Accelerator Architectures for Machine Learning

Lecture 11: Analog DNN Accelerators Friday: 1:20 – 4:20 pm Classroom: EC-221

Acknowledgements and Disclaimer

- Slides was developed in the reference with Joel Emer, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, ISCA 2019 tutorial Efficient Processing of Deep Neural Network, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, Morgan and Claypool Publisher, 2020
 Yakun Sophia Shao, EE290-2: Hardware for Machine Learning, UC Berkeley, 2020
 CS231n Convolutional Neural Networks for Visual Recognition, Stanford University, 2020
- CS7960, Neuromorphic Accelerator, University of Utah https://www.cs.utah.edu/~rajeev/cs7960

Outline

- Processing-in-memory architecture
 - Memrister
- Spiking neural network
 - Neuromorphic accelerator

Data Access Overhead in Digital Computer

Digital computer

- Fabricated MEM and ALU as separated chips (Why?)
- Limited by # of I/O pads per chip and off-chip interconnect channels
- High data access energy and latency
- Reuse and compress data to improve in-efficient data access

Processing Near Memory

Near memory processing

- Computation is still in digital manner
- High bandwidth communication
 in-between memory and ALU
- HMC and HBM 3D-stacked memory
- Eliminate data transfer costs
- Memory read energy dominates

Processing in Memory

• Deep in-memory

- Combined memory access and computation
- Mixed digital and analog computation
- Significant energy and latency reduction
- DAC/ADC overhead and error-prone operations

Processing Near Memory

• Bring compute closer to the high density memory

Benefits

- Increase memory bandwidth
- Reduce energy per access

Approaches

- Reduced interconnect length and wider interconnect
- Embedded DRAM (eDRAM), non-volatile (eNVM)

Challenges

- Limited access patterns to allocate data to MEM banks and vaults
- NoC between MEM and PEs

Dataflow in Processing in Memory (PIM)

- Brings the compute into the memory
- Weight-stationary dataflow
 - WLs deliver inputs to storage elements
 - BLs read computed outputs and partial sums
 - MAC is performed at each storage element
 - In theory, A x B MAC operations per cycle

Challenges of PIM

Number of storage elements per weight

- Limited precision of each device or bit cell
- Needs multiple low-precision storage element to represent a higher precision weight

Decimal value

Challenges of PIM

The size of memory array

- Large memory array increases the cost of peripheral circuit
- ADC and DAC can account for over 50% energy in NVM memory
- A large bitline capacitance is difficult to sense charge stored in the bit cell
- Impact the utilization of memory array

Sze et. al., Efficient-Processing-of-Deep-Neural-Networks, 2020 ¹⁰

Challenges of PIM

Number of rows activated in parallel

- ADC is hard to resolve many bits
- Hard to control bit line operations in advanced process technologies
- If ADC is only 3-bits, only two rows can be used at a time. -> more cycles to complete the computation

Analog Acceleration

Many electronic phenomena correspond to multiplication and addition

The example

- Compute the dot-product with the 3 wires and 2 resistors
- Each resistor injects a current that is the product of V1 and G1
- By merging two wires and performing addition of currents
- The dot-product is being performed in the analog domain

Memristor Analog Computation

- Current-based non-volatile memory
- Conductance = weight
- Voltage amplitude = Input
- Current = Voltage x Conductance
- Sum currents for addition

 $Output = \sum Weight x Input$

- Input = V1, V2
- Filter Weight = G1, G2, ...

Crossbar for vector-matrix multiplication

A grid of resistances and wires

- The input voltages are provided on the wordlines (horizontal)
- These voltages are seen by all the columns (bitlines)
- Each column represents a different neuron
- Each column sees the same set of inputs, but computes a different dot-product
- Why ADC/DAC/S&H ?

Physical view of a memristor crossbar array

Memristor

• Metal-insulator-metal (MIM) structure

- The structure of a ReRAM cell
- ReRAM cell Switching states
 - High resistance state (HRS)
 - Low resistance state (LRS)
 - Represent the logic "0" and "1"

16

Memristor

Current-voltage (I-V) bipolar switching

- SET operation: switching a cell from HRS ("0") to LRS ("1")
- To SET the cell needs a positive voltage to generate sufficient write current
- To RESET the cell, a negative voltage with proper magnitude is necessary
- The endurance of ReRAM is 10^{12} > PCM 10^{6} - 10^{8}

ReRAM Crossbar structure

- Multi-layer crossbar structure
- Multi-level cell (MLC) -> 7-bit MLC ReRAM with various levels of resistance

Voltage

Chi et al., ISCA 2016

Memristor Computation

• Use memristors as programmable weights (resistance)

Advantages

- High Density (< 10 nm x 10 nm size)
- ~30 X smaller than SRAM
- 1.5 X smaller than DRAM
- Non-volatile
- Operates at low voltage
- Computation within memory (in situ)
 - Reduce data movement

Challenge

High ADC/DAC area/energy

- Expensive analog buffering
- Significant noise that accumulates across network layers
- Some ADC overheads increase exponentially with resolution
- Resolution increases with computational density

The number of bits coming out of a bitline is

- A function of the bits of info in the voltage (v)
- The bits of info in the weight (w)
- The number of rows (R) being added
- To increase the parallelism and storage density, we want high v, w, and R expensive high-res ADC

ISAAC (Memristor)

16-bit dot-product operation

- 8 x 2-bit per memristors
- 1-bit per cycle computation
- Trade off area and cycles to address low precision

Shafiee et al., ISCA 2016

Input one bit at a time

• To bring v down to 1

- The grid of resistances is implemented with memristor cells that are sandwiched between the horizontal and vertical wires
- Provide 16 1-bit inputs over 16 cycles instead of producing a 16-bit input with a very precise voltage
- Every input is a single 0/1 value
- The multiplication and addition for each input bit is being performed with the crossbar
- Results are aggregated with shift-and-adds

Spread the weights

To reduce the value of w

- Not encode the entire 16-bit value as a precise conductance in a cell
- Spread the weight across 8 memristor cells in one row
- Each cell is only responsible for 2 bits
- Help to bring w down to 2
- The outputs of 8 columns have to be shifted and added
- Low bits per cell is good for precision and for ADC efficiency

Few rows per crossbar

To keep the value of R in check

- Small crossbars of size 128 x 128
- Requires to use many small crossbars
- If a neuron needs more than 128 inputs, it has to spread across multiple crossbars
- Need to aggregate the partial sums from multiple crossbars to get the final neuron value

Weight encoding

• To keep A in check

- 1-bit inputs at a time, 2-bit cells, and 128 rows the maximum dot-product value is 384 that requires a 9-bit ADC
- Most cases, the dot-product value is less than 256 an 8-bit ADC
- If the sum of all the weights is greater than 256 -> store the bits in the flipped form
 - Store a 0 for a 3, a 1 for a 2, and a 2 for a 1, and a 3 for a 0

ISAAC (Memristor)

- Eight 128 x 128 arrays per In-situ Multiply Accumulate (IMA)
- 12 IMAs per Tile
- 14 x 12 tiles in ISAAC

Shafiee et al., ISCA 2016

ISACC pipeline

- Example of one operation in a layer I flowing through its pipeline
 - Spatial pipelines parts of the chip are hard-coded to execute specific layers
 - Latency impact is small (no batching required)

Solutions for analog computation challenges?

High ADC/DAC area/energy

- 1-bit input at a time (small v)
- 2-bit cells (small w)
- Few rows per array (small R)
- Encoding tricks to produce small numbers
- Spread the computation across a single xBar, across multiple xBars, and across time to reduce ADC size

Takeaway Questions

- What are challenges of analog computation?
 - (A) ADC/DAC overhead
 - (B) The inference of electronic noise
 - (C) Low storage density on ReRAM
- What are results to bring voltage down to 1 in ReRAM?
 - Improve the performance of the computation
 - Reduce the overhead of ADC/DAC
 - Results are aggregated with shift-and-adds

Spiking Neural Network

Spiking neural network (SNN)

- SNNs are modeled after operations in the brain
- Spiking neurons have state and more features than the basic ANN
- Sending spikes is more energy-efficient than sending 8b or 16b values around

Biological neuron

- Input = dendrite; output = axon; connection = synapse
- The neuron fires when its potential reaches a threshold
- A single neuron may connect to > 10K other neurons; ~100 billion neurons in human brains; ~500 trillion synapses

The Spiking Approach

Low energy for computation

Only adds, no multiplies

Low energy for communication

Depends on spikes per signal

Neurons have state

- Inputs arrive asynchronously, info in relative timing of spikes
- The spike trains potentially carry more information
- Have the potential for higher accuracy

Neuron Models

Hodgkin and Huxley

- Took differential equations to quantify how ion flow impacts neuron potential from many measurements
- There are different kinds of neurons that respond differently to the same stimulus

Izhikevich

- Summarize 20 different neuronal behaviors
- Biological architectures strive to efficiently emulate these 20 neuron types

LIF Model

Leaky-integrate-fire (LIF) model

When input spikes show up

 The potential is incremented/ decremented based on the synaptic weight for that input

• Linear LIF (LLIF) neuron model

- The increments/decrements are step functions
- Unlike the smooth curves
- There's a threshold potential, reset potential, and a resting potential (typically 0)

Rate vs. temporal codes

Rate code

- Information is carried in terms of the frequency of spike
- Relative timing of spikes on two dendrites is irrelevant

Temporal code

- Information is carried in terms of the exact time of a spike
- Time to first spike or a phase code

Observation

- The same code can apply throughout a multi-layer network
- A new input is presented after a phase expires

Rate code

Rate codes

- The first input to the neuron is carrying the value "red" with about 8 spikes per input window
- The input window is within consecutive blue lines
- The second input is carrying the value "blue" with 4 spikes per window
- The rate of the input spikes dictates
 - The potential rises
 - · How quickly it reaches the threshold
 - The output spike rate
- The output frequency = w1 * input_freq1 + w2 * input_freq2

Temporal codes • Temporal (Spike) code

- Reduce the spike rate (low computation and communication energy)
- An output spike represents the tail end of a weighted cluster of input spikes
- It's not the good old ANN equation we understand
- New learning techniques will have to be developed
- At the moment, not much exists in this area

SNN Training

SNN training

• SNNs can be trained with back-prop and rate coding

Spike timing dependent plasticity (STDP)

- The increment/decrement values depend on when the input spikes arrived
- If an input spike led to an output spike, that input's weight is increased
- If an input spike arrives soon after an output spike, that input's weight is decreased

STDP

STDP is a form of unsupervised learning

- The weight adjustments occur independently within each neuron
- Do not require labeled inputs
- Over time, some output neuron gets trained to recognize a certain pattern
- A post processing step
 - Label that neuron as recognizing a cert type of output

Neuromorphic Accelerator

IBM TrueNorth

- 5.4 billion transistors
- Based on LLIF neuron model
- The spikes are processed in a tick and arrive on the left
- The spike on A3 should be seen by all the neurons that are connected to that axon
- The grid is storing bits to indicate if that input axon is connected to that neuron

Neuromorphic Accelerator

IBM TrueNorth

- Each point on the grid also store the synaptic weight for that connection
- Each neuron only stores 4 weights to save data storage
- Classified weights
 - Strongly Excitatory (a weight between 128 and 255)
 - Weakly Excitatory (0 128)
 - Weakly Inhibitory (-128 0)
 - Strongly Inhibitory (-255 -128)

Neuromorphic Accelerator

IBM TrueNorth

- Store a 2-bit value to indicate which of the 4 weights they should use
- To reduce the storage, all the connections in a row share the same 2-bit value
- An input axon will be strong excitatory to all the neurons

TrueNorth Core (Axonal Approach)

- Very low power per spike
- Compress weights with quantization
- Axon type sharing
- Use a mix of async. and sync. circuit
- Asynchronous circuit
 - Rely on handshakes to wake up and perform work when there is an input
 - Sit idle and not burn power when there is no work (like clock gating in sync. circuit)

TrueNorth Core (Dendritic approach)

• Use ultra high voltage (VT) transistor to reduce leakage (might hurts cycle time)

Asynchronous Circuit

- Router
- Scheduler
- Token Controller

Synchronous Circuit

- Neuron block
- Dissipate power only when it receives instructions from the token controller

- Spikes are placed in a queue in the scheduler when the scheduler receive spikes
- An incoming spike may be processed in the next tick (a tick is typically 1 ms) or in one of the next 16 ticks
- The queue is broken into 16 pieces
- Each piece has a bit for one of the 256 axons (rows) in that core
- The incoming spike queue is a 256 x 16 bit vector

- Every tick, the scheduler sends the list of incoming spikes to the token controller (along with axon types)
- Dendritic approach
 - Sequentially walk through every neuron and process all the dendrites (inputs) for that neuron
- The token controller first reads all the info for Neuron-1 from the core SRAM
- Core SRAM is a 410-bit field that stores the 256 1-bit connection

- The 256 a-bit connections are ANDed with the incoming spike vector to see if this neuron has any input spikes
- The token controller picks out the correct weight and packs off an instruction to the neuron block
- Once the token controller has dealt with all input spikes for that neuron, it sends off a final leak instruction
- The leak is added to the potential
- The generated spike is sent to the router, the final potential is written back to the core SRAM

Summary of TrueNorth

Design Principle

- Focus on low power (speed is secondary)
- Low power with asynchronous circuits
- Low power with high-Vt circuits
- A dendritic approach leads to fewer SRAM reads/updates and is more deterministic

Receiving Spikes

Spikes arrive at the Scheduler

• Spikes are stored in a 256 x 16 SRAM grid to indicate axon and time of the spike

The token controller receives spikes in a tick

- It sequentially walks through 256 neurons
- The dendritic approach makes the latency and SRAM accesses more deterministic
- It reads a 410-bit word from SRAM for that neuron
- Based on connectivity and input spikes, instructions are sent to Neuron block

Neuron block

Neuron block

- Neuron computations are performed here
- A leak is introduced every tick for every neuron
- After thresholding, a spike may be triggered
- Synchronous circuit
 - It is only active when it receives instructions from the token controller

TrueNorth Power Breakdown

- The chip is dissipating
 - Roughly 65 mW in leakage and memory all the time
- 94mW 68mW 71mW 11.58Hz 20.07Hz 95.93Hz Leak Memory Computation Communication
- Computation/communication energy rises linearly

The throughput of super-large TrueNorth

- A max throughput of ~60 giga-synaptic ops per second
- 100 times lower than DaDianNao that uses maybe 1/10 of transistors over the TrueNorth
- No SIMD-ness, limited wiring, sequentially walks every neurons

Dendritic approach

 More deterministic and lead to fewer SRAM accesses than Axonic approach

Axonic approach

- Walk through each input axon and increment the potentials of the neurons connected to that axon
- Read neuron's data structures multiple times

ML vs. Neuroscience

• In MICRO'15 paper by Du et al.:

The accuracy

 Neuroscience-inspired approach (SNN + STDP) vs. machine learning inspired approach (MLP + BP (Back-prop))

The cost of hardware

- SNN vs. MLP
- When should a designer use hardware SNN or MLP ?
- Workload
 - MNIST: 28 x 28 images

SNN models

- One layer with 300 neurons
- Each neuron receives inputs from all 784 pixels
- Weights are either 8b or 12b
- Use rate coding, but convert the 8-bit input value into just 0-10 spikes
- Spike intervals are drawn from a Gaussian distribution
- Trained with STDP

MLP model

- 8b fixed-point weights, inputs, operators
- 784 input neurons, 100 neuron hidden layer, 10 neurons in output layer
- Sigmoid activation function
- Training with back-propagation
- Use 8-bit precision for all computations

Accuracy on MNIST

- Accuracy of MLP with 100 hidden neurons
 - 97.65%
- Accuracy of SNN + STDP
 - 91.82% with 300 neurons

- Starting with SNN + STDP, but computing error function and applying gradient descent -> 95.4%
- Most of the 6% gap can be bridged by using back-prop instead of STDP
- The rest can be attributed to be ANN's better activation function and use high precision math

Hardware complexity (MLP)

MLP implementation (Expanded design)

- Every neuron has its own dedicated hardware
- Only work for small networks
- There is a multiple and register for every synapse, a multiinput adder, and a look-up table for activation

Hardware complexity (SNN)

SNNwot

- An **encoder** to convert the 8-bit pixel value into a number between 0-10 spikes
- A simple 4bx12b **multiplier** at the neuron, followed by an **Adder**
- A max circuit to figure out the winning neuron (max of potential or spike)

Expanded Design vs. SNNwot

- The 4x12 multiplier (SNNwot) is 8x cheaper than 8x8 multiplier (MLP)
- The SNN needs 3x more ALUs and storage than MLP because SNN has more neurons
- SNN takes ~2x less area than MLP

Table 5: Hardware Characteristics of SNN (4x4-20) and MLP (4x4-10-10).

Type	Area (mm^2)	Delay (ns)	Power (W)	Energy (nJ)
SNN	0.08	1.18	0.52	0.63
MLP	0.21	1.96	0.64	1.28

Conclusion

- MLP achieves higher accuracy over SNN
- The gap of the accuracy can be bridged with
 Back-prop, sigmoid, better input encoding, etc.
- SNN has an advantage in on-line learning and for spatially expanded designs

Takeaway Questions

- What does rate code carry spikes?
 - (A) In terms of the exact time of a spike
 - (B) In terms of the exact location of a spike
 (C) In terms of the frequency of a spike
- How does Spike timing dependent plasticity (STDP) work?
 - (A) If an input spike led to an output spike, that input's weight is decreased
 - (B) The increment/decrement values depend on when the input spikes arrived
 - (C) If an input spike arrives soon after an output spike, that input's weight is increased

Takeaway Questions

- How to improve the accuracy of SNN + STDP?
 - (A) Applying gradient descent
 - (B) Using back-prop.
 - (C) Using better activation