
Operating System
Design and

Implementation
Lecture 10: Context switch

Tsung Tai Yeh
Tuesday: 3:30 – 4:20 pm
Friday: 10:10 – 12:00 pm

Classroom: EC-115

1

Acknowledgements and Disclaimer
• Slides was developed in the reference with

MIT 6.828 Operating system engineering class, 2018
MIT 6.004 Operating system, 2018
Remzi H. Arpaci-Dusseau etl. , Operating systems: Three easy pieces. WISC

2

Outline

• Context switch
• Timer interrupt
• Process scheduler
• overhead

• Process v.s threads
• Sleeping and wake up

3

Process state

• Process state: specifies the state of the process

4

EMBRYO RUNNABLE

SLEEPING RUNNING

1. EMBRYO: The new process is currently being created
2. RUNNABLE: Ready to run
3. RUNNING: Currently executing
4. SLEPPING: Blocked for an I/O

Context switches

• When a process switches from RUNNING to WAITING
• Due to an I/O request

• When a process switches from RUNNING to READY
• When an interrupt occurs

• When a process switches from WAITING to READY
• Due to I/O completion

• When a process terminates

5

The full picture of context switch

• Scheduler triggered to run
• When timer interrupt occurs
• When running process is blocked on I/O

• Scheduler picks another process from the ready queue
• Performs a context switch

6

CPU scheduler

Queue of ready process

Interrupt in a certain
time quantum

CPU

Pick one process to
run on the CPU

How to switch between process ?

• How can the operating system regain control of the CPU so
that it can switch between processes ?

• A cooperative approach: wait for system calls
• When the process transfer control back to the OS ?
• Using system calls:

• most processes use system calls to transfer control of the CPU to the OS
(e.g. yield system call)

• When processes do something illegal
• If an application divides by zero
• Generate a trap to the OS, the OS will have control of the CPU again

• The OS regains control of the CPU by waiting for a system call or an
illegal operation

7

How to switch between process ? (cont.)

• What happens if a process ends up in an infinite loop and
never makes a system call ?

• A non-cooperative approach: The OS takes control
• The OS must inform the hardware which code to run when the

timer interrupt occurs
• A timer interrupt: A timer device can be programmed to raise an interrupt

every so many milliseconds
• A pre-configured interrupt handler in the OS runs
• During the boot sequence, the OS must start the timer
• The OS can feel save in that control once the timer has begun

8

Saving and restoring context

• How does the return-from trap instruction resume the
running program correctly ?
• The scheduler decides whether to continue running the currently-

running process or switch to a different one

• Context switch
• Save a few register values for the currently-executing process onto

its kernel stack
• The general purpose registers, PC, and then kernel stack pointer

• Restoring a few for the soon-to-be-executing process from its
kernel stack

9

Timer interrupt execution protocol

10

OS @ boot (kernel mode) Hardware Program (user mode)

1. Timer interrupt
2. Save regs(A) -> k-stack(A)
3. Move to kernel mode
4. Jump to trap handler

1. Restore regs(B) <- k-stack(B)
2. Move to user mode
3. Jump to B’s PC

1. Process A

1. Handle the trap
2. Call switch() routine
3. save regs(A) -> proc_t(A)
4. Restore regs(B) -> proc_t(A)
5. Switch to k-stack(B)
6. Return-from-trap(into B)

1. Process B

Process contexts

• Process context
• Contains all information, which would allow the process to resume

after a context switch

• Contexts contain 5 registers
• edi, esi, ebx, ebp, eip

• Contexts always stored at the bottom of the process’s kernel
stack

11

How to perform a context switch ?

• Need to save current process registers without changing
them
• Not easy !!
• Saving state needs to execute code, which will modify registers
• Solution: Use hardware + software … architecture dependent

12

1.Save current process state
2.Load state of the next process
3.Continue execution of the next process

Context switch in xv6

13

1. Gets triggered when any interrupt is invoked
a. Save P1’s user mode CPU context and switch
from user to kernel mode

2. Handle system call or interrupt
3. Save P1’s kernel CPU context and switch to

scheduler CPU context
4. Select another process P2
5. Switch to P2’s address space
6. Save scheduler CPU context and switch to P2’s

kernel CPU context
7. Switch from kernel to user mode and load P2’s user-

mode CPU context

http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/5_Processes.pdf

The timer interrupts

• Single processor system
• Periodic interrupt timer (PIT)

• Multi-processor systems
• Programmable interrupt controller (LAPIC)

• Programmed to interrupt processor every 10 ms

14

Timer interrupt stack

15

Kernel stack
of process

vector.s

alltraps

trap

yield

sched

swtch

O
nly if stack

changed

By hardw
are

trapfram
e

trap, yield & sched

16

trap.c

proc.c

proc.c

swtch(&proc->context, cpu->scheduler)

17http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/5_Processes.pdf

swtch(&proc->context, cpu->scheduler)

18http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/5_Processes.pdf

Execution in scheduler

• Switch to kvm pagetables
• Select new runnable process
• Switch to user process page

tables
• swthch(&cpu->scheduler,

proc->contxt)

19http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/5_Processes.pdf

swtch(&proc->context, cpu->scheduler)

20
http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/5_Processes.pdf

Sched in process 2’s context

• Sched returns to yield
• Yield returns to trap
• Trap returns to alltraps
• Alltraps restores user space

registers of process 2 and
invokes IRET

21http://www.cse.iitm.ac.in/~chester/courses/16o_os/slides/5_Processes.pdf

Context switch overheads

• Direct factors
• Timer interrupt latency
• Saving/restoring contexts
• Finding the next process to execute

• Indirect factors
• TLB needs to be reloaded
• Loss of cache locality (more cache misses)
• Processor pipeline flush

22

Context switch quantum

• A short quantum
• Good, because processes need not wait long before they are

scheduled in
• Bad, because, context switch overhead increase

• A long quantum
• Bad, because processes no longer appear to execute concurrently
• May degrade system performance

• Typically kept between 10ms to 100 ms

23

How long context switches take ?

• How long does something like a context switch take? Or even
a system call ?
• Running Linux 1.3.37 on a 200-MHz P6 CPU in 1996

• System calls took roughly 4 microseconds
• A context switch roughly 6 microseconds
• Will faster processors help for the reduction of system call and context

switch latency ?
• Not all operating system actions track CPU performance

• Many OS operations are memory intensive
• Depending on workloads, the latest and greatest processor may not speed

up your OS as much as you might hope

24

Recap: process

• So far, we have studied single threaded
programs

• A process in execution
• Program counter (PC)

• Points to current instruction being run
• Stack pointer (SP)

• Points to stack frame of current function call

• However, a program can have multiple
threads in execution

25

Program code

Heap

stack

free

PC

SP

Multi-thread process

• A process can have multiple threads
• Each of them executes independently

• Threads
• Share the same address space(code, heap)
• Each thread has separate PC
• Each thread can run over different part

of the program
• Each thread has separate stack for independent

function calls

26

Program code

Heap

Stack(2)

Stack(1)

PC1
PC2

SP1

SP2

Processes v.s threads

• In UNIX, a process is created using fork() and is composed of
• An address space, which contains the program code, data, stack,

shared libraries, etc.
• A single thread, which is the only entity known by the scheduler

• Additional threads can be created inside an existing
processing, using pthread_create()
• They run in the same address space as the initial thread of the

process
• They start executing a function passed as argument to

pthread_create()
27

Processes v.s threads

• Parent (P) and Child (C) process
• P and C do not share any memory
• Communicate through inter-process communication (IPC)
• Extra copies of code, data in memory

• Threads (T1 and T2) within a process
• T1 and T2 share parts of the address space
• Global variables can be used for communication
• Small memory footprint
• The context of a thread (PC, registers) is saved into/restored from

thread control block (TCB)
28

Process and thread

• Each process has a thread of execution
• The state of a thread (local variables, function call return address)

is stored on the thread’s stacks
• Each process has two stacks: a user stack and a kernel stack

29

Process Thread
Process is any in-execution program Thread is the segment of a process
Process is isolated Thread share memory
Process has its own process control
block (PCB) and address space

Thread has parent’s PCB, its own TCB,
stack, and address space

Process takes more time for creation Thread takes less time for creation

https://www.geeksforgeeks.org/difference-between-process-and-thread/

Why threads ?

• Parallelism
• Make a single process to effectively utilize multiple CPU cores
• Concurrency

• Running multiple threads/process, even on a single CPU core by
interleaving their executions

• Concurrency ensures effective use of the CPU even if no parallelism (e.g.
overlapping I/O with other activities within a single program)

• Parallelism
• Running multiple threads/process in parallel over different CPU cores

30

Process, thread: kernel point of view

• In kernel space
• Each running thread is represented by a structure of type “struct

task_struct”
• No difference between the initial thread of a process and all

additional threads created dynamically using pthread_create()

31

Thread
A

Address Space
Process after fork()

Thread
A

Address Space
Same process after pthread_create()

Thread
B

A thread life

32https://bootlin.com/doc/training/linux-kernel/linux-kernel-slides.pdf

Sleeping

• Sleeping is needed when a process (user space or kernel
space) is waiting for data

33https://bootlin.com/doc/training/linux-kernel/linux-kernel-slides.pdf

How to sleep with a wait queue ?

• A wait queue
• stores the list of threads waiting for an event

• Several ways to make a kernel process sleep
• void wait_event(queue, condition);
• int wait_event_killable(queue, condition);
• int wait_event_interruptible(queue, condition);
• int wait_event_timeout(queue, condition, timeout);
• int wait_event_interruptible_timeout(queue, condition, timeout);

34

Waking up!

• Typically done by interrupt handlers when data sleeping
processes are waiting for become available
• wake_up(&queue)

• Wakes up all processes in the wait queue
• wake_up_interruptible(&queue);

• Wakes up all processes waiting in an interruptible sleep on the given
queue

35

Waking up -- implementation

• wait_event(queue, cond);
• The process is put in the

TASK_UNINTERRUPTIBLE
state

• wake_up(&queue);
• All processes waiting in queue are

woken up
• They get scheduled later and have

the opportunity to evaluate the
condition again

• Go back to sleep if it is not met
36https://bootlin.com/doc/training/linux-kernel/linux-kernel-slides.pdf

Summary

• Processes contains process states including running, ready to
run, and block

• OS can switch from running the current process to a different
one known as context switch

• OS uses timer interrupt to ensure the user program does not
run forever

• Process means a program is in execution, whereas thread
means a segment of a process.

37

