
Accelerator
Architectures for

Machine Learning
Lecture 1: Course Introduction

Tsung Tai Yeh
Tuesday: 3:30 – 6:20 pm

Classroom: ED-302

1

Acknowledgements and Disclaimer
• Slides was developed in the reference with

Joel Emer, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, ISCA 2019 tutorial
Efficient Processing of Deep Neural Network, Vivienne Sze, Yu-Hsin Chen, Tien-Ju
Yang, Joel Emer, Morgan and Claypool Publisher, 2020
Yakun Sophia Shao, EE290-2: Hardware for Machine Learning, UC Berkeley, 2020
CS231n Convolutional Neural Networks for Visual Recognition, Stanford University,
2020

2

Outline

• Course overview
• References and text books
• Schedule
• Rating
• AI Accelerator basics

3

Course overview

• Instructor: Tsung Tai Yeh
• TA team+:

• Zhi-Duan Jiang
• Lecture: T789
• Location: ED-302
• Office Hour: 5 – 6 pm Monday
• My Office: EC 707
• Course web site:

• https://reurl.cc/q0z7K0

Course website QR Code

Discussion Forum

• Students should join our class discord
discussion forum

• Discord forum
• Course Announcement
• Lab
• Final Project

5

Discord Forum QR Code

Course overview

• Efficient Inference
• Basics of Deep Learning
• Quantization + Model Pruning

• AI Accelerator
• Digital/Analog AI Accelerators

• Edge AI Acceleration
• TinyML Acceleration Architecture

• Lecture + laboratory
• Class lecture + 5 labs

6

ML Model
Program/Language

System Software
SW/HW Interface

Micro-architecture
Logic

Circuits

Intended Lecture Outcomes (ILOs)

• AAML Course Intended Lecture Outcomes
• Understanding the construction of DNN models
• Describing details of AI accelerators
• Implementing dataflow AI accelerator on Google CFU

Playground
• Designing AI accelerator to improve the performance of

DNN models

7

What will you need to do in this course?
• Paper presentation (5%)

• Groups of students present paper
• Paper summary writing

• 5 Lab projects (55%) , Lab 1-2 (5%), Lab3-5 (15%)
• Google CFU Playground

• 2 Quiz (10%)
• 1 Final Project (30%)

• Optimize a Deep Neural Network Model on CFU Playground
• Rule: 2 – 3 people/group

8

Prerequisites
• Courses:

• Basic Programming , Computer Organization, Advanced Computer
Architecture

• You should:
• Basic understanding of computer architecture and digital logic

design
• Comfortable with programming in C/C++, Verilog and Python

9

Lecture

• Class lecture
• This lecture also covers three topics about AI accelerators

and DNN models
• Lecture (2 hours)– summarize course materials of each

topic
• Lab preview or paper presentation (1 hour)
• Lecture materials have shown on the class website

10

Lab
• Platform

• Google CFU Playground on Nexys A7-100T FPGA Board
• Overview of AAML Labs

• Build CFU + Run a model
• CFU + (SIMD + Quantization)
• Systolic Array Implementation (Verilog)
• CFU + systolic array
• Double buffing on systolic array

CFU Playground

• Google CFU Playground
• TensorFlow Lite for

Microcontrollers (TFLM)
• RISC-V CPU +

Custom Function
Unit

• Simulation on FPGA

12

Lab

• One lab every two weeks
• Lab 1-2 takes 5% each, 3-5 takes 15% each

• Lab Demo
• Biweekly demonstration
• Time: 5:20 – 6:20 pm on Tuesday
• Location: ED 302 or EC222

13

Final Project

• The final project take 30% score
• Problem:

• How to optimize a Deep Neural Network Model on CFU
Playground

• Designing an AI accelerator to improve the performance of a DNN
model by using CFU playground

14

Paper Presentation

• Paper Presentation
• 7 papers, 4 - 5 students are responsible for the

presentation of one paper
• Peer review feedback form – students need to fulfill 10

times attendance, 1% score off when you less than 10
times attendance

• Each paper presentation takes 5 % of the total score

15

Paper Presentation Slide

• The paper presentation slide should include:
• Paper Title
• The origin of the paper and year
• Name of presenters
• Research problems
• Contributions and outcome
• Methodology
• Evaluation

16

Schedule

17

Textbook
• Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, Efficient

Processing of Deep Neural Network, Morgan and Claypool Publisher,
2020

• You can download the e-book from NYCU library through EBSCOhost
E-book database within NYCU campus

18

Basics of AI Accelerators

Outline

• Dennard Scaling vs Dark Silicon
• Artificial Neural Network (ANN)
• Spiking Neural Network (SNN)
• Neuromorphic architectures
• Digital vs Analog Accelerators

20

Why do we need accelerators ?

• Previously
• We focused on designing general-purpose processors

• Why do accelerators have become attractive in recent years?
• Dennard Scaling has ended

• Dennard Scaling allowed voltage to shrink with transistor size
• Without Dennard Scaling, we need to find other ways to keep power in check

• Dark Silicon
• Not turn on all transistors on the chip
• The success of application’s accelerators (encryption, compression …)
• Applications only use subset of processors/accelerators at a time, such a

heterogeneous architecture meets dark silicon phenomenon
21

Why Deep Neural Network become popular?
• DNN model outperforms human-being on the ImageNet Challenge

https://arxiv.org/ftp/arxiv/papers/1911/1911.05289.pdf

22

No free lunch on DNN computation
• AlexNet to AlphaGo Zero: A 300,000 x Increase in Compute

https://arxiv.org/ftp/arxiv/papers/1911/1911.05289.pdf 23

Co
m

pu
ta

tio
n

Po
w

er

Hardware trends

• Stagnant single and multi-thread performance on general-
purpose cores

• Why the emphasis on accelerators ?
• Dark silicon (emphasis on power-efficient throughput)
• End of scaling

• Emergence of machine learning
• Accelerators consumes silicon area and expensive
• Facilitate the pervasive of hardware acceleration as machine

learning emerges as a solution for “everything”.

24

Commercial Hardware for Machine Learning

• Google TPU (inference and training)
• Nvidia Tensor/transformer cores (Ampere, Hopper)
• Microsoft Brainwave and Catapult
• Intel Loihi NPU
• Cambricon
• Graphcore (training)
• Cerebras (Training)
• Tesla (FSD, Dojo)
• … 25

Increasing transistors is not getting efficient

General purpose
processor is not getting

faster and power-efficient
because of

Slowdown of Moore’s
Law and Dennard Scaling

26

Dennard Scaling
• Dennard scaling allowed voltage to shrink with transistor size

• E.g. 180 nm -> 1.8 V, 130 nm -> 1.3 V
• All 4 cores (45 nm) can be worked in full speed
• Could all 8 cores (28 nm) be worked in full speed, too ? Why ?

27

Power = alpha x CFV2

alpha: percent time
switched
C: capacitance
F: Frequency
V: Voltage

1. Typically, the transistor size reduces K (~1.4) times
2. In the same chip area, the number of transistor

increases K2 times, the frequency increases K times
3. The size of capacitance shrinks K times as the reduction

of transistor size, and the voltage reduces K2 times
4. So, we can boost performance of the chip without any

compensation of the power

Voltage threshold of MOSFET

• Temperature affects the value of VGS and ID
• Ta = 25 d, ID = 1A and Ta = 75 d, ID = 1.5 A when

fixing VGS

• Due to VGS (TH) constraint, difficult to keep
reducing voltage to be proportional to
the transistor size below
28 nm

28

N N

s D
G VGS

Nch MOSFET https://techweb.rohm.com.tw/knowledge/si/s-si/03-s-si/5277

What can we do ?

• Dark silicon
• Below 28 nm, the voltage is hard to be

changed
• K2 (transistor size) x frequency (K) v.s. K times capacitance size
• The power increases K2 times
• Therefore, not turn on all transistor on the chip
• What is the percentage of inactive transistors ?
• 20 nm: 33%, 16 nm: 45%, 10 nm: 56%, 7 nm: 75%, 5 nm: 80%

• Dim silicon
• Turn all transistor on at low clock speeds

29

Power = alpha x CFV2

alpha: percent time
switched
C: capacitance
F: Frequency
V: Voltage

Heterogeneous SoC

Domain-specific
Accelerators

Domain-specific
AcceleratorsCPU

2019 Apple A12
7 nm TSMC 83 mm2

42 accelerators

2014 Apple A8
20 nm TSMC 89 mm2

28 accelerators

2010 Apple A4
65 nm TSMC 53 mm2

4 accelerators https://edge.seas.harvard.edu/files/edge/files/alp.pdf 30

• Post-Moore era and dark silicon
• A suite of accelerators on chip are rising
• Applications will only use a subset of processors/accelerators at a time
• Such a heterogeneous architecture is compatible with dark silicon

Artificial Neural Network (ANN)
• Most machine learning algorithms

• Perceptron or artificial neuron
• Receiving synchronous inputs, and performs math, then produce outputs
• Measuring the “strength” (z) of weighted inputs
• Z = x1 * w1 + x2 * w2 where (x is the input of the neuron, w is the weight

(determined by training))
• Activation function a = f(z) to decide if

a neuron should fire or not
• Training performs back-propagation

with gradient descent

31
Multilayer perceptrons (MLPs)

https://arxiv.org/pdf/2005.01467.pdf

Probability:
0.8

Probability:
0.3

Spiking Neural Network (SNN)

• Spiking neurons resembles chemical reactions in our brains
• A neuron has a certain potential that represents inputs received
• The potential rises and falls depending on the relative importance

of those inputs and leaks away when no receiving inputs
• When the potential

reaches a threshold,
the neuron fires

• All inputs/outputs are
in the form of binary
spikes

32
https://www.researchgate.net/figure/A-Schematic-of-a-spiking-neural-network-consisting-of-an-array-of-plastic-synapses_fig1_342414706

ANN vs. SNN

• ANN
• Perceptron, 8-bit or 16-bit multiplications, complex activation

functions
• High accuracy, supervised learning (inference and training)

• SNN
• Don’t achieve very high accuracies, not well understood
• A neuron has state that is a more powerful construct for applications

that have a notion of time, e.g. video and language analysis
• Carry a large amount of information in a few bits
• Unsupervised learning

33

Uncover Your Brain

• The computer as a brain that comprises specialized accelerators
• Low power – the brain consumes only about 20W
• Fault tolerant – the brain loses neurons all the time

https://askabiologist.asu.edu/sites/default/files/resources/articles/nervous_journey/brain-regions-areas.gif 34

2400 kcal/24 hr = 100 kcal/hr = 27.8 cal/
sec = 116.38 J/s = 116 W
20% x 116 W = 23.3 W

Yang, Eric. Think Dinner. Mac
Evolution, 1998

Neuromorphic architectures

• Architectures inspired by neuron behavior
• Two major flavors

• Artificial Neural Network (ANN)
• Operations on perceptrons

• Spiking Neural Network (SNN)
• Mimic operations in the brain

• Two major implementation styles
• Digital
• Analog

35

Neuromorphic Hardware

• Emulating the human brain
• Low power – the brain consumes only 20 W
• Fault tolerant – the brain loses neurons all the time
• No programming required – the brain learns by itself

• Examples:
• SpiNNaker, Spikey, TrueNorth

36

Digital vs. Analog
• A single analog device

• Perform multiple multi-bit operations
• Analog has challenges, e.g., noise/precision
• The current in a wire or the charge in a

capacitor represent a rational number
• Perform addition by merging the currents in two wires
• Multiplication can be represented by the current that emerges when

a voltage is applied to a conductor
• Instability as temperature changes, currents change

• Digital device
• Use CMOS transistors and gates, exclusively deal with 0s and 1s 37

ISAAC, ISCA 2016

Crossbar for vector-matrix multiplication

• A grid of resistances and horizontal
and vertical wires

• The input voltages are provided on the
horizontal wires (wordlines)

• Each column represents a different neuron
• Each column computes a different dot-

product based on conductances in that column
• Analog current is sent through an analog-to-

digital converter (ADC). Why ?
• S&H is the sample-and-hold circuit that

feeds signals sequentially to the ADC

38

ISAAC, ISCA 2016

Challenges of analog devices
• High ADC/DAC area/energy

• Long stay in analog needs expensive analog buffering, introduces
significant noise that accumulates across network layers

• Some ADC overheads increase exponentially with resolution
• The number of bits coming out of a bitline is a function of the bits of info

in the voltage (v)
• The bits of info in the weight (w)
• The number of rows (R) being added

• To increase the parallelism and storage density – high v, w, and R
• Demanding an expensive high-resolution ADC

• SNN is amenable to analog, why ?

39

Digital (I) GPU

https://www.nvidia.com/en-us/data-center/a100/

Nvidia V100 GPU (2019) Nvidia A100 GPU (2020)

Transistor count 21 billion 54 billion

FP32 performance 15.7 TFLOP/s 19.5 TFLOP/s

Tensor FP32 125 TFLOP/s 156 TFLOP/s

TDP 300 W 250 W

Die size 815 mm2 862 mm2

TSMC 12 nm TSMC 7 nm

2.57 X
1.24 X
1.25 X

40

Digital (II) Google Tensor Processing Unit (TPU)
• Systolic-array accelerator

• V1: Inference only
• V2: Training with bfloat
• V3: 2X powerful than v2

• Edge TPU
• Coral Dev Board
• 4 TOPS
• 2 TOPS/Watt
• Support TensorFlow Lite

41
https://coral.ai/products/

https://cloud.google.com/tpu/docs/tpus

Digital (III) Cerebras: Wafer-Scale DL Engine

• Largest DL Chip Ever Built!!
• 46225 mm2 (WoW !!)
• 1.2 trillion transistor
• 400,000 optimized AI

cores
• 18 GB on-chip memory
• TSMC 16 nm process

https://twitter.com/CerebrasSystems/status/1163443985714753537
42

In summary
• Learning from History

• Neural network (NN) booms, but fades away when it ceases to be
fashionable -> support vector machines (SVM) took over

• General-purpose processors and GPU quickly outpace ASICs

• Today
• NNs > SVM
• GPPs and GPUs will stagnate in performance, but ML is hot
• ML accelerators (hardware + ML software perspective) include

many implementation operations
• Neuroscience + emerging technology

43

Takeaway Questions

• What does dark silicon tell us ?
• (A) We should turn all transistor on at low clock speeds
• (B) We cannot turn on all transistors on a chip
• (C) Allowed voltage to shrink with transistor size

• Why does SNN have the potential for low-energy
computations and communication ?

• (A) SNN is in the form of binary spikes
• (B) Not involve in multiplications or complex activation functions
• (C) Skipping connections

44

Takeaway Questions

• What are the challenges of analog accelerators ?
• (A) High ADC/DAC area and energy
• (B) Limited parallelism
• (C)Non-programmable

45

Deep Neural Networks

Outline

• Challenges of Deep Learning
• Non-linear activation
• Gradient vanishing/exploding problem
• Batch normalization
• Feed forward/Backpropagation

47

Deep Neural Networks

• Deep vs. Shallow
• Learn simple features in early layers
• More complex features in subsequent layers
• Instead of recognizing an object with a single magical neuron

48

CONV
Layer

1-3
Layers

High-Level
FeatureCONV

Layer
FC

Layer
…

Classes
Deep CNN: 5 – 1000 Layers

Low-Level
Feature

Multilayer
perceptrons (MLPs)

Probabili
ty: 0.8

Probabili
ty: 0.3

Deep Neural Network

• A deep neural network
• Learn simple features in early layers
• More complex features in subsequent layers

• Gradient vanishing
• Small gradients are propagated through the last layer to the

initial layer in the backpropagation.
• Activation function leads to gradient vanishing

• The derivative is close to 0 when the inputs are fairly large or small
• No update in weights of lower layer

• Potential solutions
• Change activation function
• Batch normalization 49https://debuggercafe.com/neural-networks-the-problem-of-vanishing-gradients/

Deep learning challenges

• The creation of trainable deep networks
• Vanishing/exploding gradients

• Different learning rates for different layers to reduce this problem
• Early layers may have slow learning rate

• Picking the correct activation function
• Good initialization of weights

• The choice of weights and activation functions can impact learning rates

• Choice of network architecture, hyper-parameters, etc.

50

Deep networks for image classification

• Image classification is one of success stories for deep learning
• MNIST

• 784-pixel hand-written image digits; 50K training, 10K testing images

• ILSVRC
• 1000 categories, 1.2

million training images
150K test images

• Top-5 criterion
• Make 5 best guesses if one of

these matches the label, the
prediction is deemed accurate 51https://arxiv.org/ftp/arxiv/papers/1911/1911.05289.pdf

MNIST datasetILSVRC dataset

Linear Classification
• Parametric approach

• x: input image (CIFAR-10 input is the array of 32 x 32 x 3)
• W: weights (each class has its specific weights, CIFAR-10 has 10

classes -> CIFAR-10 weight has (32 x 32 x 3) x 10)
• b: bias (fine-tuning the model)

52

Linear Classification

• Linear classifiers get weights (W) from training sets
• Weights contain properties of each class

53

How to Initialize Weights in Practice?
• Zero initialization

• What happen if weights are initialized with 0 number ?
• Undergo the exact same parameter updates
• No source of asymmetry between neurons
• How about weights are initialized with 1 number? -> symmetry breaking

• Random initialization
• If weights have very large/small random numbers, what’s wrong?

• The slope of gradient changes slowly and learning takes a lot of time

• Calibrating the variances
• W = np.random.randn(n) / sqrt(n), where n is the number of its input
• Ensure all neurons in the network initially have approximately the same

output distribution -> improve the rate of convergence
https://cs231n.github.io/neural-networks-2/#init

54

What is bias in neural networks?

• Bias shifts activation function to better fit the data
• Why can we initialize the biases to be zero?

• The asymmetry breaking is provided by the small random numbers in weights

• The bias only impacts the output values
• A node with a large bias, the output value tends to be high
• Negative bias value -> sigmoid outputs are near to 0
• Very small bias (or 0) -> weights and inputs dominate the outputs

• Could we set bias value to 0 initially?

Output = activation_function(dot_product(weights, inputs) + bias)

55

Loss Function
• The difference between the correct and predicted data
• We want to set weights during training
• Making the predicted scores are consistent with the ground

true labels in the training data.

• Mean Square Error (MSE):
• Cross Entropy:

56

X Network Y’ Y^
e: distance

Predicted
data

Labeled
data

Overfitting on DNN Training
• Generalization problem: how well the model maintains the accuracy

between training and unseen data (testing dataset)
• Overfitting: Low error rates in the training, but high error rates in the

test data

• Our goal doesn’t create a model only fitting the training data
• We want to create a model targets for new data

https://medium.com/greyatom/what-is-underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-6803a989c76

57

How to Fix Overfitting
• How to help the generalization in the training results?

• Large, diverse dataset
• Regularization: adding constraints to the model during training

such as smoothness, prior distribution

https://medium.com/greyatom/what-is-underfitting-and-overfitting-in-machine-learning-and-how-to-deal-with-it-6803a989c76
58

Regularization

• To overcome the overfitting problem
• Adding the magnitude of the penalty (P) in all parameters
• L1 regularization

• For each weight, add ƛw to the objective
• Weight vectors become sparse (very close to exactly 0)
• Using only a sparse subset of their most important inputs

• L2 regularization
• For each weight, adding 1/2 ƛw2 to the objective
• Heavy penalizing peaky to diffuse weight vectors (small number)
• Not remove improper features, but rather minimize their impacts

https://cs231n.github.io/neural-networks-2/#init

59

What is the dropout in NN training?
• A simple approach to prevent neural networks from overfitting
• Turning off neurons with a predetermined probability p (e.g. 50%)

while training
• Every iteration uses different

sample of the models’
parameters -> robust features

• Does the dropout reduce the
training time? Why?

• Increase training time
• Wait for model’s convergence

https://cs231n.github.io/neural-networks-2/#init

60

Learning in Deep Networks

• When training deep networks
• The early layers may have a very slow learning rate (why?)

• Vanishing gradient problem
• Exploding gradient problem

• Early layers learn much faster than later layers

• The unstable gradient problem
• The learning rates of different layers tend to be wildly different

61

Non-linear Neuron matters?
• Linear function

• A change in the first variable corresponds to a constant change in the second
variable

• Y = az, where a is a constant value

• Problems
• The linear function alone doesn’t

capture complex patterns
• No support backpropagation (Why?)

• The derivative of the function is a constant
• Collapse relations in each layer

• The last layer is the linear function of the
first one

62

https://srnghn.medium.com/deep-learning-overview-of-
neurons-and-activation-functions-1d98286cf1e4

Non-Linear activation function in NN
• Activation function

• Determine whether the neuron
should be “fired” or not

• Non-linearity -> Help for solving
complex problems

• Rectified Linear Units (ReLU)
• Y(x) = max {0, x}

• How to choose a proper
activation function in NN
models?

• Automatic activation function
selection ?

https://drive.google.com/file/d/154Y_n81-gpFy_cyHXSdeu9btOlus_o-7/view
63

Pros and Cons of activation functions
Sigmoid Hyperbolic Tangent ReLU

Advantages Advantages Advantages
1. Smooth gradient:
prevent jumps in outputs

1. Zero centered: help for
inputs having diff features

1. Computationally
efficient

2. Bounded outputs:
between 0 and 1,
normalizing outputs

2. Non-linear: its derivative
function allows for
backpropagation

Disadvantages Disadvantages Disadvantages
1. Vanishing gradient: no
changes for very high or
low value of inputs

1. Like Sigmoid 1. Dying ReLU: wreck the
backpropagation in zero
and negative inputs
(gradient results = 0)

https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/

64

Gradient vanishing problem
• Gradient vanishing problem

• Small gradients are propagated through the last layer to the initial layer in the
backpropagation.

• These small gradients cause the weights in lower layer are not updated (Why?)

• Gradient vanishing in Sigmoid function
• When the inputs are fairly large or small
• The derivative becomes close to 0
• Such small gradients -> no update in lower

layer weights
• Problem is worse in deep network (Why?)

• Solutions
• Change activation function
• Batch normalization

https://debuggercafe.com/neural-networks-the-problem-of-vanishing-gradients/
65

Gradient exploding problem
• Large gradient propagates through layers in a neural network
• The model loss will be NaN during training
• Solutions

• Gradient clipping
• Limits the magnitude of the

gradient
• SGD without gradient clipping

overshoots the landscape to
minimum

• SGD with gradient clipping
descends into the minimum

Ian Goodfellow et. al, “Deep Learning”, MIT press, 2016

66

Training stability and accuracy further
• The low accuracy of the trained model without normalizing data
• What is the data normalization?

• Data matrix [N x D] (N: the number of data, D is their dimensions)
• Changing scales of data dimensions to the common ones

• When do we need to normalize data?
• Only when features have different ranges

• How?
Without normalized data With normalized data

https://medium.com/@urvashilluniya/why-data-normalization-is-necessary-for-machine-learning-models-681b65a05029

67

Backpropagation in training
• Minimize the cost function by adjusting network’s weights and biases
• Tuning the weights by using gradient descent

• A weight is updated by the partial derivative of loss with respect to the weight

• The gradient indicates how the weights should change to reduce the loss
• The process is repeated iteratively to reduce the overall loss

• What are impacts of high learning rate?
• A high learning rate increases the step size at each iteration
• Help speed up the training
• Result in overshooting the minimum
• Cause the optimization to not converge

ɑ is the learning rate

68

Data normalization
• Why do we need to normalize data?
• Without distorting differences in the ranges of values
• Zero-centered: subtracting mean from each of the data point
• Normalize each dimension, the min/max along the dimension is -1 and 1

https://cs231n.github.io/neural-networks-2/#init

69

Batch Normalization (BN)
• Provide neural network inputs with

zero mean/unit variance
• Adjusting activations in each batch

(one batch includes multiple data)
• Subtract the batch mean and divide

by the batch standard deviation
• Place BN in the front/back of activation?

• BN in the front end: avoid saturation region
• Small batch size?

• No representative mean/sigma -> bad perf.
• How to initialize gamma and beta?

• Gamma = 1, beta = 0 (Why?)
https://arxiv.org/pdf/1502.03167v3.pdf

70

Batch normalization - benefits

• Accelerating the training speed
• Avoid exploding/vanishing gradients
• Help sigmoid/tanh activation function (trainable network)
• Reduce the impact of initialization
• Reduce the overfitting to increase the accuracy of trained models
• Increasing the learning rate after using BN? Why?

71

A Simple Feed-forward Neural Network

• What is the neth1 and outh1 ?
• Activation function is logistic function

72

Weight sum(netx)

Activation (outx)

i1

i2

.05

.10
b1
.35

o1

o2

h1

h2

b2
.60

.15w1

.20w2

.25w3

.30w4

.40w5

.45w6

.50w7

.55w6

.01

.99

neth1 = w1 * i1 + w2 * i2 + b1
= 0.15 x 0.05 + 0.2 x 0.1 + 0.35
= 0.3775

Outh1 = 1/1+e^-neth1
= 1/1+e^(-0.3775)
= 0.5933

The backward Pass
• What is the value of w5 ?

73

Weight sum(netx)

Activation (outx)

i1

i2

.05

.10
b1
.35

o1

o2

h1

h2

b2
.60

.15w1

.20w2

.25w3

.30w4

.40w5

.45w6

.50w7

.55w6

.01

.99

Calculating Total Error

• Using squared error function (E)
• What is E01, E02, Etotal ?

74

Weight sum(netx)

Activation (outx)

i1

i2

.05

.10
b1
.35

o1

o2

h1

h2

b2
.60

.15w1

.20w2

.25w3

.30w4

.40w5

.45w6

.50w7

.55w6

.01

.99

Eo1 = ½(targeto1 – outo1) ^2
= ½(0.01 – 0.7513)^2
= 0.2748

Etotal = E01 + E02

Takeaway Questions

• What can impact the learning rates ?
• (A) The selection of datasets
• (B) Activation function
• (C) The size of inputs

• What are potential solutions to avoid the gradient vanishing
problem ?

• (A) Changing activation function
• (B) Using low learning rate
• (C) Batch normalization

75

