
Operating System
Design and

Implementation
Lecture 23: Block device driver

Tsung Tai Yeh
Tuesday: 3:30 – 4:20 pm
Friday: 10:10 – 12:00 pm

Classroom: EC-115

1

Acknowledgements and Disclaimer
• Slides was developed in the reference with

MIT 6.828 Operating system engineering class, 2018
MIT 6.004 Operating system, 2018
Remzi H. Arpaci-Dusseau etl. , Operating systems: Three easy pieces. WISC
Onur Mutlu, Computer architecture, ece 447, Carnegie Mellon University

• CSE 506, operating system, 2016,
https://www.cs.unc.edu/~porter/courses/cse506/s16/slides/sync.pdf

2

Outline

• Block device abstraction
• Block layer

• I/O scheduler
• Block driver

• The implementation of a block driver

3

Block device abstraction

4
https://bootlin.com/doc/legacy/block-drivers/block_drivers.pdf

Block device abstraction

• An user application can use a block device
• Through a file system -> reading, writing or mapping files
• Directly -> reading, writing or mapping a device file (e.g. ‘/dev’)

• The VFS subsystem in the kernel is the entry point for all
accesses
• A file system driver is involved if a normal file is accessed

• The buffer/page cache of the kernel stores recently read and
written portions of block devices

5

Inside the block layer

6
https://bootlin.com/doc/legacy/block-drivers/block_drivers.pdf

Inside the block layer

• The block layer allows
• Block device drivers to receive I/O requests
• In charge of I/O scheduling

• I/O scheduling allows
• Merge requests so that they are of greater size
• Re-order requests to optimize disk head movement

• Linux has several I/O schedulers with different policies

7

I/O schedulers

• Four I/O scheduler in current kernels
• Noop

• For non-disk based block devices
• Anticipatory

• Tries to anticipate what could be the next accesses
• Deadline

• Tries to guarantee that an I/O will be served within a deadline
• CFQ (Complete Fairness Queuing): The default scheduler

• Tries to guarantee fairness between users of a block device
• The current scheduler for a device

• /sys/block/<dev>/queue/scheduler
8

Types of drivers

• Most of the block device drivers
• Implemented below the I/O scheduler to use the I/O scheduling
• Hard disk drivers, CD-ROM drivers, etc.

• Some drivers don’t use the I/O scheduler
• RAID and volume manager, like md

9

How to implement a block device driver ?

• A block device driver
• Implement a set of operations
• These operations must be registered in the block layer and

receive request from the kernel
• Sub-systems have been created to factorize common code of

drivers for devices
• SCSI devices
• SATA devices
• MMC/SD devices

10

How to implement a block device driver ?

11
https://bootlin.com/doc/legacy/block-drivers/block_drivers.pdf

Block device layer

• The block device layer
• Implemented in the ‘block/’ directory of the kernel source tree
• The I/O scheduler code in *-iosched.c files

• A few simple block device drivers
• See drivers/block/
• loop.c: the loop driver that allows to see a regular file as a block

device
• brd.c: a ramdisk driver
• nbd.c: a network-based block device driver

12

Step 1: Registering the major

• The first step in the initialization of a block device driver is
• The registration of the major number
• int register_blkdev(unsigned int major, const char *name);
• Major (device number) can be 0 which is dynamically allocated
• E.g. register_blkdev(sbull_major, “sbull”);
• Once registered, the driver appears in ‘/proc/devices’

• Unregistered
• void unregister_blkdev (unsigned int major, const char *name);

13

Step 2: kmalloc

• Create the data structure of this block device
• E.g. devices = kmalloc (ndevices * sizeof (struct sbull_dev),

GFP_KERNEL);

14

Step 3: setup_device ()

• Setup_device ()
• Add a new block device to block layer in the system
• Step 3.1: initialize a spin lock

• spin_lock_init (&dev->lock);
• Step 3.2: allocate a request queue and use spin lock to control

the operation in the queue
• dev->queue = blk_init_queue (sbull_full_request, &dev->lock);

• Step 3.3: allocate and initialize struct gendisk
• dev->gd = alloc_disk (SBULL_MINORS);
• Set_capacity (dev->gd, nsectors * (hardset_size/KERNEL_SECTOR_SIZE));

15

Initializing a disk

• struct gendisk
• Represents a single block device, defined in <linux/genhd.h>

• Allocate a gendisk structure
• struct gendisk *alloc_disk(int minors);
• Minors tells the number of minors to be allocated in the disk
• 1 for non-partitionable devices

• Allocate a request queue
• struct request_queue *blk_init_queue (request_fn_proc,

spinlock_t *lock)

16

Initializing a disk
• Initialize the gendisk structure
• Set the capacity

• void set_capacity (struct gendisk *disk, sector_t size);
• size: a number of 512-bytes sectors
• sector_t is 64 bits wide on 64 bits architectures

• Add the disk to the system
• void add_disk (struct gendisk *disk);
• The driver must be fully ready to handle I/O requests before

calling add_disk()
• Afterward, the block device can be accessed by the system

17

Unregistering a disk

• Unregister the disk
• void del_gendisk (struct gendisk *gp);

• Free the request queue
• void blk_cleanup_queue (struct request_queue *);

• Drop the reference taken in alloc_disk()
• void put_disk (struct gendisk *disk);

18

struct block_dev_operations

19

static struct block_device_operations sbull_ops = {
.owner = THIS_MODULE,
.open = sbull_open,
.release = sbull_release,
.media_change = sbull_release,
.revalidate_disk = sbull_revalidate,
.ioctl = sbull_ioctll

};

Block device operations
• open () and release ()

• Called when a device handled by the driver is opened and closed
• ioctl ()

• Manipulates the underlying device parameters of special files
• E.g. ioctl(sockfd,SIOCGIFADDR,&ifr)

• direct_access ()
• required for XIP support

• media_changed (), revalidate ()
• required for removable media support

• getgeo()
• provides geometry information to userspace

20

request () operations

• struct request ()
• Make a request to the underlying devices
• sector: the position in the device where the transfer should be

made
• current_nr_sectors: the number of sector to transfer
• buffer: the location in memory where the data should be read or

written to
• rq_data_dir (): the type of transfer, either READ or WRITE
• _blk_end_request () or blk_end_request () notify the completion

of a request
21

A simple request() example

22

static void foo_request (struct request_queue *q) {
struct request *req;
// elv_next_request: obtain the first non-completed request
while ((req = elv_next_request(q)) != NULL) {

if (! blk_fs_request (req)) {
__blk_end_request (req, 1, req->nr_sectors << 9);
continue;

}
/*Do the transfer here*/
__blk_end_request (req, 0, req->nr_sectors << 9);

}
}

Data structure of a block device driver

23https://bootlin.com/doc/legacy/block-drivers/block_drivers.pdf

Inside a request

• A request contains several segments
• These segments are contiguous on the block device
• Not necessarily contiguous in physical memory

• A struct request is in fact a list of struct bio
• A bio

• The descriptor of an I/O request submitted to the block layer
• The bio(s) are merged together in a struct request by the I/O

scheduler
• Might represent several pages of data (several struct bio_vec)
• Each of struct bio_vec is a page of memory

24

Inside a request

25https://bootlin.com/doc/legacy/block-drivers/block_drivers.pdf

Request example

26https://bootlin.com/doc/legacy/block-drivers/block_drivers.pdf

Asynchronous operations

• Asynchronous operations
• Occurs when handling several requests at the same time
• Dequeue the requests from the queue
• void blkdev_dequeue_request (struct request *req);

• Put a request back in the queue
• void elv_requeue_request (struct request_queue *queue, struct

request *req);

27

MMC/SD

28https://bootlin.com/doc/legacy/block-drivers/block_drivers.pdf

MMC host driver

• For each host
• struct mmc_host *mmc_alloc_host (int extra, struct device *dev)
• Initialize struct mmc_host fields

• Caps, ops, max_phys_segs, max_hw_segs, max_blk_size, max_blk_count,
max_req_size

• int mmc_add_host (struct mmc_host *host)

• Unregistration
• void mmc_remove_host (struct mmc_host *host)
• void mmc_free_host (struct mmc_host *host)

29

MMC host driver

• The mmc_host->ops field points to a mmc_host_ops
structure
• Handle an I/O request

• void (*request) (struct mmc_host *host, struct mmc_request *req);
• Set configuration settings

• void (*set_ios) (struct mmc_host *host, struct mmc_ios *ios);
• Get read-only status

• int (*get_ro) (struct mmc_host *host);
• Get the card presence status

• int (*get_cd) (struct mmc_host *host);

30

Summary

• Block layer is a middleware
• Fetches items from the buffer cache
• Includes block drivers and I/O scheduler

• The implementation of a block device driver
• Step 1: registers the block device
• Step 2: Create and allocate data structure for that device
• Step 3: Setup device: initialize disk, allocate request queue …

• Request () operations and struct bio

31

