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Outline

• TinyML and EdgeAI
• Edge AI hardware

• MCUNet TinyML Inference
• Neuromorphic accelerator
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TinyML and Edge AI
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Deep Learning is Everywhere
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Vision Language Speech



AI is Coming to the Edge Quickly
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Privacy Latency Cost



The Market of Edge Device is Growing
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Today’s AI is too Big

• We need new algorithms and hardware for TinyML and Green 
AI – Low Energy, Latency, Cost, Better Privacy
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GPT-3: 355 GPU years to train and cost $4.6M
AlphaGo: 1920 CPUs and 280 GPUs, $3000 per game for electric bill



What is TinyML ?

• Squeezing deep learning into IoT devices
• Billions of IoT devices around the world based on microcontrollers
• Low-cost, low-power (reduce carbon)
• A variety of domain applications
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Smart Home Smart City Smart Factory



TinyML is challenging
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• Memory size is too small to hold DNNs

• Latency, energy, memory constraints

13,000X Smaller



Computational Cost of DNN is Growing

11Model Compression and Hardware Acceleration for Neural Networks: A Comprehensive Survey [Deng et al., IEE 2020]



Deep Learning for Language Modeling

• Model size of language is growing exponentially
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Challenges on DNN Models

• Large model size
• Model compression
• Model Pruning
• Quantization
• Network Architecture Search

• Large input/output tensors
• Input tensor size is associated

to the ratio of Top-1 accuracy
• MCU SRAM range is 

constrained
13Miao et al. Arxiv, 2021



Neural Architecture Search (NAS)

• NAS reduces the computational cost

14
Once-for-All: Train One Network and Specialize it for Efficient Deployment [Cai et al., ICLR 2020]



TinyML for Text Translation

• Lite Transformer reduces the model size with pruning and 
quantization

15Lite Transformer with Long-Short Range Attention [Wu et al., ICLR 2020]



Efficient Language Modeling
• SpAtten accelerates language models by pruning redundant 

tokens

16SpAtten: Efficient Natural Language Processing [Wang et al., HPCA 2021]



TinyML for Image Recognition

• MCUNet: Tiny Machine Learning on IoT devices

17MCUNet: Tiny Deep Learning on IoT Devices [Lin et al., NeurIPS 2020]



TinyML on Autonomous Driving

• Deep learning helps machine perceive the surrounding 
environment

18



Edge AI Hardware

• Apple Neural Engine
• An energy-efficient and high-throughput engine for ML inference on 

Apple silicon

19NanoReview. https://nanoreview.net/en



Edge AI Hardware

• Nvidia Jetson
• A complete system on module that includes a GPU, CPU, memory, …..

20
NanoReview. https://connecttech.com/jetson/jetson-module-comparison/



Edge AI Hardware

• Tensor Processing Unit (TPU)
• An AI accelerator ASIC developed by Google

21
Tensor Processing Unit. https://en.wikipedia.org/wiki/Tensor_Processing_Unit



Edge AI Hardware

• FPGA-based Accelerators
• Efficiency of custom hardware acceleration

22
Neural Network Accelerator Comparison. https://nicsefc.ee.tsinghua.edu.cn/projects/neural-
network-accelerator.html



Edge AI Hardware

• Microcontrollers (MCU)
• Includes a processor, memory and I/O peripherals on a single chip

23
* Dhrystone Million Instructions Per Second (DMIPs) is an index for integer computation



Summary

• TinyML and Edge AI applications is emerging

• TinyML and Edge AI are challenging
• Memory size is too small to hold DNNs
• Latency, energy, memory constraints

• How to create a small DNN model
• Model pruning/compression
• NAS
• How about large intermediate tensors?

• Edge AI hardware
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Takeaway Questions

• What are advantages of TinyML ?
• (A) Low latency
• (B) Low cost
• (C) Good privacy

• What are challenges of TinyML on MCUs?
• (A) Memory size of MCUs is too small to hold DNNs
• (B) Slow CPU processing speed
• (C) Sparse input activations
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Takeaway Questions

• What are possible ways to reduce model size?
• (A) Data augmentation
• (B) Model pruning
• (C) Quantization
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MCUNet TinyML Inference 
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Running CNNs on Microcontrollers
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Arduino nano 33 BLE sense
SRAM: 256KB
Flash: 1MB



Running CNNs on Microcontrollers

• Activations and Weights on MCUs

29



Running CNNs on Microcontrollers

• Flash Usage
• Store model parameters
• Static, need to hold the entire model

• SRAM usage
• Input + output activation
• Dynamic, different for each layer
• We care about peak SRAM usage
• Weights are not counted
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Today’s CNN are Too Big for TinyML

• We need to reduce model and activation size
• MobileNetV2 reduces only model size but not peak activation size
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MCUNet: System-Algorithm Co-design

32



Outperforming Manual & NAS Models
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• MCUNet achieves higher accuracy at lower memory

• Audio wake words (speech commands)



MCUNet-V1: In-place Depthwise Convolution

• Inverted Residual Block
• MobileNet-V2 have “inverted residual blocks” with depth-wise 

convolutions which reduce model size and FLOPs, but increases peak 
memory
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MCUNet-V1: In-place Depthwise Convolution

• In-place depthwise convolution
• Store the input/output activation of a channel in a temp buffer
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MCUNet-V1: In-place Depthwise Convolution

• Using the “in-place” updating policy with a temporary buffer
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MCUNet-V1: In-place Depthwise Convolution

• Using the “in-place” updating policy with a temporary buffer
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MCUNet-V1 Results

• TinyEngine (MCUNet-v1) 
• reduces the peak memory usage across different TinyML models
• Speedup comes from the optimization of operator kernels
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MCUNet-V2: Patch-based Inference

• Imbalanced memory distribution of CNNs
• The SRAM usage of each layer in MobileNet-V2
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Imbalanced Memory Distribution of CNNs

• Common case in efficient CNN design
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Imbalanced Memory Distribution of CNNs

• Reduce memory usage of the initial stage
• Reduce the overall peak SRAM memory usage
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Per-Layer Inference

• Peak memory = 2 WHC
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Per-patch Inference

• Peak Memory = 2whC << 2WHC
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Saving Memory with Patch-based Inference
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Saving Memory with Patch-based Inference

• Applying to MobileNet-V2
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Reducing the Peak Memory of CNNs

• Baseline: MCUNet-v1 on STM32F746 MCU
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Patch-based Inference Operation

• Store each patch of activations in the SRAM memory
• Computation overhead from overlapping
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Problem: Computation overhead from Overlapping
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• Using 2 x 2 patches



Problem: Computation overhead from Overlapping
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• Using 2 x 2 patches



Problem: Computation overhead from Overlapping
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• Using 2 x 2 patches



Problem: Computation overhead from Overlapping

51

• Spatial overlapping gets larger as receptive field grows



Computation overhead from overlapping

• Patch-based inference overhead
• The number of MACs

increases with the
reduction of peak 
memory
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Network Redistribution to Reduce Overhead

• Reduce the size of receptive fields in certain layers
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Network Redistribution to Reduce Overhead

• Using receptive fields on different layers can reduce the overhead
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Summary

• Running CNNs on Microcontrollers
• Flash usage: store model parameters
• SRAM usage: input/output activations

• Today’s CNN are Too Big for TinyML
• Reduce model size and MACs – MobileNet
• Reduce the intermediate tensor size - MCUNet
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Takeaway Questions

• Why does TinyML put input/output activations on SRAM 
memory?

• (A) Low latency
• (B) The speed of data written on SRAM is higher than Flash
• (C) The SRAM memory density is high

• What are advantages of depth-wise separable 
convolution?

• (A) Reduce the size of input/output activation
• (B) Decrease the number of layers
• (C) Shrink the model size
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Takeaway Questions

• Why are correct descriptions for MCUNet-v1?
• (A) Using in-place depthwise convolution to reduce peak 

memory usage
• (B) Small peak memory contributes the speedup 
• (C) Store activations on a temp buffer

• How does MCUNet-v2 save peak SRAM memory usage?
• (A) Only store the small patches on SRAM memory
• (B) Overlapping patch computation
• (C) Regularization

57


