
5b_Algorithm_DP-1Copyright © 2003 Pearson Education, Inc.

Greedy Algorithm,

Dynamic Programming

Algorithm

蔡文能蔡文能蔡文能蔡文能

CSIE.NCTU.EDU.TW

計概補充計概補充計概補充計概補充

http://www.neevia.com

5b_Algorithm_DP-2Copyright © 2003 Pearson Education, Inc.

Agenda

• Complexity: Big O, Big Omega, Big Theta

• Knapsack problem

• Greedy Algorithm

• Making Change problem
• Knapsack problem

• Dynamic Programming (DP)

• DP vs. Divide-and-Conquer

• Greedy vs. Dynamic Programming

• Quick Sort, merge Sort

• C++ STL sort(), java.util.Arrays.sort()

5b_Algorithm_DP-3Copyright © 2003 Pearson Education, Inc.

Asymptotic Upper Bound (Big O)

f(n)

c g(n)• f(n) ≤ c g(n) for all n ≥ n0

• g(n) is called an

asymptotic upper bound of f(n).

• We write f(n)=O(g(n))

• It reads f(n) equals big oh of g(n).

n0

5b_Algorithm_DP-4Copyright © 2003 Pearson Education, Inc.

Asymptotic Lower Bound (Big Omega)

f(n)

c g(n)

• f(n) ≥ c g(n) for all n ≥ n0

• g(n) is called an

asymptotic lower bound of f(n).

• We write f(n)=ΩΩΩΩ(g(n))

• It reads f(n) equals big omega of g(n).

n0

5b_Algorithm_DP-5Copyright © 2003 Pearson Education, Inc.

Asymptotically Tight Bound (Big Theta)

f(n)

c1 g(n)

• f(n) = O(g(n)) and f(n) = Ω(g(n))

• g(n) is called an

asymptotically tight bound of f(n).

• We write f(n)=ΘΘΘΘ(g(n))

• It reads f(n) equals theta of g(n).

n0

c2 g(n)

5b_Algorithm_DP-6Copyright © 2003 Pearson Education, Inc.

Algorithm types

• Algorithm types we will consider include:

– Simple recursive algorithms

– Backtracking algorithms

– Greedy algorithms

– Divide and conquer algorithms

– Dynamic programming algorithms

– Branch and bound algorithms

– Brute force algorithms

– Randomized algorithms

5b_Algorithm_DP-7Copyright © 2003 Pearson Education, Inc.

Knapsack Problem
• Knapsack Problem: Given n items, with ith item worth vi dollars and weighing

wi pounds, a thief wants to take as valuable a load as possible, but can carry at
most W pounds in his knapsack.

• The 0-1 knapsack problem: Each item is either taken or not taken (0-1
decision).

• The fractional knapsack problem: Allow to take fraction of items. (較簡單)

• Exp: = (60, 100, 120), = (10, 20, 30), W = 50

• Greedy solution by taking items in order of greatest value per pound is optimal
for the fractional version, but not for the 0-1 version.

• The 0-1 knapsack problem is NP-complete, but can be solved in O(nW) time by
Dynamic Programming. (A polynomial-time DP??)

5b_Algorithm_DP-8Copyright © 2003 Pearson Education, Inc.

The Fractional Knapsack Problem

• Given: A set S of n items, with each item i having
– bi - a positive benefit

– wi - a positive weight

• Goal: Choose items with maximum total benefit but with
weight at most W.

• If we are allowed to take fractional amounts, then this is the
fractional knapsack problem.
– In this case, we let xi denote the amount we take of item i

– Objective: maximize

– Constraint:

∑
∈Si

iii wxb)/(

∑
∈

≤
Si

i Wx

5b_Algorithm_DP-9Copyright © 2003 Pearson Education, Inc.

The Fractional Knapsack Algorithm

• Greedy choice: Keep taking
item with highest value
(benefit to weight ratio)
– Since

– Run time: O(n log n). Why?

• Correctness: Suppose there is a
better solution
– there is an item i with higher

value than a chosen item j, but
xi<wi, xj>0 and vj<vi

– If we substitute some j with i, we
get a better solution

– How much of i: min{wi-xi, xj}

– Thus, there is no better solution
than the greedy one

Algorithm fractionalKnapsack(S, W)

Input: set S of items w/ benefit bi

and weight wi; max. weight W
Output: amount xi of each item i

to maximize benefit w/ weight
at most W

for each item i in S

xi ← 0

vi ← bi / wi {value}

w ← 0 {total weight}

while w < W

remove item i w/ highest vi
xi ← min{wi , W - w}

w ← w + min{wi , W - w}

∑∑
∈∈

=
Si

iii

Si

iii xwbwxb)/()/(

5b_Algorithm_DP-10Copyright © 2003 Pearson Education, Inc.

0-1 Knapsack problem (1/5)

• Given a knapsack with maximum capacity W,

and a set S consisting of n items

• Each item i has some weight wi and benefit

value bi (all wi , bi and W are integer values)

• Problem:

How to pack the knapsack to achieve maximum total

value of packed items?

5b_Algorithm_DP-11Copyright © 2003 Pearson Education, Inc.

0-1 Knapsack problem (2/5)

W = 20

This is a knapsack

Max weight: W = 20

wi

9

5

4

3

2

Weight

bi

10

8

5

4

3

Benefit value

Items

5b_Algorithm_DP-12Copyright © 2003 Pearson Education, Inc.

0-1 Knapsack problem (3/5)

• Problem, in other words, is to find

∑∑
∈∈

≤
Ti

i

Ti

i Wwb subject to max

• The problem is called a “0-1” Knapsack

problem, because each item must be

entirely accepted or rejected.

• Another version of this problem is the

“Fractional Knapsack Problem”, where we

can take fractions of items.

5b_Algorithm_DP-13Copyright © 2003 Pearson Education, Inc.

Let’s first solve this problem with a
straightforward algorithm (Brute-force)

�Since there are n items, there are 2n possible
combinations of items.

�We go through all combinations and find
the one with the most total value and with
total weight less or equal to W.

�Running time will be O(2n)

0-1 Knapsack problem (4/5)

5b_Algorithm_DP-14Copyright © 2003 Pearson Education, Inc.

Brute force ?

• Brute = Beast 野獸
• Brute 是個英雄(Marcus Junius Brutus)，，，，出現在莎士比亞擷莎士比亞擷莎士比亞擷莎士比亞擷
取羅馬歷史上西元前取羅馬歷史上西元前取羅馬歷史上西元前取羅馬歷史上西元前44年凱撒遇刺事件所寫描述一個英雄年凱撒遇刺事件所寫描述一個英雄年凱撒遇刺事件所寫描述一個英雄年凱撒遇刺事件所寫描述一個英雄
墜落的悲劇墜落的悲劇墜落的悲劇墜落的悲劇《凱撒大帝》。。。。貴族世家後貴族世家後貴族世家後貴族世家後代的Brute 原為凱原為凱原為凱原為凱
撒忠臣撒忠臣撒忠臣撒忠臣，，，，因凱撒獨裁憂心羅馬前途決定刺殺凱撒因凱撒獨裁憂心羅馬前途決定刺殺凱撒因凱撒獨裁憂心羅馬前途決定刺殺凱撒因凱撒獨裁憂心羅馬前途決定刺殺凱撒。。。。

• Brutus 刺殺凱撒大帝後自殺之前留下一句名言：
「並非我愛凱撒較少並非我愛凱撒較少並非我愛凱撒較少並非我愛凱撒較少，，，，而是我愛羅馬更多而是我愛羅馬更多而是我愛羅馬更多而是我愛羅馬更多。。。。」

• 1929年漫畫家西格(Elzie Segar)創作連載漫畫大力水手大力水手大力水手大力水手卜派卜派卜派卜派 (PopEye

the Sailor)

• 1933 Fleischer Studios 改編為戲劇, Brute Bluto是 Popeye的死對頭!

1961年更搬上電視卡通 (cartoon) !

In Shakespeare's "Julius Caesar," he is called Brute, and not

Brutus, because "Brute" is in the Vocative Case in Latin.

5b_Algorithm_DP-15Copyright © 2003 Pearson Education, Inc.

0-1 Knapsack problem (5/5)

• Can we do better?

– Yes, with an algorithm based on

Dynamic programming

– We need to carefully identify the subproblems

Key point:

If items are labeled 1..n, then a subproblem

would be to find an optimal solution for

Sk = {items labeled 1, 2, .. k}

5b_Algorithm_DP-16Copyright © 2003 Pearson Education, Inc.

Algorithm types

• Algorithm types we will consider include:

– Simple recursive algorithms

– Backtracking algorithms

– Greedy algorithms

– Divide and Conquer algorithms

– Dynamic programming algorithms

– Branch and bound algorithms

– Brute force algorithms

– Randomized algorithms

5b_Algorithm_DP-17Copyright © 2003 Pearson Education, Inc.

The Greedy Method Technique

• The greedy method is a general algorithm design

paradigm, built on the following elements:
– configurations: different choices, collections, or values to find

– objective function: a score assigned to configurations, which we

want to either maximize or minimize

– A greedy algorithm always makes the choice that looks best at the

moment. (時到時擔當, 沒米再煮蕃薯塊湯)

– Top-down algorithmic structure

• With each step, reduce problem to a smaller problem

• It works best when applied to problems with the greedy-

choice property:

– a globally-optimal solution can always be found by a series of

local improvements from a starting configuration.

The greedy method cannot always find an optimal solution!

5b_Algorithm_DP-18Copyright © 2003 Pearson Education, Inc.

Coin Changing problem

• Problem: A dollar amount to reach and a collection of
coin amounts to use to get there.
– Configuration: A dollar amount yet to return to a customer

plus the coins already returned

– Objective function: Minimize number of coins returned.

• Greedy solution: Always return the largest coin you
can
– Example 1: Coins are valued $.32, $.08, $.01

• Has the greedy-choice property, since no amount over $.32 can be
made with a minimum number of coins by omitting a $.32 coin
(similarly for amounts over $.08, but under $.32).

Coins in USA: 1 ¢ 5 ¢ 10 ¢ 25 ¢ 50 ¢

5b_Algorithm_DP-19Copyright © 2003 Pearson Education, Inc.

Greedy Algorithm for Coin Changing problem

This algorithm makes change for an amount A using coins of
denominations

denom[1] > denom[2] > ··· > denom[n] = 1.

Input Parameters: Input Parameters: Input Parameters: Input Parameters: denomdenomdenomdenom, , , , AAAA
Output Parameters: NoneOutput Parameters: NoneOutput Parameters: NoneOutput Parameters: None
greedy_coin_changegreedy_coin_changegreedy_coin_changegreedy_coin_change(int(int(int(int denomdenomdenomdenom[][][][], , , , intintintint AAAA) {) {) {) {

iiii = 1= 1= 1= 1
while (while (while (while (AAAA > 0) {> 0) {> 0) {> 0) {

cccc = = = = AAAA////denomdenomdenomdenom[[[[i i i i]]]]
printlnprintlnprintlnprintln((((““““useuseuseuse ”””” + + + + cccc + + + +

““““ coins of denomination coins of denomination coins of denomination coins of denomination ”””” + + + +
denomdenomdenomdenom[[[[iiii])])])])

AAAA = = = = AAAA ---- cccc * * * * denomdenomdenomdenom[[[[iiii]]]]
iiii = = = = iiii + 1+ 1+ 1+ 1

}}}}
}}}}

5b_Algorithm_DP-20Copyright © 2003 Pearson Education, Inc.

Question ?

Suppose there are unlimited quantities of coins
of each denomination.

What property should the denominations c1, c2, …, ck
have so that the greedy algorithm always yields an
optimal solution?

� Consider this example:
– Example 2: Coins are valued $.30, $.20, $.05, $.01

• Does not have greedy-choice property, since $.40 is best made
with two $.20’s, but the greedy solution will pick three coins
(which ones?)

The greedy method cannot always find an optimal solution!

5b_Algorithm_DP-21Copyright © 2003 Pearson Education, Inc.

Consider the Coin set for examples

• For the following examples, we will assume

coins in the following denominations:

1¢ 5¢ 10¢ 21¢ 25¢

• We’ll use 63¢ as our goal

• This example is taken from:
Data Structures & Problem Solving using Java by Mark Allen Weiss

The greedy method cannot always find an optimal solution!

5b_Algorithm_DP-22Copyright © 2003 Pearson Education, Inc.

(1) A simple solution

• We always need a 1¢ coin, otherwise no solution exists for

making one cent

• To make K cents:

– If there is a K-cent coin, then that one coin is the minimum

– Otherwise, for each value i < K,

• Find the minimum number of coins needed to make i cents

• Find the minimum number of coins needed to make K - i cents

– Choose the i that minimizes this sum

• This algorithm can be viewed as divide-and-conquer,

or as brute force
– This solution is very recursive

– It requires exponential work

– It is infeasible to solve for 63¢

5b_Algorithm_DP-23Copyright © 2003 Pearson Education, Inc.

(2) Another solution

• We can reduce the problem recursively by choosing
the first coin, and solving for the amount that is left

• For 63¢:
– One 1¢ coin plus the best solution for 62¢

– One 5¢ coin plus the best solution for 58¢

– One 10¢ coin plus the best solution for 53¢

– One 21¢ coin plus the best solution for 42¢

– One 25¢ coin plus the best solution for 38¢

• Choose the best solution from among the 5 given
above

• Instead of solving 62 recursive problems, we solve 5

• This is still a very expensive algorithm

5b_Algorithm_DP-24Copyright © 2003 Pearson Education, Inc.

(3) A dynamic programming solution

• Idea: Solve first for one cent, then two cents, then three cents, etc.,

up to the desired amount

– Save each answer in an array !

• For each new amount N, compute all the possible pairs of

previous answers which sum to N

– For example, to find the solution for 13¢,

• First, solve for all of 1¢, 2¢, 3¢, ..., 12¢

• Next, choose the best solution among:

– Solution for 1¢ + solution for 12¢

– Solution for 2¢ + solution for 11¢

– Solution for 3¢ + solution for 10¢

– Solution for 4¢ + solution for 9¢

– Solution for 5¢ + solution for 8¢

– Solution for 6¢ + solution for 7¢

5b_Algorithm_DP-25Copyright © 2003 Pearson Education, Inc.

Example using dynamic programming

• Suppose coins are 1¢, 3¢, and 4¢

– There’s only one way to make 1¢ (one coin)

– To make 2¢, try 1¢+1¢ (one coin + one coin = 2 coins)

– To make 3¢, just use the 3¢ coin (one coin)

– To make 4¢, just use the 4¢ coin (one coin)

– To make 5¢, try

• 1¢ + 4¢ (1 coin + 1 coin = 2 coins)

• 2¢ + 3¢ (2 coins + 1 coin = 3 coins)

• The first solution is better, so best solution is 2 coins

– To make 6¢, try

• 1¢ + 5¢ (1 coin + 2 coins = 3 coins)

• 2¢ + 4¢ (2 coins + 1 coin = 3 coins)

• 3¢ + 3¢ (1 coin + 1 coin = 2 coins) – best solution

– Etc.

5b_Algorithm_DP-26Copyright © 2003 Pearson Education, Inc.

How good is the algorithm?

• The first algorithm is recursive, with a branching
factor of up to 62
– Possibly the average branching factor is somewhere around

half of that (31)

– The algorithm takes exponential time, with a large base

• The second algorithm is much better—it has a
branching factor of 5
– This is exponential time, with base 5

• The dynamic programming algorithm is O(N*K),
where N is the desired amount and K is the number of
different kinds of coins

5b_Algorithm_DP-27Copyright © 2003 Pearson Education, Inc.

Dynamic Programming (DP) ?

• Like divide-and-conquer, solve problem by combining the
solutions to sub-problems.

• Differences between divide-and-conquer and DP:
– Independent sub-problems, solve sub-problems independently and

recursively, (so same sub(sub)problems solved repeatedly)

– Sub-problems are dependent, i.e., sub-problems share sub-sub-
problems, every sub(sub)problem solved just once, solutions to
sub(sub)problems are stored in a table and used for solving higher
level sub-problems.

• DP reduces computation by
– Solving subproblems in a bottom-up fashion.

– Storing solution to a subproblem the first time it is solved.

– Looking up the solution when subproblem is encountered again.

5b_Algorithm_DP-28Copyright © 2003 Pearson Education, Inc.

Fibonacci sequence (1/4)

• Fibonacci sequence: 1 , 1 , 2 , 3 , 5 , 8 , 13 , 21 , …

Fi = 1 if i ==1 or i == 2 (assume F0 = 0)

Fi = Fi-1 + Fi-2 if i ≥ 3

• Solved by a recursive program:

• Much replicated computation is done.

• It should be solved by a simple loop.

f2f2f2f2

f4f4f4f4 f3f3f3f3

f1f1f1f1

f3f3f3f3

f2f2f2f2 f1f1f1f1

f1f1f1f1 f0f0f0f0

f2f2f2f2

f1f1f1f1 f0f0f0f0

f1f1f1f1

f5f5f5f5

f0f0f0f0

5b_Algorithm_DP-29Copyright © 2003 Pearson Education, Inc.

Fibonacci Sequence (2/4)

• Recursive logic:
– F1 = F2 = 1

– If i > 2 then Fi = Fi-1 + F i-2

• Directly translates into a

recursive algorithm F:
F(i) {

if (i = 1) or (i = 2)

x ←←←← 1

else

x ←←←← F(i-1) + F(i-2)

return x

}

• F’s call tree is exponential;

F is recomputed many times

for the same input value!

We can speed things up by
storing output values of F in
an array AF

F(i) {

if (AF != NULL) return AF

if (i = 1) or (i = 2)

x ←←←← 1

else

x ←←←← F(i-1) + F(i-2)

AF ←←←← x

return x

}

Since there are n cells in AF
and each cell takes O(1) time
to compute, this is O(n)!

5b_Algorithm_DP-30Copyright © 2003 Pearson Education, Inc.

Fibonacci Sequence (3/4)

We have sped things up by
storing output values of F in
an array AF

F(i) {

if (AF != NULL) return AF

if (i = 1) or (i = 2)

x ←←←← 1

else

x ←←←← F(i-1) + F(i-2)

AF ←←←← x

return x

}

But we don’t need recursion at
all, just a loop through AF!

The final algorithm is:
Fib(n) {

AF ←←←← new array of n int’s

for (i = 1 to n) {

if (i = 1) or (i = 2)

x ←←←← 1

else

x ←←←← F(i-1) + F(i-2)

AF[i] ←←←← x

}

return AF[n]

}

This is a dynamic
programming
algorithm!

5b_Algorithm_DP-31Copyright © 2003 Pearson Education, Inc.

Fibonacci Sequence (4/4)

using Dynamic programming

• Dynamic programming calculates

from bottom to top. (bottom-up)

• Values are stored for later use.

• This reduces repetitive calculation.

Pascal Triangle ?

5b_Algorithm_DP-32Copyright © 2003 Pearson Education, Inc.

Application domain of DP

• Optimization problem: find a solution with

optimal (maximum or minimum) value.

• An optimal solution, not the optimal solution,

since may more than one optimal solution,

any one is OK.

• Dynamic Programming is an algorithm

design method that can be used when the

solution to a problem may be viewed as the

result of a sequence of decisions

5b_Algorithm_DP-33Copyright © 2003 Pearson Education, Inc.

Typical steps of DP

• Characterize the structure of an optimal
solution.

• Recursively define the value of an optimal
solution.

• Compute the value of an optimal solution in a
bottom-up fashion.

• Compute an optimal solution from
computed/stored information.

5b_Algorithm_DP-34Copyright © 2003 Pearson Education, Inc.

Comparison with Divide-and-Conquer

• Divide-and-conquer algorithms split a problem into separate

subproblems, solve the subproblems, and combine the results

for a solution to the original problem

– Example: Quicksort

– Example: Mergesort

– Example: Binary search

• Divide-and-Conquer algorithms can be thought of as

top-down algorithms

• In contrast, a dynamic programming algorithm proceeds by

solving small problems, then combining them to find the

solution to larger problems

• Dynamic programming can be thought of as bottom-up

Divide-and-Conquer

分割征服 ;各個擊破;拆解

5b_Algorithm_DP-35Copyright © 2003 Pearson Education, Inc.

Divide and Conquer

• Divide the problem into a number of

sub-problems (similar to the original

problem but smaller);

• Conquer the sub-problems by solving them

recursively (if a sub-problem is small

enough, just solve it in a straightforward

manner (base case).)

• Combine the solutions to the sub-problems

into the solution for the original problem

5b_Algorithm_DP-36Copyright © 2003 Pearson Education, Inc.

Divide and Conquer example : Merge Sort

• Divide the n-element sequence to be sorted into

two subsequences of n/2 element each

• Conquer: Sort the two subsequences

recursively using merge sort

• Combine: merge the two sorted subsequences

to produce the sorted answer

• Note: during the recursion, if the subsequence

has only one element, then do nothing.

5b_Algorithm_DP-37Copyright © 2003 Pearson Education, Inc.

Comparison with Greedy

• Common: optimal substructure
– Optimal substructure: An optimal solution to the

problem contains within its optimal solutions to
subproblems.

• E.g., if A is an optimal solution to S, then A' = A - {1} is an
optimal solution to S' = {i ∈ S: si ≥ f1}.

• Difference: greedy-choice property
– Greedy: A global optimal solution can be arrived at by

making a locally optimal choice.

– Dynamic programming needs to check the solutions to
subproblems.

• DP can be used if greedy solutions are not optimal.

The greedy method cannot always find an optimal solution!

5b_Algorithm_DP-38Copyright © 2003 Pearson Education, Inc.

Greedy vs. Dynamic Programming

• The knapsack problem is a good example of the difference.

• 0-1 knapsack problem: not solvable by greedy.
– n items.

– Item i is worth $vi , weighs wi pounds.

– Find a most valuable subset of items with total weight ≤ W.

– Have to either take an item or not take it—can’t take part of it.

• Fractional knapsack problem: solvable by greedy
– Like the 0-1 knapsack problem, but can take fraction of an item.

– Both have optimal substructure.

– But the fractional knapsack problem has the greedy-choice property,
and the 0-1 knapsack problem does not.

– To solve the fractional problem, rank items by value/weight: vi / wi .

– Let v i / wi ≥ vi+1 / wi+1 for all i .

The greedy method cannot always find an optimal solution!

5b_Algorithm_DP-39Copyright © 2003 Pearson Education, Inc.

Divide-and-Conquer in Sorting

• Mergesort

– O(n log n) always, but O(n) storage

• Quick sort

– O(n log n) average, O(n^2) worst in time

– O(log n) storage

– Good in practice (>12)

5b_Algorithm_DP-40Copyright © 2003 Pearson Education, Inc.

Algorithm quick_sort(array A, from, to)

Input: from - pointer to the starting position of array A

to - pointer to the end position of array A

Output: sorted array: A’

1. Choose any one element as the pivot;

2. Find the first element a = A[i] larger than or equal to pivot from

A[from] to A[to];

3. Find the first element b = A[j] smaller than or equal to pivot from

A[to] to A[from];

4. If i < j then exchange a and b;

5. Repeat step from 2 to 4 until j <= i;

6. If from < j then recursive call quick_sort(A, from, j);

7. If i < to then recursive call quick_sort(A, i, to);

Quick Sort (1/6)

5b_Algorithm_DP-41Copyright © 2003 Pearson Education, Inc.

• Quick sort
main idea:

1st step: 3 1 6 5 4 8 10 7

2nd step: 3 2 1 5 8 9 10 7

3rd step: 3 2 1 4 5 6 8 9 10 7

Choose 5 as pivotfrom to

2299

66 44

Smaller than any integerSmaller than any integer

right to 5right to 5
greater than any integergreater than any integer

left to 5left to 5

ii jj

Quick Sort (2/6)

5b_Algorithm_DP-42Copyright © 2003 Pearson Education, Inc.

• Quick sort

4th step: 2 4 5 6 10 9

5th step: 1 2 3 4 5

7th step:7th step: 7 8 10 97 8 10 9

pivotfrom to

33 11 88 77

5 6 7 8 10 95 6 7 8 10 96th step:6th step:

pivotfrom to

9 109 108th step:8th step:

Quick Sort (3/6)

5b_Algorithm_DP-43Copyright © 2003 Pearson Education, Inc.

public class QuickSorter { // Java function should be in a class

public static void sort (int[] a, int from, int to) {

if ((a == null) || (a.length < 2)) return;

int i = from, j = to;

int pivot = a[(from + to)/2];

do {

while ((i < to) && (a[i] < pivot)) i++;

while ((j > from) && (a[j] >= pivot)) j--;

if (i < j) { int tmp =a[i]; a [i] = a[j]; a[j] = tmp;}

i++; j--;

}while (i <= j); exchange(a, i, (from+to)/2); /***/

if (from < j) sort(a, from, j);

if (i < to) sort(a, i, to);

}

}

Quick Sort (4/6)

5b_Algorithm_DP-44Copyright © 2003 Pearson Education, Inc.

Quick Sort (5/6)

14

3, 4, 6, 1, 10, 9, 5, 20, 19, 141, 12, 2, 15, 21, 13, 18, 17, 8, 16,

3, 4, 6, 1, 10, 9, 5, 8, 19, 1, 12, 2, 15, 21, 13, 18, 17, ,16,

3, 4, 6, 1, 10, 9, 5, 8, 13 ,1, 12, 2, 15, 21, 19, 18, 17, 20, 16,

i

j
3, 4, 6, 1, 10, 9, 5, 8, 13 , 1, 12, 2

ii jj

3, 4, 6, 1, 10, 9, 5, 20, 19, 14, 12, 2, 15, 21, 13, 18, 17, 8, 16, 1

jjii

20,

14

ii jj

3, 4, 6, 1, 10, 9, 5, 8, 13 , 1, 12, 2, 14, 21, 19, 18, 17, 20, 16, 1514

5b_Algorithm_DP-45Copyright © 2003 Pearson Education, Inc.

void qsort (int a[], int from, int to) {

int n = to – from + 1;

if ((n < 2) || (from >= to)) return;

int k = (from + to)/2; int tmp =a[to]; a [to] = a[k]; a[k] = tmp;

int pivot = a[to]; // choose a[to] as the pivot

int i = from, j = to-1;

while(i < j) {

while ((i < j) && (a[i] < pivot)) i++;

while ((i < j) && (a[j] >= pivot)) j--;

if (i < j) { tmp =a[i]; a [i] = a[j]; a[j] = tmp;}

};

tmp =a[i]; a [i] = a[to]; a[to] = tmp; // exchange

if (from < i-1) qsort(a, from, i-1);

if (i < to) qsort(a, i+1, to);

}

Quick Sort (6/6)

5b_Algorithm_DP-46Copyright © 2003 Pearson Education, Inc.

有大 bugs 的程式碼的程式碼的程式碼的程式碼

//buga.c with Big BUG (quick sort)

// 這這這這sort程式有一個大程式有一個大程式有一個大程式有一個大 bug :

// .. i 往右時可能會走過頭往右時可能會走過頭往右時可能會走過頭往右時可能會走過頭 ! j 往左時也可能會走過頭往左時也可能會走過頭往左時也可能會走過頭往左時也可能會走過頭 !

// program 會在執行時當掉會在執行時當掉會在執行時當掉會在執行時當掉 ! Why?

void sort(int left, int right, double x[]) { // 注意參數順序要與呼叫者相同注意參數順序要與呼叫者相同注意參數順序要與呼叫者相同注意參數順序要與呼叫者相同

int i, j; double tmp;

i = left; j = right+1; // i points to LEFT, j points to 最右的下一個最右的下一個最右的下一個最右的下一個
while(i<=j) {

do { i++; } while(x[i] >= x[left]); // Bug Bug Bug

do { j--; } while (x[j] <= x[left]); //Bug Bug Bug

if(i<j) {tmp=x[i]; x[i]=x[j]; x[j]=tmp; }

}

tmp=x[j]; x[j]=x[left]; x[left]=tmp;

if(left< j-1) sort(left, j-1, x);

if(j+1 < right) sort(j+1, right, x);

} // sort()

5b_Algorithm_DP-47Copyright © 2003 Pearson Education, Inc.

有小 bugs 的程式碼的程式碼的程式碼的程式碼

//bugb.c with small BUG (quick sort)

// 這這這這sort程式有一個小程式有一個小程式有一個小程式有一個小 bug : (已經試著要已經試著要已經試著要已經試著要 fix Big Bug)

// .. i 往右時可能會走過頭往右時可能會走過頭往右時可能會走過頭往右時可能會走過頭 ! j 往左時也可能會走過頭往左時也可能會走過頭往左時也可能會走過頭往左時也可能會走過頭 !

// Please try to fix it

void sort(int left, int right, double x[]) {

int i, j; double tmp;

i = left; j = right+1; // i points to LEFT, j points to 最右的下一個最右的下一個最右的下一個最右的下一個
while(i<=j) {

do { i++; } while(i < right && x[i] >= x[left]); // Bug 還在還在還在還在
do { j--; } while (j > left &&x[j] <= x[left]);

if(i<j) {tmp=x[i]; x[i]=x[j]; x[j]=tmp; }

}

tmp=x[j]; x[j]=x[left]; x[left]=tmp;

if(left< j-1) sort(left, j-1, x);

if(j+1 < right) sort(j+1, right, x);

}

5b_Algorithm_DP-48Copyright © 2003 Pearson Education, Inc.

比了幾次比了幾次比了幾次比了幾次 data 才完成才完成才完成才完成 sorting ?(1/2)

//sortg.c -- quick sort

#include<stdio.h>

long n=0;

void sort(int left, int right, double x[]) {

int i, j; double tmp, pivot;

i = left; j = right+1;

pivot = x[left];

while(i<=j) {

do { i++; ++n;} while(i< j && x[i] >= pivot);

if(i>= j) --n;

do { j--; ++n;} while (i<=j &&x[j] <= pivot);

if(i > j) --n;

if(i<j) {tmp=x[i]; x[i]=x[j]; x[j]=tmp; }

}

printf("= n=%ld", n);

tmp=x[j]; x[j]=x[left]; x[left]=tmp;

if(left< j-1) sort(left, j-1, x);

if(j+1 < right) sort(j+1, right, x);

}

5b_Algorithm_DP-49Copyright © 2003 Pearson Education, Inc.

比了幾次 data 才完成 sorting ?(2/2)

double y[] = {15, 38, 12, 75, 39,88,20, 66, 49, 58};

#include<stdio.h>

void pout(double*, int);

int main() {

printf("Before sort:\n"); pout(y, sizeof(y)/sizeof(y[0]));

sort(0, sizeof(y)/sizeof(y[0]) -1 ,y);

printf("==The number of data comparisms, n = %ld\n", n);

//

printf(" After sort:\n"); pout(y, sizeof(y)/sizeof(y[0]));

}

void pout(double*p, int n) {

int i;

for(i=0; i<=n-1; ++i) {

printf("%7.2f ", p[i]);

} printf(" \n");

}

5b_Algorithm_DP-50Copyright © 2003 Pearson Education, Inc.

qsort() in C Library

• There is a library function for quick sort in
C Language: qsort().

• #include <stdlib.h>

void qsort(void *base, size_t num, size_t size,

int (*comp_func)(const void *, const void *))

void * base --- a pointer to the array to be sorted

size_t num --- the number of elements

size_t size --- the element size

int (*cf) (…) --- is a pointer to a function used to compare

int comp_func() 必須傳回必須傳回必須傳回必須傳回 -1, 0, 1 代表代表代表代表 <, ==, >

5b_Algorithm_DP-51Copyright © 2003 Pearson Education, Inc.

C++ STL <algorithm>

#include <algorithm>

using namespace std;

int x[] = { 38, 49, 15, 158, 25, 58, 88,66 }; // array of primitive data

#define n (sizeof(x)/sizeof(x[0]))

//…

sort(x, x+n); // ascending order

// what if we want to sort into descending order

sort(x, x+n, sortfun); // with compare function

sort(y, y+k, sortComparatorObject); // with Comparator Object

http://www.cplusplus.com/reference/algorithm/sort/

Comparison function? Default: bool operator<(first, second)

C++ Comparison function為為為為bool

須傳回須傳回須傳回須傳回 true 代表代表代表代表 第一參數第一參數第一參數第一參數 < 第二參數第二參數第二參數第二參數 : ascending

站在巨人肩牓上

Comparator 內要有 bool operator() (Obj a, Obj b) { /*…*/ }

5b_Algorithm_DP-52Copyright © 2003 Pearson Education, Inc.

Java 的 java.util.Arrays.sort()

• 只能用來 sort 物件的 array (Not primitive data)

• 可透過該物件的 compareTo(), 當然該 class 須
implements java.lang.Comparable

• 也可透過傳給 sort 一個 Comparator, 就是某個有
implement java.util.Comparator之 class 的實體物件;

注意 Java 沒辦法把函數當作參數傳!!!

Java 不可以把函數當作參數!

java.util.Arrays.sort() 要傳 Comparator 物件?

不傳則會用要被 sort 之 array 的物件內的 compareTo()

不論是 compareTo(), 還是Comparator 內的內的內的內的 compare()

都是類似都是類似都是類似都是類似 C 的的的的 qsort 用的比較函數用的比較函數用的比較函數用的比較函數, int, 要傳回要傳回要傳回要傳回 -1, 0, 1

5b_Algorithm_DP-53Copyright © 2003 Pearson Education, Inc.

Merging means the combination of two or more ordered sequence into

a single sequence. For example, can merge two sequences: 503, 703, 765

and 087, 512, 677 to obtain a sequence: 087, 503, 512, 677, 703, 765.

A simple way to accomplish this is to compare the two smallest items,

output the smallest, and then repeat the same process.

Merge Sort (1/5)

503 703 765

87 512 677 87
503 703 765

512 677

87 503
703 765

512 677

The smaller one goes first

5b_Algorithm_DP-54Copyright © 2003 Pearson Education, Inc.

Algorithm Merge(s1, s2)

Input: two sequences: s1 - x1 ≤ x2 ... ≤ xm and s2 - y1 ≤ y2 ... ≤ yn

Output: a sorted sequence: z1 ≤ z2 ... ≤ zm+n.

1.[initialize] i := 1, j := 1, k := 1;

2.[find smaller] if xi ≤ yj goto step 3, otherwise goto step 5;

3.[output xi] zk.:= xi, k := k+1, i := i+1. If i ≤ m, goto step 2;

4.[transmit yj ≤ ... ≤ yn] zk, ..., zm+n := yj, ..., yn. Terminate the algorithm;

5.[output yj] zk.:= yj, k := k+1, j := j+1. If j ≤ n, goto step 2;

6.[transmit xi ≤ ... ≤ xm] zk, ..., zm+n := xi, ..., xm. Terminate the algorithm;

Merge Sort (2/5)

5b_Algorithm_DP-55Copyright © 2003 Pearson Education, Inc.

Algorithm Merge-sorting(s)

Input: a sequences s = < x1, ..., xm>

Output: a sorted sequence.

1. If |s| = 1, then return s;

2. k := m/2;

3. s1 := Merge-sorting(x1, ..., xk);

4. s2 := Merge-sorting(xk+1, ..., xm);

5. return(Merge(s1, s2));

Merge Sort (3/5)

Merge(s1, s2) will merge the two halves s1 and s2 together

5b_Algorithm_DP-56Copyright © 2003 Pearson Education, Inc.

Mergesort (4/5) (in C Language)

public void mergeSort (double arr [],

int from, int to)

{

if (from <= to)

return;

int middle = (from + to) / 2;

mergeSort (arr, from, middle);

mergeSort (arr, middle + 1, to);

if (arr [middle] > arr [middle+ 1])

{

copy (arr, from, to, temp) ;

merge (temp, from, middle, to, arr);

} // if

}// mergeSort

“if not yet sorted”...

double temp[] is

initialized outside

the mergesort

method

optional

shortcut

5b_Algorithm_DP-57Copyright © 2003 Pearson Education, Inc.

Mergesort (5/5) time complexity

• Takes roughly n·log2 n comparisons.

• Without the shortcut, there is no best or worst

case.

• With the optional shortcut, the best case is

when the array is already sorted: takes only

(n-1) comparisons.

http://en.wikipedia.org/wiki/Merge_sort

5b_Algorithm_DP-58Copyright © 2003 Pearson Education, Inc.

C H A P T E R 5

Algorithms

補充

謝謝捧場謝謝捧場謝謝捧場謝謝捧場
tsaiwn@csie.nctu.edu.tw

蔡文能

Thank You!Thank You!

