### Accelerator Architectures for Architectures for Machine Learning Lecture 1: Course Introduction Tsung Tai Yeh Tuesday: 3:30 – 6:20 pm Classroom: ED-302

1

# Acknowledgements and Disclaimer

 Slides was developed in the reference with Joel Emer, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, ISCA 2019 tutorial Efficient Processing of Deep Neural Network, Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, Morgan and Claypool Publisher, 2020
 Yakun Sophia Shao, EE290-2: Hardware for Machine Learning, UC Berkeley, 2020
 CS231n Convolutional Neural Networks for Visual Recognition, Stanford University, 2020

## Outline

- Course overview
- References and text books
- Schedule
- Rating
- AI Accelerator basics

### Course overview

- Instructor: Tsung Tai Yeh
- TA team<sup>+</sup>:
  - Zhi-Duan Jiang
- Lecture: T789
- Location: ED-302
- Office Hour: 5 6 pm Monday
- My Office: EC 707
- Course web site:
  - https://reurl.cc/q0z7K0



Course website QR Code

### **Discussion Forum**

- Students should join our class discord discussion forum
- Discord forum
  - Course Announcement
  - Lab
  - Final Project



#### Discord Forum QR Code

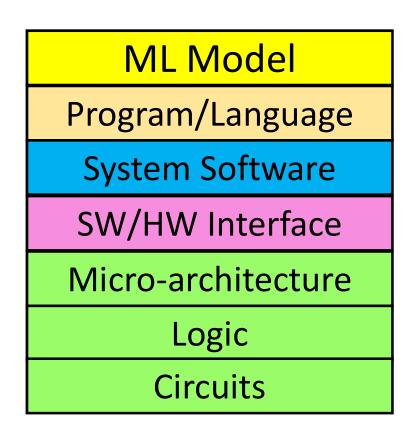
### Course overview

#### • Efficient Inference

- Basics of Deep Learning
- Quantization + Model Pruning

#### AI Accelerator

- Digital/Analog AI Accelerators
- Edge AI Acceleration
  - TinyML Acceleration Architecture
- Lecture + laboratory
  - Class lecture + 5 labs



# Intended Lecture Outcomes (ILOs)

- AAML Course Intended Lecture Outcomes
  - Understanding the construction of DNN models
  - **Describing** details of AI accelerators
  - Implementing dataflow AI accelerator on Google CFU Playground
  - **Designing** AI accelerator to improve the performance of DNN models

# What will you need to do in this course?

- Paper presentation (5%)
  - Groups of students present paper
  - Paper summary writing
- 5 Lab projects (55%), Lab 1-2 (5%), Lab3-5 (15%)
  - Google CFU Playground
- 2 Quiz (10%)
- 1 Final Project (30%)
  - Optimize a Deep Neural Network Model on CFU Playground
  - Rule: 2 3 people/group

### Prerequisites

#### • Courses:

 Basic Programming , Computer Organization, Advanced Computer Architecture

#### • You should:

- Basic understanding of computer architecture and digital logic design
- Comfortable with programming in C/C++, Verilog and Python

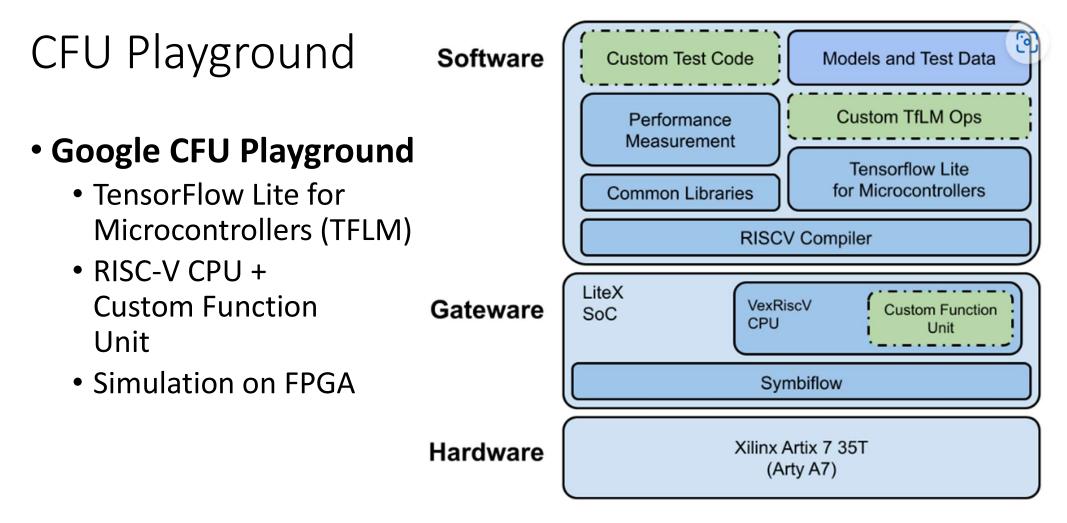
### Lecture

#### Class lecture

- This lecture also covers three topics about AI accelerators and DNN models
- Lecture (2 hours) summarize course materials of each topic
- Lab preview or paper presentation (1 hour)
- Lecture materials have shown on the class website

### Lab

- Platform
  - Google CFU Playground on Nexys A7-100T FPGA Board
- Overview of AAML Labs
  - Build CFU + Run a model
  - CFU + (SIMD + Quantization)
  - Systolic Array Implementation (Verilog)
  - CFU + systolic array
  - Double buffing on systolic array



CFU Playground Overview

### Lab

- One lab every two weeks
  - Lab 1-2 takes 5% each, 3-5 takes 15% each
- Lab Demo
  - Biweekly demonstration
  - Time: 5:20 6:20 pm on Tuesday
  - Location: ED 302 or EC222

# Final Project

- The final project take 30% score
- Problem:
  - How to optimize a Deep Neural Network Model on CFU Playground
  - Designing an AI accelerator to improve the performance of a DNN model by using CFU playground

Paper Presentation

#### Paper Presentation

- 7 papers, 4 5 students are responsible for the presentation of one paper
- Peer review feedback form students need to fulfill 10 times attendance, 1% score off when you less than 10 times attendance
- Each paper presentation takes **5**% of the total score

### Paper Presentation Slide

- The paper presentation slide should include:
  - Paper Title
  - The origin of the paper and year
  - Name of presenters
  - Research problems
  - Contributions and outcome
  - Methodology
  - Evaluation

# Schedule

| Week                 | Date  | Lecture Topics                      | Paper Report                                          | Lab<br>Deadline |  |  |  |
|----------------------|-------|-------------------------------------|-------------------------------------------------------|-----------------|--|--|--|
| 1                    | 9/12  | Course Introduction                 |                                                       |                 |  |  |  |
| 2                    | 9/19  | Basics of Deep Learning             |                                                       |                 |  |  |  |
| Efficient Inference  |       |                                     |                                                       |                 |  |  |  |
| 3                    | 9/26  | Quantization                        | Domain-Specific Accelerator, ACM Comm., 2020<br>[pdf] |                 |  |  |  |
| 4                    | 10/3  | Pruning and Sparsity                |                                                       | [Lab 1]         |  |  |  |
| AI Accelerator       |       |                                     |                                                       |                 |  |  |  |
| 5                    | 10/10 | Holiday                             |                                                       |                 |  |  |  |
| 6                    | 10/17 | Systolic Accelerator                |                                                       | Lab 2           |  |  |  |
| 7                    | 10/24 | Digital AI Accelerator              | TPU v4, ISCA, 2023 [pdf]                              |                 |  |  |  |
| 8                    | 10/31 | GPGPU Architecture                  |                                                       | Lab 3           |  |  |  |
| 9                    | 11/7  | GPU Tensor Core                     | MTIA, ISCA 2023 [pdf]                                 |                 |  |  |  |
| 10                   | 11/14 | Sparse DNN Accelerator              |                                                       | Lab 4           |  |  |  |
| 11                   | 11/21 | Chiplet Accelerator                 | Sparse Tensor Core, ISCA 2021 [pdf]                   |                 |  |  |  |
| 12                   | 11/28 | Analog ML Accelerator               | Simba Arch., MICRO 2019 [pdf]                         | Lab 5           |  |  |  |
| Edge AI Acceleration |       |                                     |                                                       |                 |  |  |  |
| 13                   | 12/5  | Basics of TinyML                    | SNAFU, ISCA 2021 [pdf]                                |                 |  |  |  |
| 14                   | 12/12 | TinyML Acceleration<br>Architecture | Intelligence Beyond the edge, ASPLOS 2019 [pdf]       |                 |  |  |  |
| 15                   | 12/19 | Invited talk                        |                                                       |                 |  |  |  |
| 16                   | 12/26 | Final Project                       |                                                       |                 |  |  |  |
| 17                   | 1/2   | Final Project                       |                                                       |                 |  |  |  |

17

### Textbook

- Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, Efficient Processing of Deep Neural Network, Morgan and Claypool Publisher, 2020
- You can download the e-book from NYCU library through EBSCOhost E-book database within NYCU campus

| A https://€ | https://ermg.lib.nctu.edu.tw/cgi-bin/er/swlink.cgi |                                                                                                                                                                                                                |  |  |  |  |  |
|-------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|             |                                                    | <ul> <li>註:雖線下戰(雖線)須註冊個八帳戶才可使用。</li> <li>2.儲存/列印的頁數有限制,每本不一。</li> <li>註:若已使用到上限,欲克服頁數限制,清除瀏覽器紀錄並開啟,即</li> <li>可重新計算頁數。</li> </ul>                                                                              |  |  |  |  |  |
|             | 13                                                 | EBSCOhost Interface<br>EBSCOhost 為 EBSCO Publishing 公司於 1994 年所發展之線上<br>資料庫檢索介面系統,主要提供綜合學科、商管財經、生物醫護、人<br>文歷史、法律等期刊之電子全文資料庫,以及部分當今全球知名之索<br>引摘要資料庫。<br>涵蓋資料庫如:ASP、BSC、CMMC等,可個別檢索單一資料<br>庫,亦可整合檢索多種(或全部)資料more |  |  |  |  |  |

# Basics of AI Accelerators

### Outline

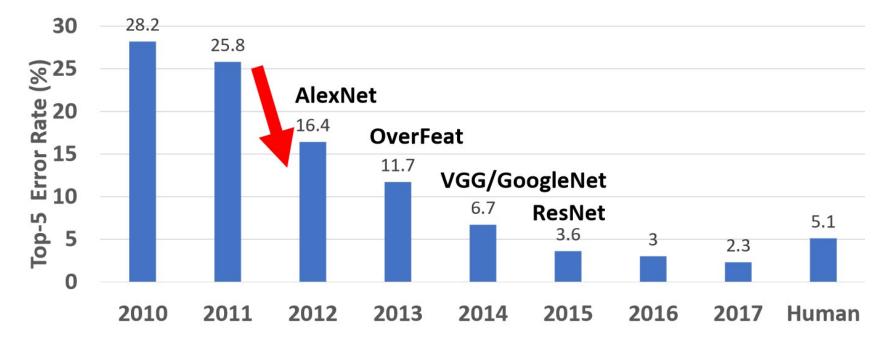
- Dennard Scaling vs Dark Silicon
- Artificial Neural Network (ANN)
- Spiking Neural Network (SNN)
- Neuromorphic architectures
- Digital vs Analog Accelerators

# Why do we need accelerators ?

- Previously
  - We focused on designing general-purpose processors
- Why do accelerators have become attractive in recent years?
  - Dennard Scaling has ended
    - Dennard Scaling allowed voltage to shrink with transistor size
    - Without Dennard Scaling, we need to find other ways to keep **power** in check
  - Dark Silicon
    - Not turn on all transistors on the chip
    - The success of application's accelerators (encryption, compression ...)
    - Applications only use subset of processors/accelerators at a time, such a heterogeneous architecture meets dark silicon phenomenon

# Why Deep Neural Network become popular?

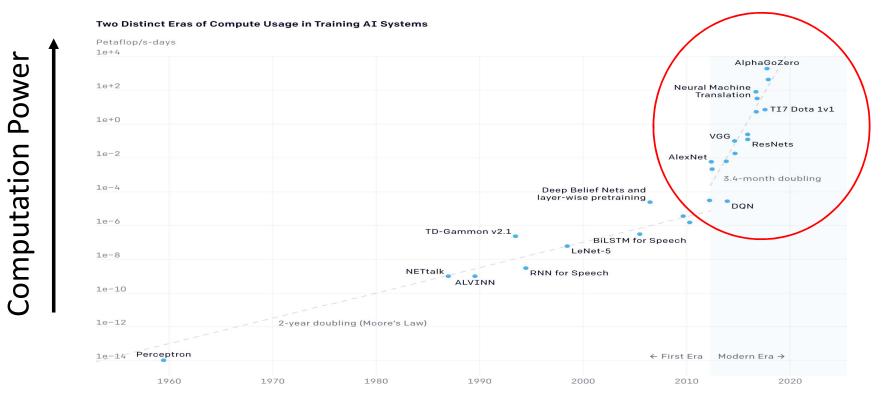
• DNN model outperforms human-being on the ImageNet Challenge



https://arxiv.org/ftp/arxiv/papers/1911/1911.05289.pdf

### No free lunch on DNN computation

• AlexNet to AlphaGo Zero: A 300,000 x Increase in Compute



https://arxiv.org/ftp/arxiv/papers/1911/1911.05289.pdf 23

### Hardware trends

 Stagnant single and multi-thread performance on generalpurpose cores

#### • Why the emphasis on accelerators ?

- Dark silicon (emphasis on power-efficient throughput)
- End of scaling

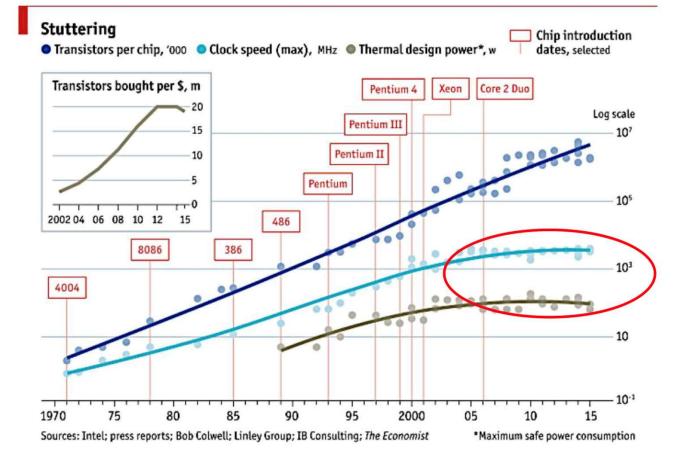
#### Emergence of machine learning

- Accelerators consumes silicon area and expensive
- Facilitate the pervasive of hardware acceleration as machine learning emerges as a solution for "everything".

# Commercial Hardware for Machine Learning

- Google TPU (inference and training)
- Nvidia Tensor/transformer cores (Ampere, Hopper)
- Microsoft Brainwave and Catapult
- Intel Loihi NPU
- Cambricon
- Graphcore (training)
- Cerebras (Training)
- Tesla (FSD, Dojo)

### Increasing transistors is not getting efficient



General purpose processor is not getting faster and power-efficient because of Slowdown of Moore's Law and Dennard Scaling

# Dennard Scaling

- Dennard scaling allowed voltage to shrink with transistor size
  - E.g. 180 nm -> 1.8 V, 130 nm -> 1.3 V
  - All 4 cores (45 nm) can be worked in full speed
  - Could all 8 cores (28 nm) be worked in full speed, too? Why?

**Power** = alpha x CFV<sup>2</sup> **alpha**: percent time switched

C: capacitance

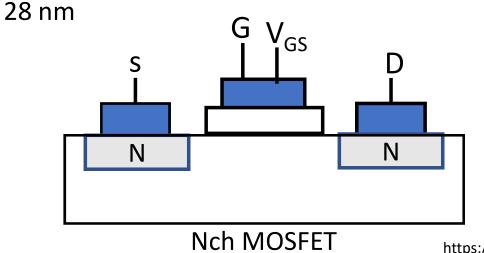
F: Frequency

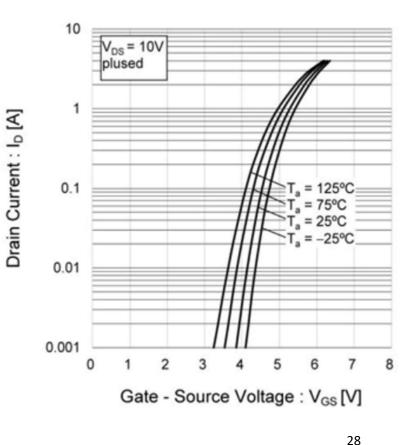
V: Voltage

- 1. Typically, the transistor size reduces K (~1.4) times
- 2. In the same chip area, **the number of transistor** increases **K**<sup>2</sup> times, the **frequency** increases **K** times
- **3.** The size of capacitance shrinks K times as the reduction of transistor size, and the voltage reduces K<sup>2</sup> times
- 4. So, we can boost performance of the chip without any compensation of the power

# Voltage threshold of MOSFET

- Temperature affects the value of  $V_{GS}$  and  $I_{D}$ 
  - Ta = 25 d,  $I_D$  = 1A and Ta = 75 d,  $I_D$  = 1.5 A when fixing  $V_{GS}$
  - Due to  $V_{GS (TH)}$  constraint, difficult to keep reducing voltage to be proportional to the transistor size below





https://techweb.rohm.com.tw/knowledge/si/s-si/03-s-si/5277

### What can we do ?

#### Dark silicon

• Below 28 nm, the voltage is hard to be changed

Power = alpha x CFV<sup>2</sup>
alpha: percent time
switched
C: capacitance
F: Frequency
V: Voltage

- K<sup>2</sup> (transistor size) x frequency (K) v.s. K times capacitance size
- The power increases K<sup>2</sup> times
- Therefore, not turn on all transistor on the chip
- What is the percentage of inactive transistors ?
- 20 nm: 33%, 16 nm: 45%, 10 nm: 56%, 7 nm: 75%, 5 nm: 80%

#### Dim silicon

• Turn all transistor on at low clock speeds

### Heterogeneous SoC

#### Post-Moore era and dark silicon

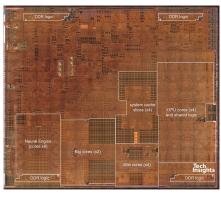
- A suite of accelerators on chip are rising
- Applications will only use a subset of processors/accelerators at a time
- Such a heterogeneous architecture is compatible with dark silicon



2010 Apple A4 65 nm TSMC 53 mm<sup>2</sup> 4 accelerators



2014 Apple A8 20 nm TSMC 89 mm<sup>2</sup> 28 accelerators



2019 Apple A12 7 nm TSMC 83 mm<sup>2</sup> 42 accelerators

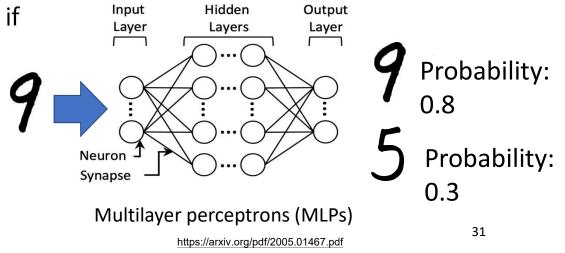
30

https://edge.seas.harvard.edu/files/edge/files/alp.pdf

# Artificial Neural Network (ANN)

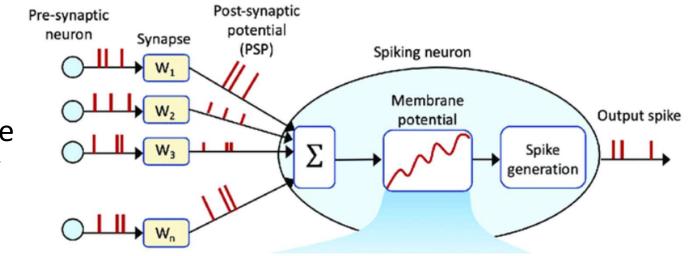
#### Most machine learning algorithms

- Perceptron or artificial neuron
- Receiving synchronous inputs, and performs math, then produce outputs
- Measuring the "strength" (z) of weighted inputs
- Z = x1 \* w1 + x2 \* w2 where (x is the input of the neuron, w is the weight (determined by training))
- Activation function a = f(z) to decide if a neuron should fire or not
- Training performs back-propagation with gradient descent



# Spiking Neural Network (SNN)

- Spiking neurons resembles chemical reactions in our brains
  - A neuron has a certain potential that represents inputs received
  - The potential **rises and falls** depending on the relative importance of those inputs and leaks away when no receiving inputs
  - When the potential reaches a threshold, the neuron fires
  - All inputs/outputs are in the form of **binary** spikes



https://www.researchgate.net/figure/A-Schematic-of-a-spiking-neural-network-consisting-of-an-array-of-plastic-synapses\_fig1\_342414706

# ANN vs. SNN

#### • ANN

- Perceptron, 8-bit or 16-bit multiplications, complex activation functions
- High accuracy, supervised learning (inference and training)

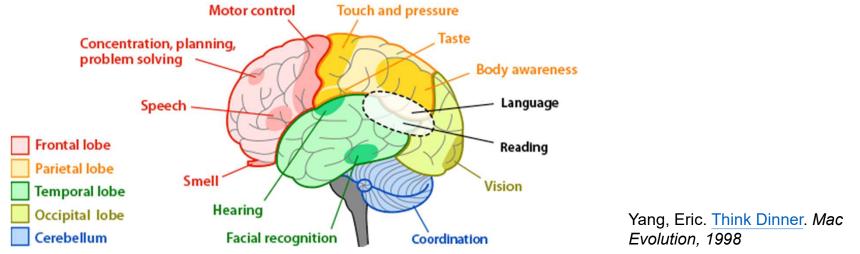
#### • SNN

- Don't achieve very high accuracies, not well understood
- A neuron has state that is a more powerful construct for applications that have a notion of time, e.g. video and language analysis
- Carry a large amount of information in a few bits
- Unsupervised learning

### Uncover Your Brain

2400 kcal/24 hr = 100 kcal/hr = 27.8 cal/ sec = 116.38 J/s = 116 W 20% x 116 W = 23.3 W

- The computer as a brain that comprises specialized accelerators
- Low power the brain consumes only about 20W
- Fault tolerant the brain loses neurons all the time



https://askabiologist.asu.edu/sites/default/files/resources/articles/nervous\_journey/brain-regions-areas.gif

# Neuromorphic architectures

• Architectures inspired by neuron behavior

#### Two major flavors

- Artificial Neural Network (ANN)
  - Operations on perceptrons
- Spiking Neural Network (SNN)
  - Mimic operations in the brain

#### Two major implementation styles

- Digital
- Analog

### Neuromorphic Hardware

#### Emulating the human brain

- Low power the brain consumes only 20 W
- Fault tolerant the brain loses neurons all the time
- No programming required the brain learns by itself

#### • Examples:

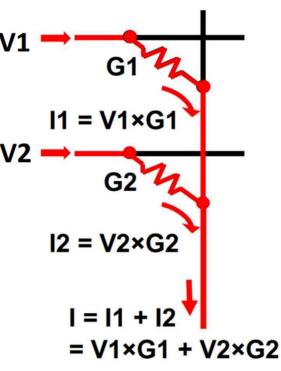
• SpiNNaker, Spikey, TrueNorth

### Digital vs. Analog

- A single analog device
  - Perform multiple multi-bit operations
  - Analog has challenges, e.g., noise/precision
  - The **current** in a wire or the **charge** in a capacitor represent **a rational number**
  - Perform **addition** by merging the currents in two wires
  - **Multiplication** can be represented by the current that emerges when a voltage is applied to a conductor
  - Instability as temperature changes, currents change

### Digital device

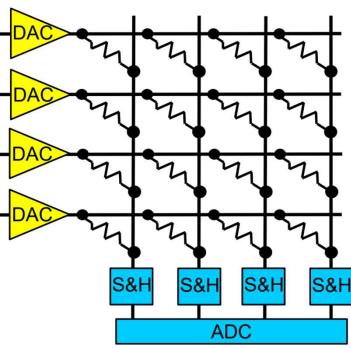
Use CMOS transistors and gates, exclusively deal with 0s and 1s



37

### Crossbar for vector-matrix multiplication

- A grid of **resistances** and horizontal and vertical **wires** 
  - The input voltages are provided on the horizontal wires (wordlines)
  - Each column represents a different neuron
  - Each column computes a different dotproduct based on conductances in that column
  - Analog current is sent through an analog-todigital converter (**ADC**). Why ?
  - **S&H** is the sample-and-hold circuit that feeds signals sequentially to the ADC



ISAAC, ISCA 2016

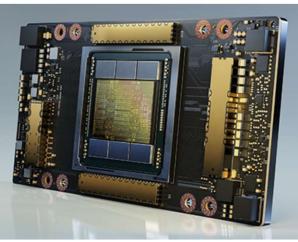
# Challenges of analog devices

### High ADC/DAC area/energy

- Long stay in analog needs expensive analog buffering, introduces significant noise that accumulates across network layers
- Some ADC overheads increase exponentially with resolution
  - The number of bits coming out of a bitline is a function of the bits of info in the voltage (v)
  - The bits of info in the weight (w)
  - The number of rows (R) being added
- To increase the parallelism and storage density high v, w, and R
  - Demanding an expensive high-resolution ADC
- SNN is amenable to analog, why?

# Digital (I) GPU

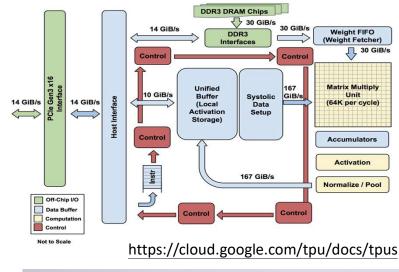
|                  | Nvidia V100 GPU (2019) | Nvidia A100 GPU (2020) |        |
|------------------|------------------------|------------------------|--------|
| Transistor count | 21 billion             | 54 billion             | 2.57 > |
| FP32 performance | 15.7 TFLOP/s           | 19.5 TFLOP/s           | 1.24 > |
| Tensor FP32      | 125 TFLOP/s            | 156 TFLOP/s            | 1.25 > |
| TDP              | 300 W                  | 250 W                  |        |
| Die size         | 815 mm <sup>2</sup>    | 862 mm <sup>2</sup>    |        |
|                  | TSMC 12 nm             | TSMC 7 nm              |        |



https://www.nvidia.com/en-us/data-center/a100/ 40

# Digital (II) Google Tensor Processing Unit (TPU)

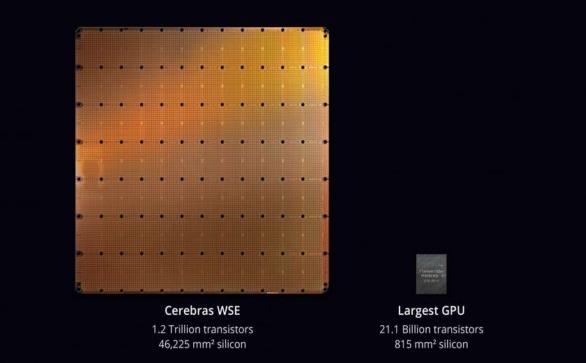
- Systolic-array accelerator
  - V1: Inference only
  - V2: Training with bfloat
  - V3: 2X powerful than v2
- Edge TPU
  - Coral Dev Board
  - 4 TOPS
  - 2 TOPS/Watt
  - Support TensorFlow Lite





# Digital (III) Cerebras: Wafer-Scale DL Engine

- Largest DL Chip Ever Built!!
- 46225 mm<sup>2</sup> (WoW !!)
- 1.2 trillion transistor
- 400,000 optimized Al cores
- 18 GB on-chip memory
- TSMC 16 nm process



https://twitter.com/CerebrasSystems/status/1163443985714753537

### In summary

### Learning from History

- Neural network (NN) booms, but fades away when it ceases to be fashionable -> support vector machines (SVM) took over
- General-purpose processors and GPU quickly outpace ASICs
- Today
  - NNs > SVM
  - GPPs and GPUs will stagnate in performance, but ML is hot
  - ML accelerators (hardware + ML software perspective) include many implementation operations
  - Neuroscience + emerging technology

Takeaway Questions

- What does dark silicon tell us ?
  - (A) We should turn all transistor on at low clock speeds
  - (B) We cannot turn on all transistors on a chip
  - (C) Allowed voltage to shrink with transistor size
- Why does SNN have the potential for low-energy computations and communication ?
  - (A) SNN is in the form of binary spikes
  - (B) Not involve in multiplications or complex activation functions
  - (C) Skipping connections

### Takeaway Questions

- What are the challenges of analog accelerators ?
  - (A) High ADC/DAC area and energy
  - (B) Limited parallelism
  - (C)Non-programmable

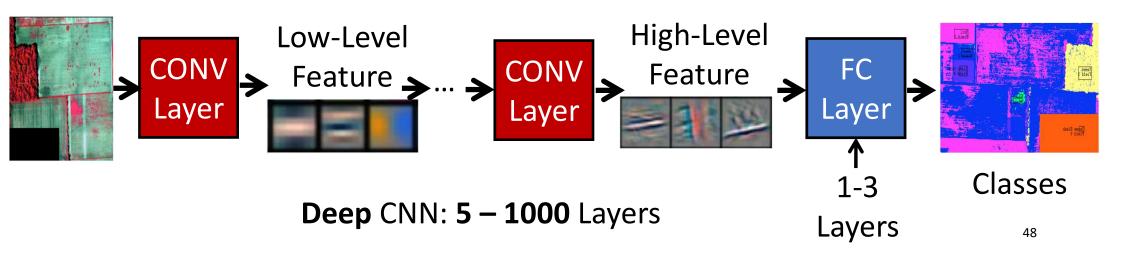
# Deep Neural Networks

### Outline

- Challenges of Deep Learning
- Non-linear activation
- Gradient vanishing/exploding problem
- Batch normalization
- Feed forward/Backpropagation

### Deep Neural Networks

- Deep vs. Shallow
  - Learn simple features in early layers
  - More complex features in subsequent layers
  - Instead of recognizing an object with a single magical neuron



Input Hidden Output Layer Layer Generation of the synapse of th

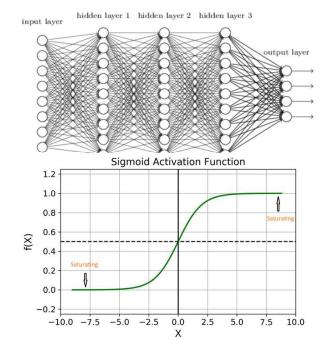
# Deep Neural Network

#### A deep neural network

- Learn simple features in early layers
- More complex features in subsequent layers

### Gradient vanishing

- Small gradients are propagated through the last layer to the initial layer in the backpropagation.
- Activation function leads to gradient vanishing
  - The derivative is close to 0 when the inputs are fairly large or small
  - No update in weights of lower layer
- Potential solutions
  - Change activation function
  - Batch normalization



# Deep learning challenges

- The creation of trainable deep networks
- Vanishing/exploding gradients
  - Different learning rates for different layers to reduce this problem
  - Early layers may have slow learning rate
- Picking the correct activation function
- Good initialization of weights
  - The choice of weights and activation functions can impact learning rates
- Choice of network architecture, hyper-parameters, etc.

# Deep networks for image classification

Image classification is one of success stories for deep learning

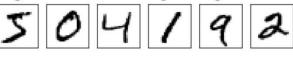
### • MNIST

• 784-pixel hand-written image digits; 50K training, 10K testing images

### • ILSVRC

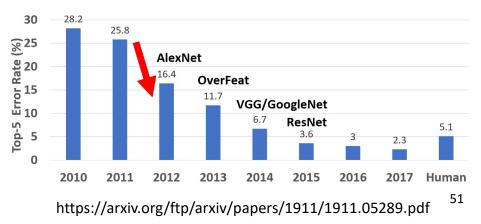
- 1000 categories, 1.2 million training images 150K test images
- Top-5 criterion
  - Make 5 best guesses if one of these matches the label, the prediction is deemed accurate





ILSVRC dataset

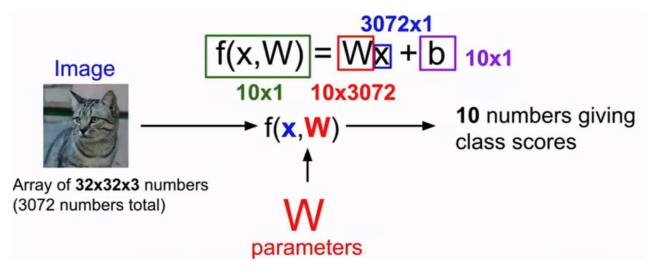
MNIST dataset



### Linear Classification

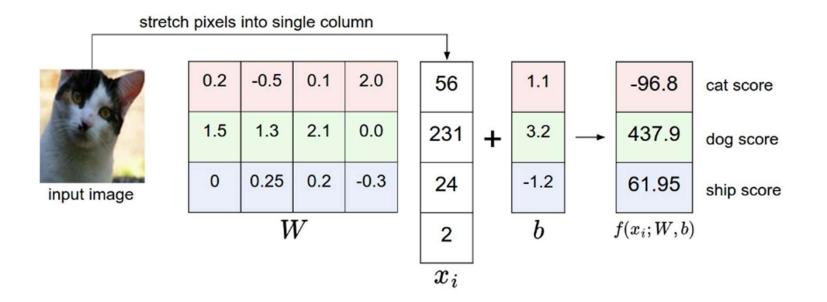
#### Parametric approach

- x: input image (CIFAR-10 input is the array of 32 x 32 x 3)
- W: weights (each class has its specific weights, CIFAR-10 has 10 classes -> CIFAR-10 weight has (32 x 32 x 3) x 10)
- b: bias (fine-tuning the model)



### Linear Classification

- Linear classifiers get weights (W) from training sets
- Weights contain properties of each class



# How to Initialize Weights in Practice?

#### Zero initialization

- What happen if weights are initialized with 0 number ?
  - Undergo the exact same parameter updates
  - No source of asymmetry between neurons
  - How about weights are initialized with 1 number? -> symmetry breaking

#### Random initialization

- If weights have very large/small random numbers, what's wrong?
  - The slope of gradient changes slowly and learning takes a lot of time

#### Calibrating the variances

- W = np.random.randn(n) / sqrt(n), where n is the number of its input
- Ensure all neurons in the network initially have approximately the same output distribution -> improve the rate of convergence

# What is bias in neural networks?

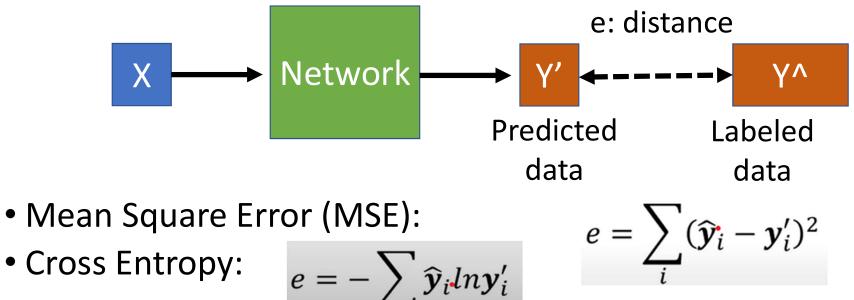
Output = activation\_function( dot\_product( weights, inputs) + bias)

- Bias shifts activation function to better fit the data
- Why can we initialize the biases to be zero?
  - The asymmetry breaking is provided by the small random numbers in weights
- The bias only impacts the output values
  - A node with a large bias, the output value tends to be high
  - Negative bias value -> sigmoid outputs are near to 0
  - Very small bias (or 0) -> weights and inputs dominate the outputs
- Could we set bias value to **0** initially?

### Loss Function

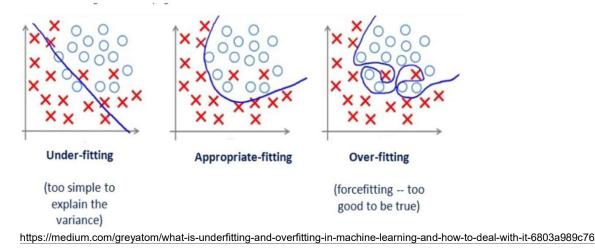
$$L = \frac{1}{N} \sum_{n} e_n$$

- The difference between the correct and predicted data
- We want to set weights during training
- Making the predicted scores are consistent with the ground true labels in the training data.



# Overfitting on DNN Training

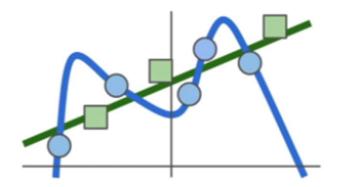
- Generalization problem: how well the model maintains the accuracy between training and unseen data (testing dataset)
- **Overfitting:** Low error rates in the training, but high error rates in the test data
- Our goal doesn't create a model only fitting the training data
  - We want to create a model targets for new data



### How to Fix Overfitting

- How to help the generalization in the training results?
  - Large, diverse dataset
  - Regularization: adding constraints to the model during training such as smoothness, prior distribution

Data loss: Model predictions should match training data



Regularization: Model should be "simple", so it works on test data

Occam's Razor: "Among competing hypotheses, the simplest is the best" William of Ockham, 1285 - 1347

# Regularization

#### To overcome the overfitting problem

• Adding the magnitude of the penalty (P) in all parameters

#### • L1 regularization

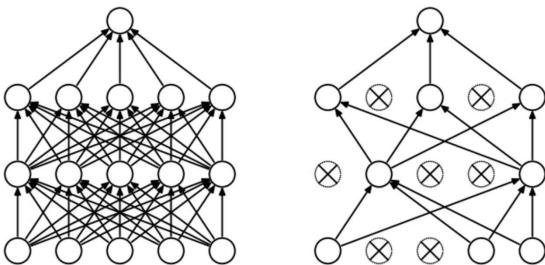
- For each weight, add λw to the objective
- Weight vectors become sparse (very close to exactly 0)
- Using only a sparse subset of their most important inputs

#### • L2 regularization

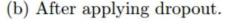
- For each weight, adding  $1/2 \lambda w^2$  to the objective
- Heavy penalizing peaky to diffuse weight vectors (small number)
- Not remove improper features, but rather minimize their impacts

# What is the dropout in NN training?

- A simple approach to prevent neural networks from overfitting
- **Turning off** neurons with a predetermined probability p (e.g. 50%) while training
- Every iteration uses different sample of the models' parameters -> robust features
- Does the dropout reduce the training time? Why?
  - Increase training time
  - Wait for model's convergence



(a) Standard Neural Net



### Learning in Deep Networks

#### When training deep networks

- The early layers may have a very slow learning rate (why?)
  - Vanishing gradient problem
- Exploding gradient problem
  - Early layers learn much faster than later layers

### The unstable gradient problem

• The learning rates of different layers tend to be wildly different

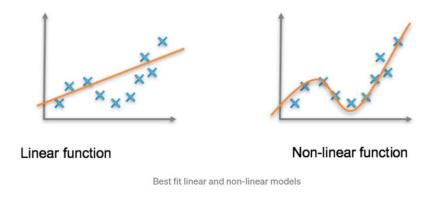
# Non-linear Neuron matters?

#### Linear function

- A change in the first variable corresponds to a constant change in the second variable
- Y = az, where a is a constant value

#### Problems

- The linear function alone doesn't capture complex patterns
- No support backpropagation (Why?)
  - The derivative of the function is a constant
- Collapse relations in each layer
  - The last layer is the linear function of the first one

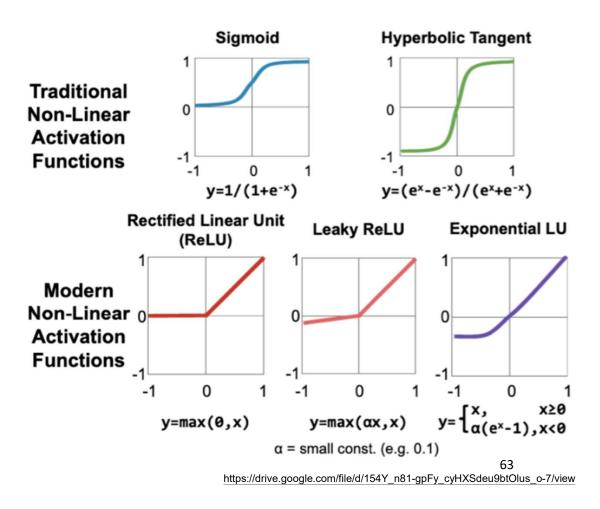


https://srnghn.medium.com/deep-learning-overview-ofneurons-and-activation-functions-1d98286cf1e4

### Non-Linear activation function in NN

#### Activation function

- Determine whether the neuron should be "fired" or not
- Non-linearity -> Help for solving complex problems
- Rectified Linear Units (ReLU)
  - Y(x) = max {0, x}
- How to choose a proper activation function in NN models?
  - Automatic activation function selection ?



# Pros and Cons of activation functions

| Sigmoid                                                                                         | Hyperbolic Tangent                                     | ReLU                                                                                                                     |
|-------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Advantages                                                                                      | Advantages                                             | Advantages                                                                                                               |
| <ol> <li>Smooth gradient:<br/>prevent jumps in outputs</li> </ol>                               | 1. Zero centered: help for inputs having diff features | 1. Computationally efficient                                                                                             |
| 2. Bounded outputs:<br>between 0 and 1,<br>normalizing outputs                                  |                                                        | <ul><li>2. Non-linear: its derivative function allows for backpropagation</li></ul>                                      |
| Disadvantages                                                                                   | Disadvantages                                          | Disadvantages                                                                                                            |
| <ol> <li>Vanishing gradient: no<br/>changes for very high or<br/>low value of inputs</li> </ol> | 1. Like Sigmoid                                        | <ol> <li>Dying ReLU: wreck the backpropagation in zero and negative inputs</li> <li>(gradient results = 0) 64</li> </ol> |

# Gradient vanishing problem

#### Gradient vanishing problem

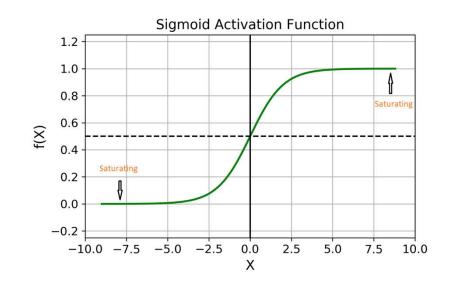
- Small gradients are propagated through the last layer to the initial layer in the backpropagation.
- These small gradients cause the weights in lower layer are not updated (Why?)

#### Gradient vanishing in Sigmoid function

- When the inputs are fairly large or small
- The derivative becomes close to **0**
- Such small gradients -> no update in lower layer weights
- Problem is worse in deep network (Why?)

#### • Solutions

- Change activation function
- Batch normalization



# Gradient exploding problem

- Large gradient propagates through layers in a neural network
- The model loss will be NaN during training
- Solutions
  - Gradient clipping
  - Limits the magnitude of the gradient
  - SGD without gradient clipping overshoots the landscape to minimum
  - SGD with gradient clipping descends into the minimum

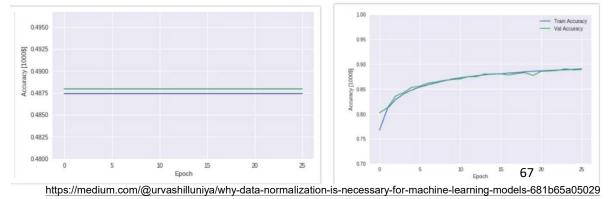


Ian Goodfellow et. al, "Deep Learning", MIT press, 2016

# Training stability and accuracy further

- The low accuracy of the trained model without normalizing data
- What is the data normalization?
  - Data matrix [N x D] (N: the number of data, D is their dimensions)
  - Changing scales of data dimensions to the common ones
- When do we need to normalize data?
  - Only when features have different ranges
- How?





# Backpropagation in training

- Minimize the cost function by adjusting network's weights and biases
- Tuning the weights by using gradient descent
  - A weight is updated by the partial derivative of loss with respect to the weight

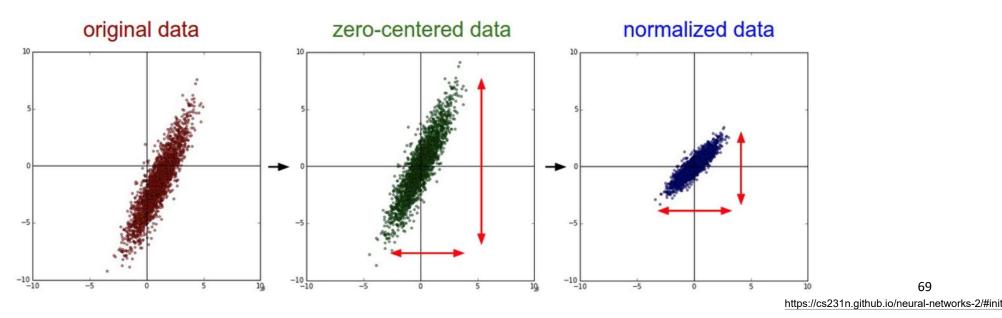
$$w_{ij}^{t+1} = w_{ij}^t - \alpha \frac{\partial L}{\partial w_{ij}}$$

a is the learning rate

- The gradient indicates how the weights should change to reduce the loss
- The process is repeated iteratively to reduce the overall loss
- What are impacts of high learning rate?
  - A high learning rate increases the step size at each iteration
  - Help speed up the training
  - Result in overshooting the minimum
  - Cause the optimization to not converge

### Data normalization

- Why do we need to normalize data?
- Without distorting differences in the ranges of values
- Zero-centered: subtracting mean from each of the data point
- Normalize each dimension, the min/max along the dimension is -1 and 1



# Batch Normalization (BN)

- Provide neural network inputs with zero mean/unit variance
- Adjusting activations in each batch (one batch includes multiple data)
- Subtract the batch mean and divide by the batch standard deviation
- Place BN in the front/back of activation?
  - BN in the front end: avoid saturation region
- Small batch size?
  - No representative mean/sigma -> bad perf.
- How to initialize gamma and beta?
  - Gamma = 1, beta = 0 (Why?)

**Algorithm 1:** Batch Normalizing Transform, applied to activation *x* over a mini-batch.

70 https://arxiv.org/pdf/1502.03167v3.pdf

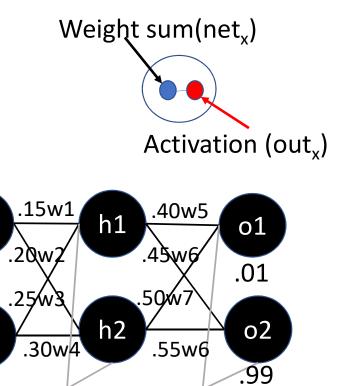
### Batch normalization - benefits

- Accelerating the training speed
- Avoid exploding/vanishing gradients
- Help sigmoid/tanh activation function (trainable network)
- Reduce the impact of initialization
- Reduce the overfitting to increase the accuracy of trained models
- Increasing the learning rate after using BN? Why?

### A Simple Feed-forward Neural Network

- What is the  $net_{h1}$  and  $out_{h1}$ ?
- Activation function is logistic function

$$Out_{h1} = 1/1 + e^{-net_{h1}}$$
  
= 1/1+e^(-0.3775)  
= 0.5933



b2

.60

72

i1

.05

i2

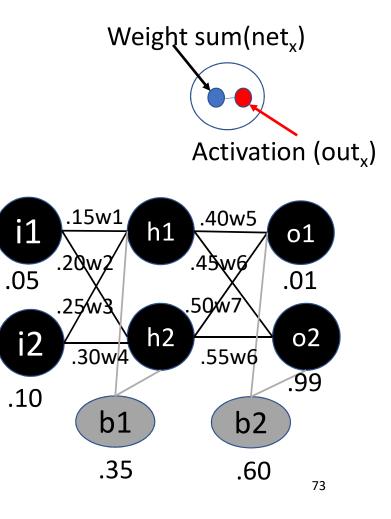
.10

**b**1

.35

### The backward Pass

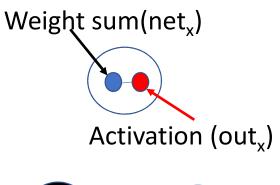
• What is the value of  $w_5$ ?  $\frac{\partial E_{total}}{\partial w_5} = \frac{\partial E_{total}}{\partial out_{o1}} \times \frac{\partial out_{o1}}{\partial net_{o1}} \times \frac{\partial net_{o1}}{\partial w_5}$  $E_{total} = \frac{1}{2} (target_{o1} - out_{o1})^2 + \frac{1}{2} (target_{o2} - out_{o2})^2$  $\frac{\partial E_{total}}{\partial out_{o1}} = 2 \times \frac{1}{2} (target_{o1} - out_{o1}) \times -1 + 0$  $out_{o1} = \frac{1}{1 + e^{-net_{o1}}}$  $\frac{\partial out_{o1}}{\partial net_{o1}} = out_{o1}(1 - out_{o1})$  $net_{o1} = w_5 \times out_{h1} + w_6 \times out_{h2} + b_2$  $\frac{\partial net_{o1}}{\partial w_5} = \text{out}_{h1}$  $w_5^+ = w_5 - \alpha \times \frac{\partial E_{total}}{\partial w_5}$ 

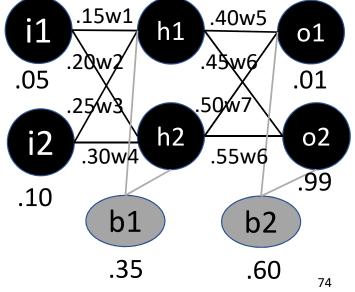


Calculating Total Error

- Using squared error function (E)
- What is  $E_{01}$ ,  $E_{02}$ ,  $E_{total}$  ?

 $E_{o1} = \frac{1}{2} (target_{o1} - out_{o1})^{2}$ =  $\frac{1}{2} (0.01 - 0.7513)^{2}$ = 0.2748  $E_{total} = E_{01} + E_{02}$ 





Takeaway Questions

- What can impact the learning rates ?
  - (A) The selection of datasets
  - (B) Activation function
  - (C) The size of inputs
- What are potential solutions to avoid the gradient vanishing problem ?
  - (A) Changing activation function
  - (B) Using low learning rate
  - (C) Batch normalization