
Accelerator
Architectures for

Machine Learning
Lecture 12: TinyML Basics
Tuesday: 3:30 – 6:20 pm

Classroom: ED-302

Acknowledgements and Disclaimer
• Slides was developed in the reference with

Joel Emer, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, ISCA 2019 tutorial
Efficient Processing of Deep Neural Network, Vivienne Sze, Yu-Hsin Chen, Tien-Ju
Yang, Joel Emer, Morgan and Claypool Publisher, 2020
Yakun Sophia Shao, EE290-2: Hardware for Machine Learning, UC Berkeley, 2020
CS231n Convolutional Neural Networks for Visual Recognition, Stanford University,
2020

• CS7960, Neuromorphic Accelerator, University of Utah
https://www.cs.utah.edu/~rajeev/cs7960

2

Outline

• TinyML and EdgeAI
• Edge AI hardware

• MCUNet TinyML Inference
• Neuromorphic accelerator

3

TinyML and Edge AI

4

Deep Learning is Everywhere

5

Vision Language Speech

AI is Coming to the Edge Quickly

6

Privacy Latency Cost

The Market of Edge Device is Growing

7

Today’s AI is too Big

• We need new algorithms and hardware for TinyML and Green
AI – Low Energy, Latency, Cost, Better Privacy

8

GPT-3: 355 GPU years to train and cost $4.6M
AlphaGo: 1920 CPUs and 280 GPUs, $3000 per game for electric bill

What is TinyML ?

• Squeezing deep learning into IoT devices
• Billions of IoT devices around the world based on microcontrollers
• Low-cost, low-power (reduce carbon)
• A variety of domain applications

9

Smart Home Smart City Smart Factory

TinyML is challenging

10

• Memory size is too small to hold DNNs

• Latency, energy, memory constraints

13,000X Smaller

Computational Cost of DNN is Growing

11Model Compression and Hardware Acceleration for Neural Networks: A Comprehensive Survey [Deng et al., IEE 2020]

Deep Learning for Language Modeling

• Model size of language is growing exponentially

12

Challenges on DNN Models

• Large model size
• Model compression
• Model Pruning
• Quantization
• Network Architecture Search

• Large input/output tensors
• Input tensor size is associated

to the ratio of Top-1 accuracy
• MCU SRAM range is

constrained
13Miao et al. Arxiv, 2021

Neural Architecture Search (NAS)

• NAS reduces the computational cost

14
Once-for-All: Train One Network and Specialize it for Efficient Deployment [Cai et al., ICLR 2020]

TinyML for Text Translation

• Lite Transformer reduces the model size with pruning and
quantization

15Lite Transformer with Long-Short Range Attention [Wu et al., ICLR 2020]

Efficient Language Modeling
• SpAtten accelerates language models by pruning redundant

tokens

16SpAtten: Efficient Natural Language Processing [Wang et al., HPCA 2021]

TinyML for Image Recognition

• MCUNet: Tiny Machine Learning on IoT devices

17MCUNet: Tiny Deep Learning on IoT Devices [Lin et al., NeurIPS 2020]

TinyML on Autonomous Driving

• Deep learning helps machine perceive the surrounding
environment

18

Edge AI Hardware

• Apple Neural Engine
• An energy-efficient and high-throughput engine for ML inference on

Apple silicon

19NanoReview. https://nanoreview.net/en

Edge AI Hardware

• Nvidia Jetson
• A complete system on module that includes a GPU, CPU, memory, …..

20
NanoReview. https://connecttech.com/jetson/jetson-module-comparison/

Edge AI Hardware

• Tensor Processing Unit (TPU)
• An AI accelerator ASIC developed by Google

21
Tensor Processing Unit. https://en.wikipedia.org/wiki/Tensor_Processing_Unit

Edge AI Hardware

• FPGA-based Accelerators
• Efficiency of custom hardware acceleration

22
Neural Network Accelerator Comparison. https://nicsefc.ee.tsinghua.edu.cn/projects/neural-
network-accelerator.html

Edge AI Hardware

• Microcontrollers (MCU)
• Includes a processor, memory and I/O peripherals on a single chip

23
* Dhrystone Million Instructions Per Second (DMIPs) is an index for integer computation

Summary

• TinyML and Edge AI applications is emerging

• TinyML and Edge AI are challenging
• Memory size is too small to hold DNNs
• Latency, energy, memory constraints

• How to create a small DNN model
• Model pruning/compression
• NAS
• How about large intermediate tensors?

• Edge AI hardware

24

Takeaway Questions

• What are advantages of TinyML ?
• (A) Low latency
• (B) Low cost
• (C) Good privacy

• What are challenges of TinyML on MCUs?
• (A) Memory size of MCUs is too small to hold DNNs
• (B) Slow CPU processing speed
• (C) Sparse input activations

25

Takeaway Questions

• What are possible ways to reduce model size?
• (A) Data augmentation
• (B) Model pruning
• (C) Quantization

26

MCUNet TinyML Inference

27

Running CNNs on Microcontrollers

28

Input Activation

Kernel

* =
Output

activation

SRAM
Flash/
DRAM

Memory Storage

Arduino nano 33 BLE sense
SRAM: 256KB
Flash: 1MB

Running CNNs on Microcontrollers

• Activations and Weights on MCUs

29

Running CNNs on Microcontrollers

• Flash Usage
• Store model parameters
• Static, need to hold the entire model

• SRAM usage
• Input + output activation
• Dynamic, different for each layer
• We care about peak SRAM usage
• Weights are not counted

30

Input Activation

Kernel

* =
Output

activation

SRAM
Flash/
DRAM

Memory Storage

Today’s CNN are Too Big for TinyML

• We need to reduce model and activation size
• MobileNetV2 reduces only model size but not peak activation size

31

MCUNet: System-Algorithm Co-design

32

Outperforming Manual & NAS Models

33

• MCUNet achieves higher accuracy at lower memory

• Audio wake words (speech commands)

MCUNet-V1: In-place Depthwise Convolution

• Inverted Residual Block
• MobileNet-V2 have “inverted residual blocks” with depth-wise

convolutions which reduce model size and FLOPs, but increases peak
memory

34

MCUNet-V1: In-place Depthwise Convolution

• In-place depthwise convolution
• Store the input/output activation of a channel in a temp buffer

35

MCUNet-V1: In-place Depthwise Convolution

• Using the “in-place” updating policy with a temporary buffer

36

MCUNet-V1: In-place Depthwise Convolution

• Using the “in-place” updating policy with a temporary buffer

37

MCUNet-V1 Results

• TinyEngine (MCUNet-v1)
• reduces the peak memory usage across different TinyML models
• Speedup comes from the optimization of operator kernels

38

MCUNet-V2: Patch-based Inference

• Imbalanced memory distribution of CNNs
• The SRAM usage of each layer in MobileNet-V2

39

Imbalanced Memory Distribution of CNNs

• Common case in efficient CNN design

40

Imbalanced Memory Distribution of CNNs

• Reduce memory usage of the initial stage
• Reduce the overall peak SRAM memory usage

41

Per-Layer Inference

• Peak memory = 2 WHC

42

Per-patch Inference

• Peak Memory = 2whC << 2WHC

43

Saving Memory with Patch-based Inference

44

Saving Memory with Patch-based Inference

• Applying to MobileNet-V2

45

Reducing the Peak Memory of CNNs

• Baseline: MCUNet-v1 on STM32F746 MCU

46

Patch-based Inference Operation

• Store each patch of activations in the SRAM memory
• Computation overhead from overlapping

47

Problem: Computation overhead from Overlapping

48

• Using 2 x 2 patches

Problem: Computation overhead from Overlapping

49

• Using 2 x 2 patches

Problem: Computation overhead from Overlapping

50

• Using 2 x 2 patches

Problem: Computation overhead from Overlapping

51

• Spatial overlapping gets larger as receptive field grows

Computation overhead from overlapping

• Patch-based inference overhead
• The number of MACs

increases with the
reduction of peak
memory

52

Network Redistribution to Reduce Overhead

• Reduce the size of receptive fields in certain layers

53

Network Redistribution to Reduce Overhead

• Using receptive fields on different layers can reduce the overhead

54

Summary

• Running CNNs on Microcontrollers
• Flash usage: store model parameters
• SRAM usage: input/output activations

• Today’s CNN are Too Big for TinyML
• Reduce model size and MACs – MobileNet
• Reduce the intermediate tensor size - MCUNet

55

Takeaway Questions

• Why does TinyML put input/output activations on SRAM
memory?

• (A) Low latency
• (B) The speed of data written on SRAM is higher than Flash
• (C) The SRAM memory density is high

• What are advantages of depth-wise separable
convolution?

• (A) Reduce the size of input/output activation
• (B) Decrease the number of layers
• (C) Shrink the model size

56

Takeaway Questions

• Why are correct descriptions for MCUNet-v1?
• (A) Using in-place depthwise convolution to reduce peak

memory usage
• (B) Small peak memory contributes the speedup
• (C) Store activations on a temp buffer

• How does MCUNet-v2 save peak SRAM memory usage?
• (A) Only store the small patches on SRAM memory
• (B) Overlapping patch computation
• (C) Regularization

57

