|‘ . =
y R

e

" Accelerator g
& Architectures for
y Machine Learning

R
i

L]

Lecture 11: Analog DNN
Accelerators

Friday: 1:20 —4:20 pm
Classroom: EC-221

Acknowledgements and Disclaimer

* Slides was developed in the reference with
Joel Emer, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, ISCA 2019 tutorial
Efficient Processing of Deep Neural Network, Vivienne Sze, Yu-Hsin Chen, Tien-Ju
Yang, Joel Emer, Morgan and Claypool Publisher, 2020
Yakun Sophia Shao, EE290-2: Hardware for Machine Learning, UC Berkeley, 2020

CS231n Convolutional Neural Networks for Visual Recognition, Stanford University,
2020

e CS7960, Neuromorphic Accelerator, University of Utah
https://www.cs.utah.edu/~rajeev/cs7960

Outline

* Processing-in-memory architecture
* Memrister

« Spiking neural network
« Neuromorphic accelerator

Data Access Overhead in Digital Computer

* Digital computer
« Fabricated MEM and ALU as separated
chips (Why?)
* Limited by # of I/O pads per chip and
off-chip interconnect channels
» High data access energy and latency

* Reuse and compress data to improve
in-efficient data access

ALU/ Digital
Processing

Processing Near Memory

 Near memory processing
« Computation is still in digital manner

* High bandwidth communication
iIn-between memory and ALU

« HMC and HBM 3D-stacked memory
 Eliminate data transfer costs
 Memory read energy dominates

ALU/ Digital
Processing

Processing in Memory

* Deep in-memory
« Combined memory access and
computation
* Mixed digital and analog computation

« Significant energy and latency
reduction

* DAC/ADC overhead and error-prone
operations Processing

Memory

SRAM
Bank

Processing Near Memory

* Bring compute closer to the high density memory

- Benefits
* Increase memory bandwidth
* Reduce energy per access

 Approaches
* Reduced interconnect length and wider interconnect
« Embedded DRAM (eDRAM), non-volatile (eNVM)

* Challenges
 Limited access patterns to allocate data to MEM banks and
vaults
* NoC between MEM and PEs

Dataflow in Processing in Memory (PIM)

* Brings the compute into the memory

« Weight-stationary dataflow Wordline
* WLs deliver inputs to Limg %—» Fk—» O
storage elements Input
» BLs read computed outputs | Activation | 8|8 (BB
and partial sums Memory
« MAC is performed at each 88— (8= B
storage element
. In theory, Ax B MAC /" 2 B B
operations per cycle e . Bitline
i Storage | v i)
i elementin | ADC
E weight memory E Partial sum/Output
Lo e ' activation memory

Challenges of PIM

 Number of storage elements per weight
« Limited precision of each device or bit cell

* Needs multiple low-precision storage element to represent a
higher precision weight

4 3

3|2
210
)
111
111

NTW| O |

R |IL[|O|O

ol |O|r
~lo|lo|r

0 1
1 0
0 1
1 1

OO0 |O |+
RO |O

2 1
1 1
0 0
3 0

Decimal value Binary value

Challenges of PIM

* The size of memory array
« Large memory array increases the cost of peripheral circuit
« ADC and DAC can account for over 50% energy in NVM memory
A large bitline capacitance is difficult to sense charge stored in the bit

cell
* Impact the utilization of memory array < A=8 o
1 1|2(3]2]|4
2 0[1(2]0
0 3000 11
3 2 PRI
B=8
Y
Elomen DI

Sze et. al., Efficient-Processing-of-Deep-Neural-Networks, 2020 10

Challenges of PIM

 Number of rows activated in parallel
« ADC is hard to resolve many bits

« Hard to control bit line operations in advanced process
technologies

* If ADC is only 3-bits, only two rows can be used at a time. ->
more cycles to complete the computation

input fmap filter psum psum
(current cycle) (accumulated)

12 (32

t-0 [1]2] x 011210 — [1]a]7][2 1 al7]2

t=1>< = | 6|93 |3 711310 | 5

final psum
Sze et. al., Efficient-Processing-of-Deep-Neural-Networks, 2020 !

Analog Acceleration

* Many electronic phenomena correspond to multiplication and
addition

 The example Vi1

« Compute the dot-product with the
3 wires and 2 resistors

« Each resistor injects a current that is

the product of V1 and G1 V2
« By merging two wires and performing

addition of currents

* The dot-product is being performed in
the analog domain

G1

11 =V1.GXT

G2

2=v26¥|, e

V V1.G1 + V2.G2

12

Memristor Analog Computation

: Weight Stationary Dataflow
» Current-based non-volatile memory g Y

» Conductance = weight V1=

G1
* Voltage amplitude = Input "
1 = V1xG1
* Current = Voltage x Conductance V2 =
« Sum currents for addition G2
Output = > Weight x Input 12 = V2xG2
 Input = V1, V2 l
- Filter Weight = G1, G2, ... =11+ 12

=V1xG1 + V2xG2

ISAAC, ISCA 2016 13

Crossbar for vector-matrix multiplication

A grid of resistances and wires

* The input voltages are provided
on the wordlines (horizontal)

* These voltages are seen by
all the columns (bitlines)

« Each column represents a
different neuron

« Each column sees the same
set of inputs, but computes
a different dot-product

- Why ADC/DAC/S&H ?

DAC

DAC

DAC

DA

|

S&H‘

S&H‘

S&H‘

S&H

ADC

14

Physical view of a memristor crossbar array

[cell

Driver circuits in silicon substrate

15

Memristor

* Metal-insulator-metal (MIM) structure 0 Voltage
* The structure of a ReRAM cell ,

« ReRAM cell Switching states
 High resistance state (HRS)
 Low resistance state (LRS)

* Represent the logic “0” and “1”

Top Electrode

Metal Oxide

Bottom Electrode

Chi et al., ISCA 2016 16

Memristor

 Current-voltage (I-V) bipolar switching

« SET operation: switching a cell from HRS (“0")
to LRS (“17)

« To SET the cell needs a positive voltage to
generate sufficient write current

« To RESET the cell, a negative voltage with
proper magnitude is necessary

 The endurance of ReRAM is 1012 > PCM 106-108
* ReRAM Crossbar structure

» Multi-layer crossbar structure

« Multi-level cell (MLC) -> 7-bit MLC ReRAM
with various levels of resistance

Current

LRS (1"} >
SET
HRS (‘0’)
P /'""'i
! Threshold !
RESET L____e_si_?__dl_:
Voltage
Wordline

¥ 5 3

$ $ é Cell

g

8/ 5

Chi et al., ISCA 2016

17

Memristor Computation

» Use memristors as programmable weights (resistance)

 Advantages
« High Density (< 10 nm x 10 nm size)
« ~30 X smaller than SRAM
« 1.5 X smaller than DRAM

* Non-volatile
* Operates at low voltage

« Computation within memory (in situ)

 Reduce data movement

Govoreanu et al., IEDM 2011 18

Challenge

* High ADC/DAC areal/energy

« Expensive analog buffering

« Significant noise that accumulates across network layers

« Some ADC overheads increase exponentially with resolution
» Resolution increases with computational density

* The number of bits coming out of a bitline is
* A function of the bits of info in the voltage (v)
 The bits of info in the weight (w)
« The number of rows (R) being added
* To increase the parallelism and storage density, we want
high v, w, and R — expensive high-res ADC

19

ISAAC (Memristor)

* 16-bit dot-product operation
« 8 X 2-bit per memristors
* 1-bit per cycle computation
 Trade off area and cycles to address low precision

| 1-bit | Ibit o 2-bit & 2-bit] 2-bit Fagf 2-bit 1o 2-bit [2-bit] 2:bit
iter;t?onsl 1-bit | bit N 2-bit [2-bit lf 2-bit [2-bit [2-bit Ff 2-bit Jag] 2-&[
| 1-bit bit] 2-bit | 2-bit fec] 2-bit] 2-bit feef 2-bit Fwf 2-bit e 2-bit

1-bit -bit % 2-bit % 2-bi -bit (%] 2-bit %] 2-bit %] 2-bit & 2-bit
] (N g ; (N (N (N (N
S&H I S&H I S&H ' S&H

| Input Neurons \

Shift & ADD Shafiee et al., ISCA 2016 20

Input one bit at a time

* To bring v down to 1

* The grid of resistances is implemented with memristor cells
that are sandwiched between the horizontal and vertical
wires

* Provide 16 1-bit inputs over 16 cycles instead of producing a
16-bit input with a very precise voltage

« Every input is a single 0/1 value

« The multiplication and addition for each input bit is being
performed with the crossbar

» Results are aggregated with shift-and-adds

21

Spread the weights

* To reduce the value of w

* Not encode the entire 16-bit value as a precise conductance
In a cell

« Spread the weight across 8 memristor cells in one row

« Each cell is only responsible for 2 bits

* Help to bring w down to 2

* The outputs of 8 columns have to be shifted and added
 Low bits per cell is good for precision and for ADC efficiency

22

Few rows per crossbar

* To keep the value of R in check
« Small crossbars of size 128 x 128
* Requires to use many small crossbars

* [f a neuron needs more than 128 inputs, it has to spread
across multiple crossbars

* Need to aggregate the partial sums from multiple crossbars
to get the final neuron value

23

Weight encoding

* To keep A in check

 1-bit inputs at a time, 2-bit cells, and 128 rows — the
maximum dot-product value is 384 that requires a 9-bit ADC

* Most cases, the dot-product value is less than 256 — an 8-bit
ADC

* If the sum of all the weights is greater than 256 -> store the
bits in the flipped form

e StoreaOfora3,al1fora2, anda2fora1,anda3foral0

24

ISAAC (Memristor)

* Eight 128 x 128 arrays per In-situ I\/Iultlply Accumulate
(IMA) { * """"""" TIE T

- 12 IMAs per Tile = ey = o
_ _ | U Y N—" W—[— 5 Buffer |l (S+A)
*14 x 12 tiles in ISAAC (7)) (7)) - |.M4|.M4I|.M4|.m4'

O GG e s
EXTERNALIOINTERFACE. = . orsrrcro
: CHIP(NODE) __________ : v-«
B el titer . “In- Sltu Multiply Accumulate
OR - Output Register g ‘&’ XB b= XB g
MP - Max Pool Unit (=) o A :
S+A — Shift and Add . [S+H ser] L IR] §
6 - Sigmoid Unit § ADC||
S _Sampleand o | [SEN [SN
() (] :
DAC - Digital to Analog . |S+H S+H y:

ADC - Analog to Digital R SN, o= ST v

Shafiee et al., ISCA 2016 25

ISACC pipeline

« Example of one operation in a layer | flowing through its
pipeline
« Spatial pipelines — parts of the chip are hard-coded to execute
specific layers
 Latency impact is small (no batching required)

Cyc 1 2 3 4 .. 17 18 19 20 21 22
eDRAM|| Xbar || Xbar || Xbar Xbar .
Rd+IR|| 1 2 3 || 16 || ADC || >*A || S*A || & |leDRAN

OR wr || OR wr Wr

Tile IMA IMA IMA IMA IMA IMA Tile Tile Tile

26

Solutions for analog computation challenges?

* High ADC/DAC areal/energy

 1-bit input at a time (small v)

« 2-bit cells (small w)

* Few rows per array (small R)

* Encoding tricks to produce small numbers

» Spread the computation across a single xBar, across multiple
xBars, and across time to reduce ADC size

27

Takeaway Questions

* What are challenges of analog computation?
* (A) ADC/DAC overhead
* (B) The inference of electronic noise
* (C) Low storage density on ReRAM

* What are results to bring voltage down to 1 in ReRAM?

* Improve the performance of the computation
* Reduce the overhead of ADC/DAC
» Results are aggregated with shift-and-adds

28

Spiking Neural Network

* Spiking neural network (SNN)
« SNNs are modeled after operations in the brain

« Spiking neurons have state and more features than the basic
ANN

« Sending spikes is more energy-efficient than sending 8b or
16b values around
* Biological neuron
* Input = dendrite; output = axon; connection = synapse
* The neuron fires when its potential reaches a threshold

* A single neuron may connect to > 10K other neurons; ~100
billion neurons in human brains; ~500 trillion synapses

29

The Spiking Approach

* Low energy for computation
« Only adds, no multiplies

* Low energy for communication
* Depends on spikes per signal

* Neurons have state
* Inputs arrive asynchronously, info in relative timing of spikes
* The spike trains potentially carry more information
« Have the potential for higher accuracy

30

Neuron Models

* Hodgkin and Huxley

 Took differential equations to quantify how ion flow impacts
neuron potential from many measurements

» There are different kinds of neurons that respond differently
to the same stimulus

* Izhikevich

« Summarize 20 different neuronal behaviors

» Biological architectures strive to efficiently emulate these 20
neuron types

31

LIF Model

» Leaky-integrate-fire (LIF) model
* When input spikes show up

* The potential is incremented/
decremented
based on the synaptic weight for that
input

 Linear LIF (LLIF) neuron model

* The increments/decrements are step
functions

* Unlike the smooth curves

» There’s a threshold potential, reset
potential, and a resting potential

(typically 0)

Membrane
Potential

Leak = Exponential

| | |
time
111 1 | LLLL

Rate vs. temporal codes

* Rate code
* Information is carried in terms of the frequency of spike
 Relative timing of spikes on two dendrites is irrelevant

* Temporal code
 Information is carried in terms of the exact time of a spike
 Time to first spike or a phase code

* Observation
* The same code can apply throughout a multi-layer network
* A new input is presented after a phase expires

33

Rate codes . !||||||!||||m|!

* Rate code
 The first input to the neuron is carrying the value “red” with about
8 spikes per input window
* The input window is within consecutive blue lines

* The second input is carrying the value “blue” with 4 spikes per
window
* The rate of the input spikes dictates
* The potential rises
« How quickly it reaches the threshold
* The output spike rate

* The output frequency = w1 * input_freg1 + w2 * input_freq2

34

Temporal codes L O

* Temporal (Spike) code
* Reduce the spike rate (low computation and communication

energy)

* An output spike represents the tail end of a weighted cluster of
Input spikes

* It's not the good old ANN equation we understand

* New learning techniques will have to be developed

* At the moment, not much exists in this area

35

SNN Training

* SNN training
« SNNs can be trained with back-prop and rate coding
* Spike timing dependent plasticity (STDP)

* The increment/decrement values depend on when the input
spikes arrived

* |If an input spike led to an output spike, that input’'s weight is
Increased

* If an input spike arrives soon after an output spike, that
iInput’s weight is decreased

36

STDP

« STDP is a form of unsupervised learning

* The weight adjustments occur e
iIndependently within each neuron f“?)

* Do not require labeled inputs %@wﬁ |1

» Over time, some output neuron m;t
gets trained to recognize a certain
pattern

A post processing step

 Label that neuron as recognizing a cert
type of output

before post 37
www.scholarpedia.org

Neuromorphic Accelerator

 IBM TrueNorth

* 5.4 billion transistors
« Based on LLIF neuron model

» The spikes are processed in a
tick and arrive on the left

* The spike on A3 should be
seen by all the neurons that
are connected to that axon

* The grid is storing bits to
indicate if that input axon
is connected to that neuron

Input
spikes

LR Ai, A3

ﬁ

1 N

dt

Axons Crossbar Synapses Type

+

Decode
I

i
1] IN2] INs
—

Axon Activity A(1) /

\S‘elect & Encode Sync

time

N,
N,

Output
spikes

38

Neuromorphic Accelerator

Axons Crossbar Synapses Type

 IBM TrueNorth

- Each point on the grid also gt / =
store the synaptic weight N :
for that connection — | S | [

« Each neuron only stores 4 S lar
weights to save data storage

» Classified weights
« Strongly Excitatory (a weight

J
Axon Activity A(1) /
i

between 128 and 255) o : v [[~
« Weakly Excitatory (0 - 128) a < 11 I Y
+ Weakly Inhibitory (-128 - 0) ¢ \Sekect & Encoce - Sync

dt
. Strongly Inhibitory (-255 — — o
-128) time :

39

Neuromorphic Accelerator

Axons Crossbar Synapses Type

 IBM TrueNorth

- Store a 2-bit value to indicate e, /_ =
which of the 4 weights they T :
should use — | E [

- To reduce the storage, all the S lar
connections in a row share the
same 2-bit value

« An input axon will be strong

J
Axon Activity A(1) /
i

excitatory to all the neurons EI ” s | s] [w,
= s I I x
4 \Select & Encode/ Sync

dt
> N, Output
. N, spikes
time :

40

TrueNorth Core (Axonal Approach)

KxN Synapses

N Neurons

Name Description Range
.. Connection 0,1
H between axon
j and neuron i
G}_ Axon type 0,1, 2
S0.2 | Synapse -256
: values to 255
L. Leak -256
)
to 255
2] Threshold 1to
’ 256

41

TrueNorth Core (Dendritic)

* TrueNorth Core (Dendritic approach)

* Very low power per spike

« Compress weights with quantization
» Axon type sharing

« Use a mix of async. and sync. circuit
* Asynchronous circuit

» Rely on handshakes to wake up and
perform work when there is an input

 Sit idle and not burn power when there
is no work (like clock gating in sync.
circuit)

42

TrueNorth Core (Dendritic)

* TrueNorth Core (Dendritic approach)

« Use ultra high voltage (VT) transistor to
reduce leakage (might hurts cycle time)

« Asynchronous Circuit
* Router
» Scheduler
» Token Controller

* Synchronous Circuit

 Neuron block

 Dissipate power only when it receives
instructions from the token controller

43

TrueNorth Core (Dendritic)

* TrueNorth Core (Dendritic approach)

» Spikes are placed in a queue in the
scheduler when the scheduler receive
spikes

« An incoming spike may be processed in
the next tick (a tick is typically 1 ms) or
in one of the next 16 ticks

* The queue is broken into 16 pieces

« Each piece has a bit for one of the 256
axons (rows) in that core

* The incoming spike queue is a 256 x 16
bit vector

44

TrueNorth Core (Dendritic)

* TrueNorth Core (Dendritic approach)

 Every tick, the scheduler sends the list
of incoming spikes to the token
controller (along with axon types)

« Dendritic approach

« Sequentially walk through every neuron
and process all the dendrites (inputs)
for that neuron

 The token controller first reads all the
info for Neuron-1 from the core SRAM

 Core SRAM is a 410-bit field that stores
the 256 1-bit connection

TrueNorth Core (Dendritic)

* TrueNorth Core (Dendritic approach)

* The 256 a-bit connections are ANDed
with the incoming spike vector to see
if this neuron has any input spikes

* The token controller picks out the
correct weight and packs off an
instruction to the neuron block

* Once the token controller has dealt
with all input spikes for that neuron,
it sends off a final leak instruction

* The leak is added to the potential

* The generated spike is sent to the
router, the final potential is written
back to the core SRAM

46

Summary of TrueNorth

* Design Principle
« Focus on low power (speed is secondary)
* Low power with asynchronous circuits
* Low power with high-Vt circuits

A dendritic approach leads to fewer SRAM reads/updates
and is more deterministic

47

Receliving Spikes

» Spikes arrive at the Scheduler

» Spikes are stored in a 256 x 16 SRAM grid to indicate axon
and time of the spike

* The token controller receives spikes in a tick
* |t sequentially walks through 256 neurons

* The dendritic approach makes the latency and SRAM
accesses more deterministic

* |t reads a 410-bit word from SRAM for that neuron

« Based on connectivity and input spikes, instructions are sent
to Neuron block

48

Neuron block

* Neuron block
« Neuron computations are performed here
* A leak is introduced every tick for every neuron
« After thresholding, a spike may be triggered

e Synchronous circuit

* It is only active when it receives instructions from the token
controller

49

94mW
68mwW 71mW

=
TrueNorth Power Breakdown £
S
* The Chlp is dISSIpatlng 11.58Hz 20.07Hz 95.93Hz
* Roughly 65 m\W in leakage and memory o Mertiony
all the time Computation Communication

« Computation/communication energy rises linearly

* The throughput of super-large TrueNorth
« A max throughput of ~60 giga-synaptic ops per second

* 100 times lower than DaDianNao that uses maybe 1/10 of transistors
over the TrueNorth

* No SIMD-ness, limited wiring, sequentially walks every neurons

50

TrueNorth Core (Dendritic)

* Dendritic approach
 More deterministic and lead to fewer SRAM accesses than
Axonic approach
* Axonic approach

» Walk through each input axon and increment the potentials
of the neurons connected to that axon

 Read neuron’s data structures multiple times

51

ML vs. Neuroscience

* In MICRO’15 paper by Du et al.:

* The accuracy

* Neuroscience-inspired approach (SNN + STDP) vs. machine
learning inspired approach (MLP + BP (Back-prop))

* The cost of hardware
« SNN vs. MLP

* When should a designer use hardware SNN or MLP ?

* Workload
« MNIST: 28 x 28 images

52

SNN models

* One layer with 300 neurons
« Each neuron receives inputs from all 784 pixels
* Weights are either 8b or 12b

» Use rate coding, but convert the 8-bit input value into
just 0-10 spikes

» Spike intervals are drawn from a Gaussian distribution
 Trained with STDP

53

MLP model

* 8b fixed-point weights, inputs, operators

* 784 input neurons, 100 neuron hidden layer, 10 neurons
In output layer

» Sigmoid activation function
* Training with back-propagation
» Use 8-bit precision for all computations

54

Accuracy on MNIST

 Accuracy of MLP with = 877 e
100 hidden neurons g 2 ool e
e 97.65% &3 B - / —e— SNN
* Accuracy Of SNN + STDP 10 15 20 30 4050 80100 300 500 800
* 91.82% with 300 neurons - e o PTeuren Tt

 Starting with SNN + STDP, but computing error function and applying
gradient descent -> 95.4%

* Most of the 6% gap can be bridged by using back-prop instead of STDP

* The rest can be attributed to be ANN’s better activation function and use high
precision math

55

Hardware complexity (MLP)

 MLP implementation (Expanded design)
» Every neuron has its own dedicated hardware
* Only work for small networks

* There is a multiple and register for every synapse, a multi-
input adder, and a look-up table for activation

56

Hardware complexity (SNN)

* SNNwot

 An encoder to convert the 8-bit pixel value into a number
between 0-10 spikes

* A simple 4bx12b multiplier at the neuron, followed by an

adder l:’iml(:onvertor — Neurons MAX
» A max circuit to _ wallace
figure out the e JI‘ I_\c_ltilfr N
winning neuron - (9-4) J e | oo
(max of potential L=t
or spike) .
— | [Register

57

Expanded Design vs. SNNwot

* The 4x12 multiplier (SNNwot) is 8x cheaper than 8x8 multiplier
(MLP)

* The SNN needs 3x more ALUs and storage than MLP because
SNN has more neurons

« SNN takes ~2x less area than MLP

Table 5: Hardware Characteristics of SNN (4x4-20)
and MLP (4x4-10-10).

Type Area (mm?) Delay (ns) Power (W) Energy (nJ)
SNN 0.08 1.18 0.52 0.63
MLP 0.21 1.96 0.64 1.28

58

Conclusion

* MLP achieves higher accuracy over SNN

* The gap of the accuracy can be bridged with
» Back-prop, sigmoid, better input encoding, etc.

* SNN has an advantage in on-line learning and for
spatially expanded designs

59

Takeaway Questions

* What does rate code carry spikes?
* (A) In terms of the exact time of a spike

 (B) In terms of the exact location of a spike
(C) In terms of the frequency of a spike

* How does Spike timing dependent plasticity (STDP) work?

* (A) If an input spike led to an output spike, that input’s weight is
decreased

* (B) The increment/decrement values depend on when the input spikes
arrived

e (C) If an input spike arrives soon after an output spike, that input’s
weight is increased

60

Takeaway Questions

* How to improve the accuracy of SNN + STDP?
* (A) Applying gradient descent
* (B) Using back-prop.
* (C) Using better activation

61

