DCP 1244 Discrete Mathematics Lecture 3: Rules of Inference

Tsung Tai Yeh

2021

<ロト < 個ト < Eト < Eト E の () 1

Outline

- Mathematical Arguments
- Rules of Inference

Argument

- An argument is a sequence of propositions called (premises) that end with a conclusion.
- An argument is valid if all its premises are true, then the conclusion is true.
- Example, "If it is Sunday, I don't want to go to school".
 - "∵ It is Sunday."
 - ".: I don't want to go to school."

Valid Argument Form

We can express the previous example as following form.

- Let p: It is Sunday, q: I don't want to go to school.

$$p \longrightarrow q$$

 p
 $\therefore q$

- The above form is valid no matter what propositions are substituted to the variables
 - Both p
 ightarrow q and p are true, then q must also be true.

(ロ)、(部)、(E)、(E)、(E)、のQで 4

- The conclusion is true if the premises are all true.
- We call this form as valid argument form.

Valid Argument Form

- By the definition, the argument form consists of
 - Premises: $p_1, p_2, ..., p_n$
 - Conclusion: q
 - $(p_1 \wedge p_2 \wedge ... \wedge p_n)
 ightarrow q$ is a tautology
 - Tautology is a formula which truth values are always true.
 - Example: $((p
 ightarrow q) \land p)
 ightarrow q$ is tautology.

It is impractical to only use the truth table to if an argument form is valid

- An argument form with 10 different propositional variables requires $2^{10}\ \mbox{rows}.$

Rules of inference

- Can be used to construct more complicated valid argument form.

- How to determine $(p \land (p
 ightarrow q))
 ightarrow q$ is tautology ?
- Using modus ponens with following valid argument form.
 p
 p → q

∴ q

Rules of Inference - Modus ponens

Modus ponens (method of affirming)

- premises: p, p
 ightarrow q
- conclusion: q
- Tautology: $(p \land (p
 ightarrow q)
 ightarrow q)$

- Let $p{:}$ It is snowing today, $p \to q{:}$ If it snows today, then we will go skiing.

- p is true, by modus poens, p
ightarrow q is true. Therefore, q is true.

(ロト (個) (E) (E) (E) のへで 7

Modus tollens (method of denying)

- premises: $\neg q, \ p
 ightarrow q$
- conclusion: $\neg p$
- Tautology: $(\neg q \land (p
 ightarrow q))
 ightarrow \neg p$
- Hypothetical Syllogism
 - premises: p
 ightarrow q, q
 ightarrow r
 - conclusion: $p \rightarrow r$
 - Tautology: $((p
 ightarrow q) \land (q
 ightarrow r))
 ightarrow (p
 ightarrow r)$
- Disjunctive Syllogism
 - premises: $p \lor q$, $\neg p$
 - conclusion: q
 - Tautology: $((p \lor q) \land \neg p)
 ightarrow q$

Addition

- premises: p
- conclusion: $p \lor q$
- Tautology: $p \to (p \lor q)$
- Simplification
 - premises: $p \land q$
 - conclusion: p
 - Tautology: $(p \land q) \rightarrow p$

Conjunction

- premises: p, q
- conclusion: $p \land q$
- Tautology: $((p) \land (p)) \rightarrow (p \land q)$
- Resolution
 - premises: $p \lor q$, $\neg p \lor r$
 - conclusion: $q \lor r$
 - Tautology: $((p \lor q) \land (\neg p \lor r)) \rightarrow (q \lor r)$

<ロト < 個ト < 目ト < 目ト 三 のへで 10

Test Yourself

State which rule of inference is used in the argument?

- If it rains today, then we will not have a BBQ today. If we do not have a BBQ today, then we will have a BBQ tomorrow. Therefore, if it rains today, then we will have a BBQ tomorrow.

<ロト < 部 ト < 臣 ト < 臣 ト 三 の < で 11

Applying Rules of Inference

Example 1: It is known that

- It is not sunny this afternoon and it is colder than yesterday.

- We will go swimming only if it is sunny.
- If we do not go swimming, then we will take a canoe trip.
- If we take a canoe trip, then we will be home by sunset.
- Could we conclude that "We will be home by sunset" ?

Let's simplify our discussion

- p := It is sunny this afternoon.
- q:= It is colder than yesterday.
- r:= We will go swimming.
- s:= We will take a canoe trip.
- t:= We will be home by sunset.
- A valid argument is given by:
 - premises: $\neg p \land q$, $r \rightarrow p$, $\neg r \rightarrow s$, $s \rightarrow t$

<ロト < 個ト < 目ト < 目ト = - - のへで 13

- conclusion: t

Solving step by step:

	Step	Reason
1.	$ eg p \wedge q$	Premise
2.	$\neg p$	Simplification using (1)
3.	r ightarrow p	Premise
4.	$\neg r$	Modus tollens using (2)(3)
5.	$\neg r \rightarrow s$	Premise
6.	5	Modus ponens using (4)(5)
7.	s ightarrow t	Premise
8.	t	Modus ponens using (6)(7)

We can conclude t: "We will be home by sunset" is true by using rules of inference.

Applying Rules of Inference

Example 2: It is known that

- If you send me an e-mail message, then I will finish writing the program.

- If you do not send me an e-mail message, then I will go to sleep early.

- If I go to sleep early, then I will wake up feeling refreshed.

Could we conclude that "If I do not finish writing the program, then I will wake up feeling refreshed ?"

To simplify the discussion, let

- p:= You send me an e-mail message.
- q := I will finish writing the program.
- r:= I will go to sleep early.
- s:= I will wake up feeling refreshed.
- A valid argument is given by:
 - **premises**: $p \rightarrow q$, $\neg p \rightarrow r$, and $r \rightarrow s$
 - conclusion: $\neg q \rightarrow s$

Solving step by step:

	Step	Reason
1.	p ightarrow q	Premise
2.	eg q ightarrow eg p	Contrapositive of (1)
3.	eg p ightarrow r	Premise
4.	eg q ightarrow r	Hypothetical syllogism $(2)(3)$
5.	r ightarrow s	Premise
6.	eg q ightarrow s	Hypothetical syllogism $(4)(5)$

This argument form shows that the premises lead to the desired conclusion.

Rules of Inference with Quantifiers

Universal instantiation

- premises: $\forall x P(x)$
- **conclusion**: P(c) for any c

- The rule of inference that is used to conclude that P(c) is true, where c is a particular member of the domain.

- Example: To conclude from the statement "All women are wise" that "Lisa is wise".

- Lisa is a member of the domain of all women.

Universal generalization

- **premises**: P(c) for any **arbitrary** c

- $\forall x P(x)$

Rules of Inference with Quantifiers

Existential instantiation

- premises: $\exists x P(x)$
- **conclusion**: P(c) for some element c

- Let us conclude there is an element *c* in the domain for which P(c) is true if we know that $\exists x P(x)$ is true.

Existential generalization

- **premises**: P(c) for some element c
- conclusion: $\exists x P(x)$

- When we know one element c in the domain where P(c) is true, then we know that $\exists x P(x)$ is true.

Applying Rules of Inferences

Example 3: It is known that

- A student in this class has not read the book.
- Everyone in this class passed the first exam.
- Can we conclude "Someone who passed the first exam has not read the book" ?

To simplify the discussion, let

- C(x): x is in this class.
- B(x): x has read the book.
- P(x): x passed the first exam.

We will give a valid argument with

- **premises**: $\exists x (C(x) \land \neg B(x))$ and $\forall x (C(x) \rightarrow P(x))$

<ロト < 部ト < 臣ト < 臣ト 三 の < で 21

- conclusion: $\exists x (P(x) \land \neg B(x))$

Solving step by step:

Step
1.
$$\exists x(C(x) \land \neg B(x))$$

2. $C(a) \land \neg B(a)$
3. $C(a)$
4. $\forall x(C(x) \rightarrow P(x))$
5. $C(a) \rightarrow P(a)$
6. $P(a)$
7. $\neg B(a)$

8.
$$P(a) \wedge \neg B(a)$$

9.
$$\exists x (P(x) \land \neg B(x))$$

Reason

Premise Existential instantiatiation (1) Simplification (2) Premise Universal instantiation (4) Modus ponens (3)(5) Simplification (2) Conjunction (6)(7) Existential generalization (8)