DCP 1244 Discrete Mathematics Lecture 12: Recurrence

Tsung Tai Yeh

2021

10 M 1 d M 1 d M 1 d M 1 d M 1 d M 1 d M 1 d M 1

Outline

- \blacktriangleright Recurrence Relations
- \blacktriangleright Linear Recurrence Relations

What is a Sequence ?

 \triangleright A discrete structure used to represent an ordered list.

- e.g. a finite sequence: 1, 2, 3, 5. an infinite sequence: 1, $3, 9, ..., 3^n...$
	- Using the notation ${a_n}$ to describe the sequence.
- \blacktriangleright Geometric progression
	- $-$ a, ar, ar², ..., arⁿ, ...
	- The initial term is a, and the common ratio is r, $a, r \in \mathbb{R}$
- \blacktriangleright Arithmetic progression
	- $a, a + d, a + 2d, ..., a + nd, ...$
	- The initial term is a, and the common difference is d

3

Recurrence Relations

- A recurrence relation is an equation that express a_n in terms of one or more of the previous terms of the sequence, $a_0, a_1, ..., a_{n-1}$, for integer *n* with $n \ge n_0$, where $n_0 \in \mathbb{Z}^+$.
- \triangleright initial condition specifies the terms that precede the first term where the recurrence relation takes effect.
- ► Example: $a_n = a_{n-1} + 3$, where $n = 1, 2, 3, ...$ and $a_0 = 2$ $(a_0:$ initial condition)

- $a_1 = a_0 + 3 = 5$, $a_2 = 5 + 3 = 8$, $a_3 = 8 + 3 = 11$

4 D P A P + E + + E + P + P + D + P

Example: $a_n = a_{n-1} - a_{n-2}$, where $n = 2, 3, 4, ...$ $a_0 = 3$, $a_1 = 5$ (a_0 , a_1 : initial condition) $- a_2 = a_1 - a_0 = 5 - 3 = 2, a_3 = a_2 - a_1 = 2 - 5 = -3$

Fibonacci Sequence

- \triangleright The **Fibonacci sequence** is defined by the initial conditions $f_0 = 0, f_1 = 1$
	- The recurrence relation: $f_n = f_{n-1} + f_{n-2}$, where $n > 2$

-
10 M + 2

- $f_2 = f_1 + f_0 = 1 + 0 = 1$
- $-f_3 = f_2 + f_1 = 1 + 1 = 2$
- $-f_4 = f_3 + f_2 = 2 + 1 = 3$
- $-f_5 = f_4 + f_3 = 3 + 2 = 5$
- $f_6 = f_5 + f_4 = 5 + 3 = 8$

Closed Formula

- \blacktriangleright The closed formula is used to solve the recurrence relation with the initial conditions for the terms of the sequence.
- ► What is the closed formula of $a_n = a_{n-1} + 3$, where $n \ge 1$?
	- Initial condition $a_0 = 2$
	- forward substitution

$$
-a_2=2+3
$$

$$
- a_3 = (2+3)+3 = 2+3\cdot 2
$$

- $a_4 = (2 + 2 \cdot 3) + 3 = 2 + 3 \cdot 3$
- $-a_n = a_{n-1} + 3 = (2 + 3 \cdot (n-2)) = 2 + 3(n-1)$

4 ロ K 4 @ K 4 ミ K 4 ミ K = E + 9 Q O + 6

Closed Formula

\blacktriangleright

► What is the closed formula of $a_n = a_{n-1} + 3$, where $n \ge 1$?

- Initial condition $a_0 = 2$
- backward substitution

$$
-a_n=a_{n-1}+3
$$

$$
-(a_{n-2}+3)+3=a_{n-2}+3\cdot 2
$$

- $-(a_{n-3}) + 3 + 3 \cdot 2 = a_{n-3} + 3 \cdot 3$
- $-a_2 + 3(n-2) = (a_1 + 3) + 3(n-2) = 2 + 3(n-1)$

4 ロ X 4 団 X 4 ミ X 4 ミ X - ミ X - 9 Q Q - 7

Test Yourself

- A person deposits \$10,000 at a bank yielding 11% per year with interest compounded annually. How much will be in the account after 30 years ?
	- Let P_n denote the amount in the account after *n* years.

$$
P_n = P_{n-1} + 0.11P_{n-1} = (1.11)P_{n-1}
$$

$$
P_1 = (1.11)P_0
$$

$$
P_2 = (1.11)P_1 = (1.11)^2 P_0
$$

$$
P_3 = (1.11)P_2 = (1.11)^3 P_0
$$

 $-P_n = (1.11)P_{n-1} = (1.11)^n P_0$

$$
P_{30}=(1.11)^{30}\cdot 10,000
$$

Linear Recurrence Relations

- \triangleright A linear homogeneous recurrence relation of **degree** k with constant coefficients is a recurrence relation of the form:
	- $-a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k}$
	- $-c_1, c_2, ..., c_k \in \mathsf{R}, c_k \neq 0$
- \blacktriangleright The Linear recurrence relation
	- The right hand side is a sum of previous terms of the sequence each multiplied by a function of n.
- \blacktriangleright The **homogeneous** recurrence relation
	- No terms occur that are not multiples of the a_i s.
- \blacktriangleright The coefficients are all **constant** in terms of the sequence rather than functions that depend on n.
- \blacktriangleright The **degree** of the recurrence relation

- a_n is expressed in terms of the previous k terms of the sequence.

Linear Recurrence Relations

 \triangleright What is the degree of the following recurrence relation?

- $-P_n = (1.11)P_{n-1}$, P_n degree: 1
- $-f_n = f_{n-1} + f_{n-2}$, f_n degree: 2
- $-$ a_n = a_{n−5}, a_n degree: 5
- \triangleright What is linear recurrence relations?
	- $a_n = a_{n-1} + a_{n-2}^2$ is not linear.
	- $H_n = 2H_{n-1} + 1$ is not homogeneous.
	- $B_n = nB_{n-1}$ does not have constant coefficient.

10

Characteristic equation of Recurrence Relation

The recurrence relations have solutions of the form $a_n = r^n$, where r is a constant.

-
$$
a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k}
$$
 if and only if
\n- $r^n = c_a r^{n-1} + c_2 r^{n-2} + ... + c_k r^{n-k}$.
\n- $r^k - c_1 r^{k-1} - c_2 r^{k-2} - ... - c_{k-1} r - c_k = 0$ when both side
\nof the above equation divided by r^{n-k} , $r \neq 0$.

\blacktriangleright Characteristic equation

- The sequence ${a_n}$ with $a_n = r^n$, where $r \neq 0$ is a solution iff r is a solution of $r^{k} - c_1 r^{k-1} - c_2 r^{k-2} - \ldots - c_{k-1} r - c_k = 0.$

\blacktriangleright Characteristic roots

- The solution of the characteristic equation.

The Degree Two Case

 \triangleright A solution of the recurrence relation

-
$$
a_n = c_1 a_{n-1} + c_2 a_{n-2}
$$
 iff $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$

 $n = 0, 1, 2, \ldots, \alpha_1, \alpha_2$ are constants.

- $r^2 - c_1 r - c_2 = 0$ has two distinct roots r_1 and r_2 , where $c_1, c_2 \in R$.

 \blacktriangleright Proof:

$$
c_1 a_{n-1} + c_2 a_{n-2} = c_1(\alpha_1 r_1^{n-1} + \alpha_2 r_2^{n-1}) + c_2(\alpha_1 r^{n-2} + \alpha_2 r_2^{n-2})
$$

\n
$$
= \alpha_1 r_1^{n-2} (c_1 r_1 + c_2) + \alpha_2 r_2^{n-2} (c_1 r_2 + c_2)
$$

\n
$$
= \alpha_1 r_1^{n-2} r_1^2 + \alpha_2 r_2^{n-2} r_2^2
$$

\n
$$
= \alpha_1 r_1^n + \alpha_2 r_2^n
$$

\n
$$
= a_n
$$

The Degree Two Case

There are constants α_1 and α_2 such that $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n$

- initial condition:

$$
-a_0=C_0=\alpha_1+\alpha_2.
$$

$$
-a_1=C_1=\alpha_1r_1+\alpha_2r_2.
$$

 \triangleright Solving these two equations for α_1 and α_2

-
$$
\alpha_2 = C_0 - \alpha_1
$$

\n- $C_1 = \alpha_1 r_1 + (C_0 - \alpha_1) r_2 = \alpha_1 (r_1 - r_2) + C_0 r_2$
\n- $\alpha_1 = \frac{C_1 - C_0 r_2}{r_1 - r_2}$
\n- $\alpha_2 = C_0 - \alpha_1 = C_0 - \frac{C_1 - C_0 r_2}{r_1 - r_2} = \frac{C_0 r_1 - C_1}{r_1 - r_2}$

10 M 12 M 12 M 12 M 2 M 2 M 2 13

- \triangleright What is the solution of $a_n = c_1 a_{n-1} + c_2 a_{n-2} = a_{n-1} + 2a_{n-2}$ with $a_0 = 2$ and $a_1 = 7$?
	- The characteristic equation: $r^2 c_1r c_2 = r^2 r 2 = 0$

$$
-r=2, r=-1
$$

- $a_n = \alpha_1 2^n + \alpha_2 (-1)^n$

$$
- \alpha_0 = 2 = \alpha_1 + \alpha_2
$$

 $-\alpha_1 = 7 = \alpha_1 \cdot 2 + \alpha_2 \cdot (-1)$

$$
- \alpha_1 = 3, \alpha_2 = -1
$$

$$
-a_n=3\cdot 2^n-(-1)^n
$$

 \blacktriangleright The recurrence relation of Fibonacci numbers: $f_n = f_{n-1} + f_{n-2}$

- Initial condition: $f_0 = 0, f_1 = 1$
- Characteristic equation: $r^2 r 1 = 0$

-
$$
r_1 = \frac{(1+\sqrt{5})}{2}, r_2 = \frac{(1-\sqrt{5})}{2}
$$

\n- $f_n = \alpha_1 \left(\frac{(1+\sqrt{5})}{2}\right)^n + \alpha_2 \left(\frac{1-\sqrt{5}}{2}\right)^n$
\n- $f_0 = \alpha_1 + \alpha_2 = 0$

$$
f_1 = \alpha_1 \left(\frac{1+\sqrt{5}}{2} + \alpha_2 \left(\frac{1-\sqrt{5}}{2} \right) \right) = 1
$$

- $\alpha_1 = \frac{1}{\sqrt{5}}, \ \alpha_2 = -\frac{1}{\sqrt{5}}$

$$
\alpha_1 - \sqrt{5}
$$
, $\alpha_2 - \sqrt{5}$

 \blacktriangleright Fibonacci numbers are given by: √

-
$$
f_n = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n - \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2}\right)^n
$$

One Characteristic Root of Multiplicity Two

Theorem: $r^2 - c_1r - c_2 = 0$ has only one root r_0 , where $c_1, c_2 \in R, c_2 \neq 0$

16

- A solution of recurrence relation:
- $a_n = c_1 a_{n-1} + c_2 a_{n-2}$ iff

$$
- a_n = \alpha_1 r_0^n + \alpha_2 n r_0^n
$$

 $n = 0, 1, 2, \ldots, \alpha_1, \alpha_2$ are constants.

 \triangleright What is the solution of the recurrence relation $a_n = 6a_{n-1} - 9a_{n-2}$ with initial condition $a_0 = 1, a_1 = 6$?

17

- Characteristic equation: $r^2-6r+9=0$
- The only root $r = 3$
- The solution: $a_n = \alpha_1 3^n + \alpha_2 n 3^n$.
- $a_0 = 1 = \alpha_1$
- $a_1 = 6 = \alpha_1 \cdot 3 + \alpha_2 \cdot 3$
- $-\alpha_1 = 1, \alpha_2 = 1$

 \blacktriangleright The solution of this recurrence relation a_n

$$
-a_n=3^n+n3^n
$$

The General Case

- ▶ Theorem: Let $c_1, c_2, ..., c_k \in \mathbb{R}$
	- Characteristic equation: $r^k c_1r^{k-1} ... c_k = 0$
	- k distinct roots $r_1, r_2, ..., r_k$
	- $a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k}$ if and only if
	- $a_n = \alpha_1 r_1^n + \alpha_2 r_2^n + \ldots + \alpha_k r_k^n$
	- $n = 0, 1, 2, \dots$, where $\alpha_1, \alpha_2, \dots, \alpha_k$ are constants.

18

- \triangleright What is the solution of this recurrence relation $a_n = 6a_{n-1} - 11a_{n-2} + 6a_{n-3}$ with initial condition $a_0 = 2$, $a_1 = 5$, $a_2 = 15$?
	- Characteristic polynomial: $r^3 6r^2 + 11r 6$
	- The characteristic roots are $r = 1, r = 2, r = 3$
	- $a_n = \alpha_1 \cdot 1^n + \alpha_2 \cdot 2^n + \alpha_3 \cdot 3^n$
	- $a_0 = 2 = \alpha_1 + \alpha_2 + \alpha_3$
	- $a_1 = 5 = \alpha_1 + \alpha_2 \cdot 2 + \alpha_3 \cdot 3$
	- $a_2 = 15 = \alpha_1 + \alpha_2 \cdot 4 + \alpha_3 \cdot 9$
	- $-\alpha_1 = 1, \alpha_2 = -1, \alpha_3 = 2$
	- $-a_n = 1 2^n + 2 \cdot 3^n$

Case with m Multiplicity of the Root

▶ Theorem: Let $c_1, c_2, ..., c_k \in \mathbb{R}$ and the characteristic equation

$$
- r^k - c_1 r^{k-1} - \ldots - c_k = 0
$$

-

- t distinct roots $r_1, r_2, ..., r_t$ with multiplicities $m_1, m_2, ..., m_t$
	- $-m_i \geq 1, i = 1, 2, ..., t, t, m_1 + m_2 + ... + m_t = k$
	- $a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k}$ if and only if

$$
a_n = (\alpha_{1,0} + \alpha_{1,1}n + ... + \alpha_{1,m_1-1}n^{m_1-1})r_1^n + (\alpha_{2,0} + \alpha_{2,1}n + ... + \alpha_{2,m_2-1})r_2^n + ... + (\alpha_{t,0} + \alpha_{t,a}n + ... + \alpha_{t,m_t-1}n^{m_t-1})r_t^n
$$

- $n = 0, 1, 2, ...,$ where $\alpha_{i,j}$ are constants for $1 \le i \le t$ and $0 \le j \le m_i - 1$

- \blacktriangleright The roots of the characteristic equation in a linear homogeneous recurrence relation are 2, 2, 2, 5, 5, 9 (the root 2, 5, 9 with the multiplicity 3, 2, 1, respectively.) What is the form of the general solution ?
	- The general form of the solution:
	- $(\alpha_{1,0} + \alpha_{1,1}n + \alpha_{1,2}n^2)2^n + (\alpha_{2,0} + \alpha_{2,1}n)5^n + \alpha_{3,0}9^n$

21

 \triangleright What is the solution to the recurrence relation $a_n = -3a_{n-1} - 3a_{n-2} - a_{n-3}$ with $a_0 = 1$, $a_1 = -2$, $a_2 = -1$? - Characteristic equation: $r^3 + 3r^2 + 3r + 1 = (r + 1)^3$ - $r = -1$ with multiplicity 3 $-a_n = \alpha_{1,0}(-1)^n + \alpha_{1,1}n(-1)^n + \alpha_{1,2}n^2(-1)^n$ - $a_0 = 1 = \alpha_{1,0}$ $-a_1 = -2 = -\alpha_{1,0} - \alpha_{1,1} - \alpha_{1,2}$ $-a_2 = -1 = \alpha_{1,0} + 2\alpha_{1,1} + 4\alpha_{1,2}$ $-\alpha_{1,0} = 1, \alpha_{1,1} = 3, \alpha_{1,2} = -2$ - $a_n = (1 + 3n - 2n^2)(-1)^n$

22

Linear Nonhomogeneous Recurrence Relation

 \blacktriangleright Linear nonhomogeneous recurrence relation with constant coefficients

$$
- a_n = c_1 a_{n-1} + c_2 a_{n-2} + \ldots + c_k a_{n-k} + F(n)
$$

 $-F(n)$ is a function not identically zero depending only on n.

4 ロ ▶ 4 레 ▶ 4 페 ▶ 4 페 ★ 페 게 카 메 <u>가</u> 메 가 있습니다.
- 234 M → 234 M

- e.g.
$$
a_n = 3a_{n-1} + 2n
$$

 \blacktriangleright Associated homogeneous recurrence relation

 $-a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_k a_{n-k}$

- e.g.
$$
a_n = a_{n-1} + a_{n-2} + a_{n-3}
$$

Linear Nonhomogeneous Recurrence Relation

- \blacktriangleright $\{a_n^{(p)}\}$ is a particular solution of the nonhomogeneous linear recurrence relation with constant coefficients
- Every solution is of the form $\{a_n^{(p)}+a_n^{(h)}\}$

 $\blacktriangleright \{a_n^h\}$ is a solution of the associated homogeneous recurrence relation

 \blacktriangleright Proof: - $a_n^{(p)} = c_1 a_{n-1}^{(p)} + c_2 a_{n-2}^{(p)} + \ldots + c_k a_{n-k}^{(p)} + F(n)$ $- b_n = c_1b_{n-1} + c_2b_{n-2} + ... + c_kb_{n-k} + F(n)$ $-b_n - a_n^{(p)} =$ $c(b_{n-1}) - a_{n-1}^{(p)} + c_2(b_{n-2} - a_{n-2}^{(p)}) + \ldots + c_k(b_{n-k}) - a_{n-k}^{(p)}$ $\binom{(P)}{n-k}$ $- \{b_n - a_n^{(p)}\}$ is a solution of the associated homogeneous linear recurrence, say, $\{a_n^{(h)}\}$

► Find all solutions of the recurrence relation $a_n = 3a_{n-1} + 2n$.

- The associated linear homogeneous equation is $a_n = 3a_{n-1}$. Its solutions are $a_n^{(h)} = \alpha 3^n$, where α is a constant.

- $F(n) = 2n$ is a polynomial in *n* of degree one.

- Supposed that $p_n = cn + d$ is a solution.
- $-a_n = 3a_{n-1} + 2n = i$ cn + d = 3(c(n 1) + d) + 2n

$$
-(2+2c)n+(2d-3c)=0
$$

- $cn + d$ is a solution iff $2 + 2c = 0, 2d - 3c = 0$

-
$$
c = -1
$$
, $d = -3/2$, $a_n^{(p)} = -n - 3/2$
\n- $a_n = a_n^{(p)} + a_n^{(h)} = -n - \frac{3}{2} + \alpha \cdot 3^n$

Linear Nonhomogeneous Recurrence Relation

$$
a_n = c_1 a_{n-1} + c_2 a_{n-2} + \dots + c_k a_{n-k} + F(n)
$$
, where
 $c_1, c_2, ..., c_k \in \mathbb{R}$

- ▶ $F(n) = (b_t n^t + b_{t-1} n^{t-1} + ... + b_1 n + b_0)s^n$, where $b_0, b_1, ..., b_t \in R$ $s \in R$
- \triangleright When s is **not** a root of the characteristic equation

$$
- (p_t n^t + p_{t-1} n^{t-1} + \ldots + p_1 n + p_0) s^n
$$

 \triangleright When s is a root of the characteristic equation and its multiplicity is m , there is a particular solution of the form

-
$$
n^m(p_t n^t + p_{t-1} n^{t-1} + \dots + p_1 n + p_0)s^n
$$

 \triangleright What form does a particular solution of the linear nonhomogeneous recurrence relation $a_n = 6a_{n-1} - 9a_{n-2} + F(n)$?

- The characteristic equation: $r^2-6r+9=(r-3)^2=0$ has a single root, 3, or multiplicity 2.

 $-$ s = 3 is a root with multiplicity $m = 2$, but s = 2 is not a root.

- When $F(n)=3^n$, a particular solution has the form $\rho_0 n^2 3^n$

4 ロ X 4 団 X 4 ミ X 4 ミ X 3 - 2 - 20 Q 20 20 27