
Accelerator
Architectures for

Machine Learning
Lecture 11: Analog DNN

Accelerators
Friday: 1:20 – 4:20 pm

Classroom: EC-221

Acknowledgements and Disclaimer
• Slides was developed in the reference with

Joel Emer, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, ISCA 2019 tutorial
Efficient Processing of Deep Neural Network, Vivienne Sze, Yu-Hsin Chen, Tien-Ju
Yang, Joel Emer, Morgan and Claypool Publisher, 2020
Yakun Sophia Shao, EE290-2: Hardware for Machine Learning, UC Berkeley, 2020
CS231n Convolutional Neural Networks for Visual Recognition, Stanford University,
2020

• CS7960, Neuromorphic Accelerator, University of Utah
https://www.cs.utah.edu/~rajeev/cs7960

2

Outline

• Processing-in-memory architecture
• Memrister

• Spiking neural network
• Neuromorphic accelerator

3

Data Access Overhead in Digital Computer

• Digital computer
• Fabricated MEM and ALU as separated

chips (Why?)
• Limited by # of I/O pads per chip and

off-chip interconnect channels
• High data access energy and latency
• Reuse and compress data to improve

in-efficient data access

4

Memory

SRAM
Bank

SRAM
Bank

ALU/ Digital
Processing

Processing Near Memory

• Near memory processing
• Computation is still in digital manner
• High bandwidth communication

in-between memory and ALU
• HMC and HBM 3D-stacked memory
• Eliminate data transfer costs
• Memory read energy dominates

5

Memory

SRAM
Bank

SRAM
Bank

ALU/ Digital
Processing

Processing in Memory

• Deep in-memory
• Combined memory access and

computation
• Mixed digital and analog computation
• Significant energy and latency

reduction
• DAC/ADC overhead and error-prone

operations

6

Memory

SRAM
Bank

Mixed signal
Processing

Processing Near Memory
• Bring compute closer to the high density memory
• Benefits

• Increase memory bandwidth
• Reduce energy per access

• Approaches
• Reduced interconnect length and wider interconnect
• Embedded DRAM (eDRAM), non-volatile (eNVM)

• Challenges
• Limited access patterns to allocate data to MEM banks and

vaults
• NoC between MEM and PEs

7

Dataflow in Processing in Memory (PIM)

• Brings the compute into the memory

• Weight-stationary dataflow
• WLs deliver inputs to

storage elements
• BLs read computed outputs

and partial sums
• MAC is performed at each

storage element
• In theory, A x B MAC

operations per cycle

8

Wordline

Bitline

DAC
Input

Activation
Memory

ADC
Partial sum/Output
activation memory

Storage
element in

weight memory

Challenges of PIM

• Number of storage elements per weight
• Limited precision of each device or bit cell
• Needs multiple low-precision storage element to represent a

higher precision weight

9

1 2 3 2
0 1 2 0
3 0 1 1
2 3 1 1

0 1 1 0 1 1 1 0
0 0 0 1 1 0 0 0
1 1 0 0 0 1 0 1
1 0 1 1 0 1 0 1

Decimal value Binary value

4

4 4

8

Challenges of PIM
• The size of memory array

• Large memory array increases the cost of peripheral circuit
• ADC and DAC can account for over 50% energy in NVM memory
• A large bitline capacitance is difficult to sense charge stored in the bit

cell
• Impact the utilization of memory array

10Sze et. al., Efficient-Processing-of-Deep-Neural-Networks, 2020

Challenges of PIM
• Number of rows activated in parallel

• ADC is hard to resolve many bits
• Hard to control bit line operations in advanced process

technologies
• If ADC is only 3-bits, only two rows can be used at a time. ->

more cycles to complete the computation

11Sze et. al., Efficient-Processing-of-Deep-Neural-Networks, 2020

Analog Acceleration

• Many electronic phenomena correspond to multiplication and
addition

• The example
• Compute the dot-product with the

3 wires and 2 resistors
• Each resistor injects a current that is

the product of V1 and G1
• By merging two wires and performing

addition of currents
• The dot-product is being performed in

the analog domain

12

Memristor Analog Computation

• Current-based non-volatile memory
• Conductance = weight
• Voltage amplitude = Input
• Current = Voltage x Conductance
• Sum currents for addition

• Input = V1, V2
• Filter Weight = G1, G2, …

13

V1

V2

Output = ∑ Weight x Input

Weight Stationary Dataflow

ISAAC, ISCA 2016

Crossbar for vector-matrix multiplication

• A grid of resistances and wires
• The input voltages are provided

on the wordlines (horizontal)
• These voltages are seen by

all the columns (bitlines)
• Each column represents a

different neuron
• Each column sees the same

set of inputs, but computes
a different dot-product

• Why ADC/DAC/S&H ?

14

Physical view of a memristor crossbar array

15

Memristor

• Metal-insulator-metal (MIM) structure
• The structure of a ReRAM cell

• ReRAM cell Switching states
• High resistance state (HRS)
• Low resistance state (LRS)
• Represent the logic “0” and “1”

16Chi et al., ISCA 2016

Memristor
• Current-voltage (I-V) bipolar switching

• SET operation: switching a cell from HRS (“0”)
to LRS (“1”)

• To SET the cell needs a positive voltage to
generate sufficient write current

• To RESET the cell, a negative voltage with
proper magnitude is necessary

• The endurance of ReRAM is 1012 > PCM 106-108

• ReRAM Crossbar structure
• Multi-layer crossbar structure
• Multi-level cell (MLC) -> 7-bit MLC ReRAM

with various levels of resistance

17

Threshold

Chi et al., ISCA 2016

Memristor Computation

• Use memristors as programmable weights (resistance)
• Advantages

• High Density (< 10 nm x 10 nm size)
• ~30 X smaller than SRAM
• 1.5 X smaller than DRAM

• Non-volatile
• Operates at low voltage
• Computation within memory (in situ)

• Reduce data movement

18Govoreanu et al., IEDM 2011

Challenge

• High ADC/DAC area/energy
• Expensive analog buffering
• Significant noise that accumulates across network layers
• Some ADC overheads increase exponentially with resolution
• Resolution increases with computational density

• The number of bits coming out of a bitline is
• A function of the bits of info in the voltage (v)
• The bits of info in the weight (w)
• The number of rows (R) being added
• To increase the parallelism and storage density, we want

high v, w, and R – expensive high-res ADC
19

ISAAC (Memristor)
• 16-bit dot-product operation

• 8 x 2-bit per memristors
• 1-bit per cycle computation
• Trade off area and cycles to address low precision

20
Shafiee et al., ISCA 2016

Input one bit at a time

• To bring v down to 1
• The grid of resistances is implemented with memristor cells

that are sandwiched between the horizontal and vertical
wires

• Provide 16 1-bit inputs over 16 cycles instead of producing a
16-bit input with a very precise voltage

• Every input is a single 0/1 value
• The multiplication and addition for each input bit is being

performed with the crossbar
• Results are aggregated with shift-and-adds

21

Spread the weights

• To reduce the value of w
• Not encode the entire 16-bit value as a precise conductance

in a cell
• Spread the weight across 8 memristor cells in one row
• Each cell is only responsible for 2 bits
• Help to bring w down to 2
• The outputs of 8 columns have to be shifted and added
• Low bits per cell is good for precision and for ADC efficiency

22

Few rows per crossbar

• To keep the value of R in check
• Small crossbars of size 128 x 128
• Requires to use many small crossbars
• If a neuron needs more than 128 inputs, it has to spread

across multiple crossbars
• Need to aggregate the partial sums from multiple crossbars

to get the final neuron value

23

Weight encoding

• To keep A in check
• 1-bit inputs at a time, 2-bit cells, and 128 rows – the

maximum dot-product value is 384 that requires a 9-bit ADC
• Most cases, the dot-product value is less than 256 – an 8-bit

ADC
• If the sum of all the weights is greater than 256 -> store the

bits in the flipped form
• Store a 0 for a 3, a 1 for a 2, and a 2 for a 1, and a 3 for a 0

24

ISAAC (Memristor)

• Eight 128 x 128 arrays per In-situ Multiply Accumulate
(IMA)

• 12 IMAs per Tile
• 14 x 12 tiles in ISAAC

25Shafiee et al., ISCA 2016

ISACC pipeline

• Example of one operation in a layer I flowing through its
pipeline

• Spatial pipelines – parts of the chip are hard-coded to execute
specific layers

• Latency impact is small (no batching required)

26

Solutions for analog computation challenges?

• High ADC/DAC area/energy
• 1-bit input at a time (small v)
• 2-bit cells (small w)
• Few rows per array (small R)
• Encoding tricks to produce small numbers
• Spread the computation across a single xBar, across multiple

xBars, and across time to reduce ADC size

27

Takeaway Questions

28

• What are challenges of analog computation?
• (A) ADC/DAC overhead
• (B) The inference of electronic noise
• (C) Low storage density on ReRAM

• What are results to bring voltage down to 1 in ReRAM?
• Improve the performance of the computation
• Reduce the overhead of ADC/DAC
• Results are aggregated with shift-and-adds

Spiking Neural Network

• Spiking neural network (SNN)
• SNNs are modeled after operations in the brain
• Spiking neurons have state and more features than the basic

ANN
• Sending spikes is more energy-efficient than sending 8b or

16b values around

• Biological neuron
• Input = dendrite; output = axon; connection = synapse
• The neuron fires when its potential reaches a threshold
• A single neuron may connect to > 10K other neurons; ~100

billion neurons in human brains; ~500 trillion synapses

29

The Spiking Approach

• Low energy for computation
• Only adds, no multiplies

• Low energy for communication
• Depends on spikes per signal

• Neurons have state
• Inputs arrive asynchronously, info in relative timing of spikes
• The spike trains potentially carry more information
• Have the potential for higher accuracy

30

Neuron Models

• Hodgkin and Huxley
• Took differential equations to quantify how ion flow impacts

neuron potential from many measurements
• There are different kinds of neurons that respond differently

to the same stimulus

• Izhikevich
• Summarize 20 different neuronal behaviors
• Biological architectures strive to efficiently emulate these 20

neuron types

31

LIF Model

• Leaky-integrate-fire (LIF) model
• When input spikes show up

• The potential is incremented/
decremented
based on the synaptic weight for that
input

• Linear LIF (LLIF) neuron model
• The increments/decrements are step

functions
• Unlike the smooth curves
• There’s a threshold potential, reset

potential, and a resting potential
(typically 0)

32

Rate vs. temporal codes

• Rate code
• Information is carried in terms of the frequency of spike
• Relative timing of spikes on two dendrites is irrelevant

• Temporal code
• Information is carried in terms of the exact time of a spike
• Time to first spike or a phase code

• Observation
• The same code can apply throughout a multi-layer network
• A new input is presented after a phase expires

33

Rate codes

• Rate code
• The first input to the neuron is carrying the value “red” with about

8 spikes per input window
• The input window is within consecutive blue lines
• The second input is carrying the value “blue” with 4 spikes per

window
• The rate of the input spikes dictates

• The potential rises
• How quickly it reaches the threshold
• The output spike rate

• The output frequency = w1 * input_freq1 + w2 * input_freq2

34

Temporal codes

• Temporal (Spike) code
• Reduce the spike rate (low computation and communication

energy)
• An output spike represents the tail end of a weighted cluster of

input spikes
• It’s not the good old ANN equation we understand
• New learning techniques will have to be developed
• At the moment, not much exists in this area

35

SNN Training

• SNN training
• SNNs can be trained with back-prop and rate coding

• Spike timing dependent plasticity (STDP)
• The increment/decrement values depend on when the input

spikes arrived
• If an input spike led to an output spike, that input’s weight is

increased
• If an input spike arrives soon after an output spike, that

input’s weight is decreased

36

STDP

• STDP is a form of unsupervised learning
• The weight adjustments occur

independently within each neuron
• Do not require labeled inputs
• Over time, some output neuron

gets trained to recognize a certain
pattern

• A post processing step
• Label that neuron as recognizing a certain

type of output

37www.scholarpedia.org

Neuromorphic Accelerator

• IBM TrueNorth
• 5.4 billion transistors
• Based on LLIF neuron model
• The spikes are processed in a

tick and arrive on the left
• The spike on A3 should be

seen by all the neurons that
are connected to that axon

• The grid is storing bits to
indicate if that input axon
is connected to that neuron

38

Neuromorphic Accelerator

• IBM TrueNorth
• Each point on the grid also

store the synaptic weight
for that connection

• Each neuron only stores 4
weights to save data storage

• Classified weights
• Strongly Excitatory (a weight

between 128 and 255)
• Weakly Excitatory (0 - 128)
• Weakly Inhibitory (-128 - 0)
• Strongly Inhibitory (-255 –

-128)
39

Neuromorphic Accelerator

• IBM TrueNorth
• Store a 2-bit value to indicate

which of the 4 weights they
should use

• To reduce the storage, all the
connections in a row share the
same 2-bit value

• An input axon will be strong
excitatory to all the neurons

40

TrueNorth Core (Axonal Approach)

41

TrueNorth Core (Dendritic)

• TrueNorth Core (Dendritic approach)
• Very low power per spike
• Compress weights with quantization
• Axon type sharing
• Use a mix of async. and sync. circuit
• Asynchronous circuit

• Rely on handshakes to wake up and
perform work when there is an input

• Sit idle and not burn power when there
is no work (like clock gating in sync.
circuit)

42

TrueNorth Core (Dendritic)

• TrueNorth Core (Dendritic approach)
• Use ultra high voltage (VT) transistor to

reduce leakage (might hurts cycle time)

• Asynchronous Circuit
• Router
• Scheduler
• Token Controller

• Synchronous Circuit
• Neuron block
• Dissipate power only when it receives

instructions from the token controller

43

TrueNorth Core (Dendritic)

• TrueNorth Core (Dendritic approach)
• Spikes are placed in a queue in the

scheduler when the scheduler receive
spikes

• An incoming spike may be processed in
the next tick (a tick is typically 1 ms) or
in one of the next 16 ticks

• The queue is broken into 16 pieces
• Each piece has a bit for one of the 256

axons (rows) in that core
• The incoming spike queue is a 256 x 16

bit vector

44

TrueNorth Core (Dendritic)

• TrueNorth Core (Dendritic approach)
• Every tick, the scheduler sends the list

of incoming spikes to the token
controller (along with axon types)

• Dendritic approach
• Sequentially walk through every neuron

and process all the dendrites (inputs)
for that neuron

• The token controller first reads all the
info for Neuron-1 from the core SRAM

• Core SRAM is a 410-bit field that stores
the 256 1-bit connection

45

TrueNorth Core (Dendritic)

• TrueNorth Core (Dendritic approach)
• The 256 a-bit connections are ANDed

with the incoming spike vector to see
if this neuron has any input spikes

• The token controller picks out the
correct weight and packs off an
instruction to the neuron block

• Once the token controller has dealt
with all input spikes for that neuron,
it sends off a final leak instruction

• The leak is added to the potential
• The generated spike is sent to the

router, the final potential is written
back to the core SRAM

46

Summary of TrueNorth

• Design Principle
• Focus on low power (speed is secondary)
• Low power with asynchronous circuits
• Low power with high-Vt circuits
• A dendritic approach leads to fewer SRAM reads/updates

and is more deterministic

47

Receiving Spikes

• Spikes arrive at the Scheduler
• Spikes are stored in a 256 x 16 SRAM grid to indicate axon

and time of the spike

• The token controller receives spikes in a tick
• It sequentially walks through 256 neurons
• The dendritic approach makes the latency and SRAM

accesses more deterministic
• It reads a 410-bit word from SRAM for that neuron
• Based on connectivity and input spikes, instructions are sent

to Neuron block

48

Neuron block

• Neuron block
• Neuron computations are performed here
• A leak is introduced every tick for every neuron
• After thresholding, a spike may be triggered
• Synchronous circuit

• It is only active when it receives instructions from the token
controller

49

TrueNorth Power Breakdown

• The chip is dissipating
• Roughly 65 mW in leakage and memory

all the time
• Computation/communication energy rises linearly

• The throughput of super-large TrueNorth
• A max throughput of ~60 giga-synaptic ops per second
• 100 times lower than DaDianNao that uses maybe 1/10 of transistors

over the TrueNorth
• No SIMD-ness, limited wiring, sequentially walks every neurons

50

TrueNorth Core (Dendritic)

• Dendritic approach
• More deterministic and lead to fewer SRAM accesses than

Axonic approach

• Axonic approach
• Walk through each input axon and increment the potentials

of the neurons connected to that axon
• Read neuron’s data structures multiple times

51

ML vs. Neuroscience

• In MICRO’15 paper by Du et al.:
• The accuracy

• Neuroscience-inspired approach (SNN + STDP) vs. machine
learning inspired approach (MLP + BP (Back-prop))

• The cost of hardware
• SNN vs. MLP

• When should a designer use hardware SNN or MLP ?
• Workload

• MNIST: 28 x 28 images
52

SNN models

• One layer with 300 neurons
• Each neuron receives inputs from all 784 pixels
• Weights are either 8b or 12b
• Use rate coding, but convert the 8-bit input value into

just 0-10 spikes
• Spike intervals are drawn from a Gaussian distribution
• Trained with STDP

53

MLP model

• 8b fixed-point weights, inputs, operators
• 784 input neurons, 100 neuron hidden layer, 10 neurons

in output layer
• Sigmoid activation function
• Training with back-propagation
• Use 8-bit precision for all computations

54

Accuracy on MNIST

• Accuracy of MLP with
100 hidden neurons

• 97.65%

• Accuracy of SNN + STDP
• 91.82% with 300 neurons
• Starting with SNN + STDP, but computing error function and applying

gradient descent -> 95.4%
• Most of the 6% gap can be bridged by using back-prop instead of STDP
• The rest can be attributed to be ANN’s better activation function and use high

precision math

55

Hardware complexity (MLP)

• MLP implementation (Expanded design)
• Every neuron has its own dedicated hardware
• Only work for small networks
• There is a multiple and register for every synapse, a multi-

input adder, and a look-up table for activation

56

Hardware complexity (SNN)

• SNNwot
• An encoder to convert the 8-bit pixel value into a number

between 0-10 spikes
• A simple 4bx12b multiplier at the neuron, followed by an

adder
• A max circuit to

figure out the
winning neuron
(max of potential
or spike)

57

Expanded Design vs. SNNwot

• The 4x12 multiplier (SNNwot) is 8x cheaper than 8x8 multiplier
(MLP)

• The SNN needs 3x more ALUs and storage than MLP because
SNN has more neurons

• SNN takes ~2x less area than MLP

58

Conclusion

• MLP achieves higher accuracy over SNN
• The gap of the accuracy can be bridged with

• Back-prop, sigmoid, better input encoding, etc.

• SNN has an advantage in on-line learning and for
spatially expanded designs

59

Takeaway Questions

60

• What does rate code carry spikes?
• (A) In terms of the exact time of a spike
• (B) In terms of the exact location of a spike

(C) In terms of the frequency of a spike
• How does Spike timing dependent plasticity (STDP) work?

• (A) If an input spike led to an output spike, that input’s weight is
decreased

• (B) The increment/decrement values depend on when the input spikes
arrived

• (C) If an input spike arrives soon after an output spike, that input’s
weight is increased

Takeaway Questions

61

• How to improve the accuracy of SNN + STDP?
• (A) Applying gradient descent
• (B) Using back-prop.
• (C) Using better activation

