uniform Quantization
• Quantized values are equally spaced out
• x* can take on are {2, 6, 10, 14} with level = 4
• Decision boundaries di are used to decide the quantization 

value that x should be mapped to
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x
0 2 4 6 8 10 12 14 16

d0 q0 d1 q1 d2 q2 d3 q3 d4



Types of Quantization

• Non-uniform quantization
• Spacing can be computed e.g. logarithmic or with look-up-table
• Fewer unique values can make weight sharing and 

compression
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d1

Non-Uniform
Quantizationx = 1, 3, 7, 8, 15 x* = 6, 6, 6, 8, 14

q0

x
0 8 9 10 14 16

d0 q1 d2 q2 d3
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K-Means-based Weight Quantization

• Storage
• Integer Weights; Floating-Point Codebook

• Computation
• Floating-Point Arithmetic
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K-Means-based Weight Quantization
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K-Means-based Weight Quantization

• Fine-tuning 
Quantized Weights
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K-Means-based Weight Quantization

• Weights are decompressed using a lookup table during runtime inference

• Only saves storage cost of a neural network model

• All the computation and memory access are still floating-point
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K-Means-based Weight Quantization

• Accuracy vs. compression rate for AlexNet on ImageNet dataset
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What is Linear Quantization ?

• An affine mapping of integers to real numbers

• Storage: Integer Weights; Computation: Integer Arithmetic

35



Linear Quantization

• An affine mapping of integers to real numbers (r = S(q - Z))
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Linear Quantization
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• An affine mapping of integers to real numbers (r = S(q - Z))



Scale of Linear Quantization

• An affine mapping of integers to real numbers (r = S(q - Z))
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Scale of Linear Quantization

• An affine mapping of integers to real numbers (r = S(q - Z))
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Zero Point of Linear Quantization

• An affine mapping of integers to real numbers (r = S(q - Z))
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Zero Point of Linear Quantization

• An affine mapping of integers to real numbers (r = S(q - Z))
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Symmetric Linear Quantization

• Full range mode
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Symmetric Linear Quantization

• Restricted range mode
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Asymmetric vs. Symmetric
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Linear Quantized Matrix Multiplication

• An affine mapping of integers to real numbers (r = S(q - Z))
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Linear Quantized Matrix Multiplication

• An affine mapping of integers to real numbers (r = S(q - Z))
• Consider the following matrix multiplication
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Linear Quantized Matrix Multiplication
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Linear Quantized Matrix Multiplication
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Linear Quantized Fully-Connected Layer
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• An affine mapping of integers to real numbers (r = S(q - Z))
• Now, we consider the following fully-connected layer with bias



Linear Quantized Fully-Connected Layer
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• An affine mapping of integers to real numbers (r = S(q - Z))
• Now, we consider the following fully-connected layer with bias



Linear Quantized Fully-Connected Layer
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• An affine mapping of integers to real numbers (r = S(q - Z))
• Now, we consider the following fully-connected layer with bias



Linear Quantized Fully-Connected Layer
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• An affine mapping of integers to real numbers (r = S(q - Z))
• Now, we consider the following fully-connected layer with bias



Linear Quantized Convolution Layer
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• An affine mapping of integers to real numbers (r = S(q - Z))
• Now, we consider the following convolution layer



Linear Quantized Convolution Layer
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• An affine mapping of integers to real numbers (r = S(q - Z))
• Now, we consider the following convolution layer



Binary/Ternary Quantization

• Could we push the quantization precision to 1 bit?
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Binary/Ternary Quantization

• If weights are quantized to +1 and -1
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Binarization
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Minimizing Quantization Error in Binarization
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Binary Net
• Binary Connect

• Weights {-1, 1} (Bipolar binary), 
Activation 32-bit float

• Accuracy loss: 19 % on AlexNet

• Binarized Neural Networks
• Weights {-1, 1}, Activations {-1, 1}
• Both of operands are binary, the multiplication turns into an XNOR
• Accuracy loss: 29.8 % on AlexNet

59Courbariaux., NeurIPS, 2015

A B Out

0          0              1
1          0              0
0          1              0
1          1              1

XNOR

for each i in width:
C += A[row][i] * B[i][col]

for each i in width:
C += popcount(XNOR(A[row][i] * B[i][col]))

Popcount (110010001) = 4



Case Study: Binary Multiplication

• A = 10010, B = 01111 (0 is really -1 here)
• Dot product: 

• A * B = (1 * -1) + (-1 * 1) + (-1 * 1) + (1 * 1) + (-1 * 1)  = -3

• P = XNOR (A, B) = 00010, popcount(P) = 1
• Result = 2 * P – N, where N is the total number of bits
• 2 * P – N = 2 * 1 – 5 = -3

60
https://sushscience.wordpress.com/2017/10/01/understanding-binary-neural-networks/



XNOR-Net

• If both activations and weights are binarized

61



XNOR-Net

• If both activations and weights are binarized
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XNOR-Net

• If both activations and weights are binarized
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XNOR-Net

• If both activations and weights are binarized
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XNOR-Net

• If both activations and weights are binarized
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XNOR-Net

• If both activations and weights are binarized
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XNOR-Net

• Minimizing quantization error in binarization
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XNOR-Net
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Ternary Weight Networks (TWN)
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Ternary Weight Networks (TWN)
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What do we Learn from Quantization?

• Quantization can improve DNN computational throughput while 
maintaining accuracy

• Layers on DNN models can be offered with different bit widths

• Varying bit width requires the support of the hardware

• No systematic approach to figure out the proper bit width in 
layers of DNN models

• What else ?
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Takeaway Questions

• What are purposes of data quantization ?
• (A) Constrain the value of inputs to a set of discrete values 
• (B) Create more values
• (C) Improve the degree of parallelism on DNN training

• Why training requires large bit width ?
• (A) The training needs to compute more data
• (B) Avoid the value underflow and overflow
• (C) Gradient and weight update have a larger range 
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