
Accelerator 
Architectures for 

Machine Learning
Lecture 2: Deep Neural Networks

Tsung Tai Yeh
Friday: 3:30 – 6:20 pm

Classroom: ED-302

1



Acknowledgements and Disclaimer
• Slides was developed in the reference with 

Joel Emer, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, ISCA 2019 
tutorial
Efficient Processing of Deep Neural Network, Vivienne Sze, Yu-Hsin
Chen, Tien-Ju Yang, Joel Emer, Morgan and Claypool Publisher, 2020
Yakun Sophia Shao,  EE290-2: Hardware for Machine Learning, UC 
Berkeley, 2020
CS231n Convolutional Neural Networks for Visual Recognition, 
Stanford University, 2020 
CS224W: Machine Learning with Graphs, Stanford University, 2021

2



Outline

• Convolution Neural Network
• Transformer

3



Convolutional Neural 
Networks

4



Deep convolutional neural networks

• Each neuron only sees a “local receptive field”
• 5 x 5 grid of neurons in this example
• The first neuron is looking for feature in 

the top-left 5x5 corner of the image
• Combines the 25 inputs with 25 synaptic

weights to decide its output
• The set of 5x5 weights as a “filter”

5



Deep convolutional neural networks

• Convolution
• Applying a 5x5 filter (kernel) to each part

of the image
• All the neurons are sharing the same set

of 25 weights (plus bias)
• Why do we create small size filter ?

• The small local receptive field and use of 
shared weights can help for slow learning
rate in early layers of the network

6



Convolutional Computation Details

7

• Convolution
• Expressing how the shape of one function is modified by the other (f*g)
• Sliding dot product or cross-correlation
• Convoluting a 5x5x1 image with a 3x3x1 filter kernel to get a 3x3x1 

convoluted feature
1x1 1x0 1x1 0 0
0x0 1x1 1x1 1 0
0x1 0x1 1x0 1 1
0 0 1 1 0
0 1 1 0 0

5

Image
Convoluted

Feature

1 1x1 1x0 0x1 0
0 1x0 1x1 1x1 0
0 0x1 1x1 1x0 1
0 0 1 1 0
0 1 1 0 0

5 4



Deep convolutional neural networks

• Feature map (output image)
• This example only shows one filter and 

one resulting “feature map”
• Multiple independent filters -> parallelism

• 20 filters to the input image -> 20 different 
feature maps

• E.g. one filter may look for vertical lines, 
others may look for circles, etc.

• This first layer has 784 (28 x 28) inputs and 
20 x 24 x 24 neurons -> large neural network

• How to reduce the amount of learning ? 
• Using shared weights, we would only have

to learn 20 x (5 x 5 + 1) weights and biases
8



CNN Dimension Parameters

• N – Number of input fmaps/output fmaps (batch size)
• C – Number of 2D input fmaps/filters (channels)
• H – Height of input fmap (activations)
• W – Width of input fmap (activations)
• R – Height of 2D filter (weights)
• S – Width of 2D filter (weights)
• M – Number of 2D output fmaps (channels)
• F – Width of output fmap (activations)
• E – Height of output fmap (activations)

9



CONV Layer Tensor Computation

10

Output fmaps (Y) Bias (B) Input fmaps (X) Filter weights (W)

Shape Parameter Description
N fmap batch size
M # of filters or # of output fmap channels
C # of input fmap or # of filter channels
U Convolution stride



CONV Layer Implementation

11

for ( n = 0;   n < N;   n++) {
for (m = 0;   m < M;   m++) {

for (x = 0;   x < F;   x++)       {
for ( y = 0;   y < E;   y++)     {

Y[n][m][x][y] = B[m];
for (  i = 0;   i < R;  i++)     {

for (  j = 0;  j < S;  j++)      { 
for (  k = 0;  k < C;  k++) {

Y[n][m][x][y] += X[n][k][Ux+i][Uy+j] x W[m][k][i][j]
}

}
}
Y[n][m][x][y] = Activation(Y[n][m][x][y]);

}
}

}
}

For each output fmap value

CONV &
Activation

How to run CONV in parallel ?



CONV Layer Parallel Implementation

12

Parallel_for ( n = 0;   n < N;   n++) {
Parallel_for (m = 0;   m < M;   m++) {

Parallel_for (x = 0;   x < F;   x++)       {
Parallel_for ( y = 0;   y < E;   y++)     {

Y[n][m][x][y] = B[m];
for (  i = 0;   i < R;  i++)     {

for (  j = 0;  j < S;  j++)      { 
for (  k = 0;  k < C;  k++) {

Y[n][m][x][y] += X[n][k][Ux+i][Uy+j] x W[m][k][i][j]
}

}
}
Y[n][m][x][y] = Activation(Y[n][m][x][y]);

}
}

}
}

For each output fmap value

CONV &
Activation



Convolution (CONV) Layer

13

R

S

C

H

W

C

E

F

Filter
Input fmap

Output fmap

Many Input Channels (C), e.g. RGB in an image



Convolution (CONV) Layer

14

R

S

C

R

S

C

…

Many filters (M)

M
H

W

C

E

F

Input fmap

M

Many Output 
Channels (M)



Convolution (CONV) Layer

15

R

S

C

R

S

C

…

Many filters (M)

M

H

W

C

H

W

C
…

N

E

F
M

E

F
M

…

N

Many fmaps (N)
Many Output 

fmaps (N)



Pooling
• Pooling

• Once a feature has been found, its’s exact location isn’t as important 
as its relative location – help us reduce the parameters

• Further reduce the network, say reduce 4 neurons into a single one

16

22 8 4 9

11 3 10 0

5 8 11 3

2 1 5 9

22 10

8 11

11 6
4 7

2x2 pooling, stride = 2
Max pooling

Average pooling

Input fmap size: W1 x H1 x C1
Spatial extent: F 
Stride S
Output fmap after pooling: W2 x H2 X C2
W2 = ( W1 – F ) / S + 1
H2 = ( H1 – F ) / S + 1
C2 = C1

https://cs231n.github.io/convolutional-networks/



POOL Layer Implementation

17

for ( n = 0;   n < N;   n++) {
for (m = 0;   m < M;   m++) {

for (x = 0;   x < F;   x++)       {
for ( y = 0;   y < E;   y++)     {

max = -Inf
for (  i = 0;   i < R;  i++)     {

for (  j = 0;  j < S;  j++)      { 
if (  X[n][m][Ux+i][Uy+j] > max) {

max = X[n][m][Ux+i][Uy+j];
}

}
}
Y[n][m][x][y] = max;

}
}

}
}

for each pooled value

Find the max in each 
window



GoogleNet Inception Architecture

• 22 layers
• Fully-Connected Layers: 1
• Weights: 7.0 M (< VGG(19.7X)

AlexNet(8.7X))
• MACs: 1.4G

18

ILSCVR14 Winner
GoogleNet is used to classify images
GoogleNet top-5 error rate is 6.67% 

over VGG 7.3%

Auxiliary classifiers outputs to inject 

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf



What’s New in GoogleNet ?

• 1 x 1 CONV filter (why?)
• Decrease the number of parameters (weights and biases)
• Increase the depth of the network

19

Case 1: 5x5 filter, # of filter = 48
Total MACs: (14x14x48)x(5x5x480) = 112.9M

Case 2: 1x1 filter, # of filter = 16 as intermediate
Total MACs: (14x14x16)x(1x1x480) + 
(14x14x48)x(5x5x16)= 5.3M

https://www.geeksforgeeks.org/understanding-googlenet-model-cnn-architecture/

GoogleNet can be trained in a 
single machine such as (GPU 
with limit memory space) !!



What’s New in GoogleNet ? 

• Inception module
• A local network topology 

(network within a network)
• Stack modules on top of each 

other
• Multiple receptive field 

sizes for CONV (1x1,
3x3, 5x5)

• Pooling operation (3x3)
• Depth-wise filter 

concatenation
20

Inception module

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf

What’s the problem of 
inception module?



GoogleNet Inception Module Problems?
• What is the output size of 1x1 conv, with 128 filters ?

21

Filter 
concatenation

1x1 conv, 
128

3x3 conv, 
192

5x5 conv, 
96 3x3 pool

InputModule input: 
28x28x256



GoogleNet Inception Module Problems?

22

Filter 
concatenation

1x1 conv, 
128

3x3 conv, 
192

5x5 conv, 
96 3x3 pool

InputModule input: 
28x28x256

28x28x128 28x28x192 28x28x96 28x28x256

28x28x672
CONV Ops:
[1x1 conv, 128] 28x28x128x1x1x256
[3x3 conv, 192] 28x28x192x3x3x256
[5x5 conv, 96] 28x28x96x5x5x256
Total: 854 M ops

Very expensive compute

Solution: “bottleneck” layers 
that use 1x1 convolutions to 
reduce feature depth

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf



Dimension Reduction on GoogleNet

23

Inception module with 
dimension reduction using

1x1 conv “bottleneck” layers

Naïve inception module

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf



GoogleNet 1x1 Bottleneck Layer Ops

24

Filter 
concatenation

1x1 conv, 
128

3x3 conv, 
192

5x5 conv, 
96

1x1 conv 
64

InputModule input: 
28x28x256

28x28x128 28x28x192 28x28x96

28x28x480

28x28x64

1x1 conv, 
64

1x1 conv, 
64 3x3 pool

28x28x64 28x28x64 28x28x256

Conv Ops:
[1x1 conv, 64] 28x28x64x1x1x256
[1x1 conv, 64] 28x28x64x1x1x256
[1x1 conv, 128] 28x28x128x1x1x256
[3x3 conv, 192] 28x28x192x3x3x64
[5x5 conv, 96] 28x28x96x5x5x64
[1x1 conv, 64] 28x28x64x1x1x256
Total: 358 M ops

Naïve version has 854M ops
Bottleneck layer can reduce ops 
using dimension reduction



ResNet Model Overview 

• 152-layer model for 
ImageNet Classification

• ILSVRC’15 winner
(3.57% top-5 error)

• Using residual blocks
and connections

25
http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf

How to train the data in 
ULTRA-DEEP network (over 

1000 layers)?



Deep Network Training Problems on ResNet
• Training and test error are increased with the length of networks

26

What is wrong when increasing the length of networks?
- Deeper model performs worse on both training and test error

(overfitting?)
[He et al., 2015]



Deep Network Training Problems on ResNet

• Why overfitting isn’t the main reason to increase error rate of 56-layer?
• Hypothesis: vanishing gradient raises error rate of ultra-deep networks?
• Solution: Add layers to fit a residual mapping instead of fitting a desired 

underlying mapping directly (skipping connection)(What?)

27



Deep Network Training Problems on ResNet
• Solution: Add layers to fit a residual mapping instead of fitting a 

desired underlying mapping directly

28“Original” Layer “Residual” Block

H(x) = F(X)+x

Instead of fitting H(x) 
directly, use residual 
F(x) = H(x) - x

Why not use 
H(x) directly?

Identity mapping 
F(x) = x

Shortcut/skip 
connection



Bottleneck Layer on ResNet

• ResNet50+ also uses 
“bottleneck” layer
to improve efficiency 
for deep networks
(similar to GoogleNet)

29

1x1 conv, 64 filters projects 
to 28x28x64

3x3 conv operates over only 
64 feature maps

1x1 conv, 256 filters projects 
back to 256 feature maps 
(28x28x256)



ResNet Model Details

• Full ResNet architecture
• Stack residual blocks
• Every residual block has two 3x3 conv layers
• Periodically, double the number of filters and

down-sample using stride 2 (/2 in each 
dimension) 

• Additional conv layer at the beginning
• Only FC 1000 to output class
• Total depths of 34, 50, 101 or 152 layers

for ImageNet
30

http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture9.pdf



MobileNet v1: Depthwise Separable CONV
• Decouple cross-channel correlations and spatial correlations 

in the feature maps
• How to reduce # of parameters? [Andrew et. al. arxiv, 2017]

31

R

S
C

R …

1
C1

1

…

S

R

S
C

Depthwise Convolution Pointwise Convolution



What is Depthwise Separable Convolution ?
• Purpose: Reduce the amount of CONV computation
• Input: W_in * H_in * Nch (# of channels)
• Kernel: k * k * Nk (# of kernels)
• Output: W_out * H_out * Nk (# of kernels)

32

H_in

W_inN_ch

H_out

W_outN_k

W_in * H_in * Nch k * k * Nk W_out* H_out * Nk

*



Depthwise Convolution
• Each channel of inputs has a k * k kernel
• Separate the convolution of each channel
• Difference: Every kernel convolves with all channels in standard CONV

33

Input
W_in & H_in * Nch

Nch Kernel
k * k 

Depthwise_out
W_out* H_out * Nch

… … …
1

Nch

*

*

=

=



Pointwise Convolution

• The number of kernel: Nk with (1 * 1 * Nch) size
• Do CONV on the outputs of depthwise convolution

34
深度學習-MobileNet (Depthwise separable convolution) | by Tommy Huang | Medium

…



Depthwise + Pointwise Convolution

35

Pointwise convolution
Input: W_out * H_out * Nch
Nk kernel = (1 * 1 * Nk)
Output = W_out * H_out * Nk

Depthwise convolution
Input: W_in * H_in * Nch
Nch Kernel (k * k)
Output: W_out * H_out * Nch

Depthwise convolution Pointwise convolution

深度學習-MobileNet (Depthwise separable convolution) | by Tommy Huang | Medium



Depthwise Separable Convolution

• Standard CONV
• Input: W_in * H_in * Nch
• Kernel: k * k * Nk
• Output: W_out * H_out * Nk
• Computation: W_in * H_in * Nch * k * k * Nk

• Depthwise separable convolution
• Depthwise CONV computation: W_in * H_in * Nch * k * k
• Pointwise CONV computation: Nch * Nk * W_in * H_in

36

Depthwise separable CONV

Standard CONV

W_in * H_in * Nch * k * k + Nch * Nk * W_in * H_in

W_in * H_in * Nch * k * k * Nk
1

Nk
1

K*k

=

= +



Depthwise Separable Convolution

• Depthwise separable convolution can save more computation when
• kernel size is large
• The number of kernel is up

• Suppose input is 416 * 416 * 50, # of filter is 10, its size is 3 * 3. 
• How much computation can be saved by depthwise separable 

convolution ?
• 1/10 + 1/9 = 0.22

37



Takeaway Questions

• What are problems in ultra-deep neural networks ? 
• (A) Over-fitting
• (B) Gradient vanishing 
• (C) Low training accuracy

• Given a CNN model below, how many channels are in the 
second layer ?
• (A) 4
• (B) 8
• (C) 16

38

Input
size

# of
filter

Filter
size

# of
channel

Layer1 12 x 12 4 3x3 64
Layer2 12 x 12 16 3x3



Takeaway Questions

• A standard CONV layer
• Input: W_in * H_in * Nch = (32 * 32 * 16)
• Kernel: k * k * Nk = (3 * 3 * 8)
• Computation: W_in * H_in * Nch * k * k * Nk = (32 * 32 * 16 * 3 * 3 * 8)

• What is the amount of computation that is carried out by 
depthwise separable convolution ?
• (A) (32 * 32 * 16 * 3 * 3) + (3 * 8 * 8)
• (B) (32 * 32 * 3 * 3 * 8) + (16 * 3 * 3)
• (C) (32 * 32 * 16 * 3 * 3) + (16 * 8 * 32 * 32)

39



Transformer

40



Classical Sequence-to-Sequence Model
• Pass the last hidden state of the encoding stage
• Decoder uses this last hidden state to do the prediction

41

Encoder 
RNN

Encoder 
RNN

Encoder 
RNN

H
idden State #1

H
idden State #2

H
idden State #3

Decoder 
RNN

Decoder 
RNN

Decoder 
RNN

您 好 嗎

How are you



Word Representation

• One-Hot Encoding
• Representing each word as a vector that has as many values in it
• Each column in a vector is one possible word in a vocabulary
• Problem

• In large vocabularies, these
vectors can get very long

• Contain all 0’s except for 
one value

• Sparse representation

42



Word Representation

• Word Embedding
• Map the word index to a continuous word embedding through a 

look-up table
• Popular pre-trained word embeddings

• Word2Vec, GloVe

43



Position Embedding (PE)

• Position embedding (PE)
• Information to each word about its position in the sentence
• Unique encoding for each word’s position in a sentence
• Distance between any two positions is consistent across sentences 

with different lengths
• Encode words by using sin(), cos() with different frequencies
• Deterministic and generalize to longer sentences

44



Bottleneck of Sequence-to-Sequence Model
• It is challenging for the model to deal with long sentences
• Attention

• The encoder passes all the hidden states to the decoder
• The attention enables the decoder to focus on the word before it 

generates the English translation
• This ability amplifies the signal from the relevant part of the input 

sentence

45

Decoder 
RNN

Decoder 
RNN

Decoder 
RNN

I am a

Decoder 
RNNétudiant

Je

suis



How does the Attention Work ?

46

Attention at time step 4

h1 h2 h3

1. Encoder 
hidden states

Decoder hidden 
state at time 
step 4 (h4)

2. Score each 
hidden state

13 9 9 Scores: Attention weights for decode time step #4

3. Softmax
scores

0.96 0.02 0.02 Softmax score

4. Multiply 
each vector by 
its softmaxed
score

+ + =
5. Sum up the weighted vectors to get the 
context vector (C4) for decoder time step #4



How does the Attention Work ?
• The attention decoder takes the embedding of the <END> token, and 

an initial decoder hidden state
• Concatenate h4 and C4 into one vector
• The output of the feedforward neural network indicates the output 

word of this time step
• Repeat for the next time steps

47

Attention 4

hinit

<End>

C4 h4

I

Attention 5

hinit

C5 h5

am



Transformer
• Each encoder block has two sub-layers

• Multi-head self-attention 
• A position-wise fully connected feed-forward

• Each decoder block has an additional
third sub-layer
• The third is a masked multi-head attention 

over the output of the encoder stack

• A residual connection is added around
each of the two sub-layers

• The decoder yields the output sequence
of symbols one element at a time

48
Vaswani et al. 2017 https://arxiv.org/pdf/1706.03762.pdf

https://web.stanford.edu/class/cs224n/slides/cs224n-2020-lecture10-QA.pdf



Self-Attention

• Self-attention
• The Transformer is used to understand 

other relevant words into the one we
are currently processing

• For example, “The animal didn’t cross
the street because it was too tired”. 

• How do we know “it” that refers to 
the street or the animal ?

49

http://jalammar.github.io/illustrated-transformer/



Self-Attention in Detail
• Multiplying input embedding (x1) by the WQ weight matrix produces 

query vector (q1) associated with that word
• A “key” and a “value” vector projects each word in input sentence

50

x1Embedding
Input Apple

x2

Pies

q1 q2Queries

k1 k2Keys

v1 v2Values

WQ

Wk

Wv



Self-Attention in Detail
• Calculating self-attention score

• Need to score each word of the input sentence against this word
• The score determines how much focus to place on other parts of 

the input sentence as we encode a word at a certain position

51

x1Embedding
Input Apple

q1Queries

k1Keys

v1Values

Processing the word in position #1
1. The first score is the dot product of q1 

and k1, the second one is (q1, k2)
2. Normalized these scores by using 

softmax function
3. Multiplying each value vector by the 

softmax score – weighted value vectors
4. Summing up these weighted value 

vectors



Matrix Calculation on Self-Attention

• Packing word embeddings into a matrix X
• Multiplying X by the weight matrices we have trained (WQ, 

WK, WV)

52

WQ

X =
X Q

WK

X =
X K

Self-attention score (Z) =
softmax(Q x KT/sqrt(dk)) V

dk is the dimension of the key vectors



Multi-Head Attention
• It expands the model’s ability to focus on different position
• It gives the attention layer multiple “representation sets”

53

Apple
Pies

W0
Q

=
Q0

W0
K

=
K0

W1
Q

=
Q1

W1
K

=
K1

Attention Head #0 Attention Head #1



Multi-Head Attention

• We will produce multiple different weight matrices

54

Apple
Pies

Calculating attention separately in eight 
different attention heads

Z0

Attention 
Head #0

Z1

Attention 
Head #1

Z7

Attention 
Head #7

…



Multi-Head Self-Attention (MHSA)

• Project Q, K, and V with h different learned
linear projections

• Perform the scaled dot-product attention
function on each of Q, K, V in parallel

• Concatenate the output values
• Project the output values again, resulting

in the final values

55



Feed-Forward Network (FFN)

• FFN is applied to each position separately and identically
• Two linear transformations with a ReLU activation in between
• The middle hidden size is usually larger than the output size 

56



Layer Normalization (LN)

• The small amount of sampling degrades the result of batch 
normalization (BN)

• LN calculation isn’t related to the amount of sampling

57

H: the number of hidden layer
l: the number of MLP layer

N: Sampling
C: Channel
F: The number of features in a 
channel

LN BN



Language Model

• Trained on large amount of unlabeled text
• Then, being fine-tuned on specific NLP tasks (such as machine translation …)

58



Casual Language Models (CLM) - GPT

• Pre-train generates text that 
is similar to the input text 
data in an unsupervised 
manner (language model)

• Fine-tune this model on much
smaller supervised datasets
to solve specific tasks

59



Masked Language Models (MLM) - BERT

• #1: Masked Language Model (MLM)
• Mask percentage (15%) of the input

tokens at random
• Predict those masked tokens

• #2: Next Sentence Prediction (NSP)
• Predict if sentence A follows sentence B

make sense
• Feeding BERT the words "sentence A" 

and "sentence B" twice.
• Q: Does sentence B follow sentence A?
• True Pair or False Pair is what BERT 

responds
60



Image Transformer -- ViT

• Split an image into fixed-size patches, linearly embed each of them, 
add position embeddings, and feed the resulting sequence of vectors 
to a standard Transformer encoder

61



Video Transformer -- ViViT
• Extract spatiotemporal tokens from the video, then encoded by a 

series of transformer layers
• Factorize the spatial- and temporal-dimensions of the input to handle 

the long sequences

62



Audio Transformer -- AST

• Split the 2D audio spectrogram
a sequence of 16 x 16 patches
with overlap

• Linearly projected to a sequence
of 1-D patch embeddings

63



Multi-Modal Transformer -- VATT

• Linearly project each modality into a feature vector and feed it into a 
Transformer encoder

64



Sparse Attention -- LongFormer

• Attention with sliding window
• A fixed-size window attention surrounding each token
• The complexity is reduced from O(N2) to O(N x W), W is the window size

• Attention with dilated sliding window
• Dilate the sliding window with gaps of size dilation D
• The receptive field is enlarge from W to W x D, with the same complexity

65



Sparse Attention -- LongFormer

• Global attention added on a few pre-selected input locations
• Classification: The special token ([CLS]), aggregating the whole 

sequence
• QA: All question tokens, allowing the model to compare the question 

with the document

66



Sparse Attention – Big Bird
• Random sparse attention

• Each query attends over r random number of keys: i.e. A(I, .) for r 
randomly chosen keys

• Big Bird
• Random Attention + local attention + global attention

67



Takeaway Questions

• What’s problem the “Attention” aiming to solve? 
• (A) Gradient vanishing
• (B) Over-fitting
• (C) Message passing in the long sequence of data

• How does the “Attention” work on sequence-to-sequence 
model?
• (A) Memory gate
• (B) Context vector
• (C) Bi-directional network

68



Takeaway Questions

• What are benefits of the “Transformer” ?
• (A) Large hidden layer
• (B) The amount of computation is small
• (C) More data parallelism

• How does the “self-attention” help the encoder?
• (A) Looking at other works in the input sentence
• (B) Memorizing the more messages within a network
• (C) Focus on a specific word

69


