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Agenda

 Complexity: Big O, Big Omega, Big Theta
* Knapsack problem

* Greedy Algorithm

-® Making Change problem

- Knapsack problem

¢ Dynamic Programming (DP)

e DP vs. Divide-and-Conquer

* Greedy vs. Dynamic Programming

* Quick Sort, merge Sort
« C++ STL sort(), java.util.Arrays.sort( )

|DU} J9juULdNO0P DIASSN AQ palbald

UOISISA

Copyright © 2003 Pearson Education, Inc. 5b_Algorithm DP-2




Asymptotic Upper Bound (Big O)

* f(ln) < cg(n)foralln = n,
* g(n) 1s called an
asymptotic upper bound of f(n).
* We write f(n)=0(g(n))
* [t reads f(n) equals big oh of g(n).

c g(n)

fn)
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n
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symptotic Lower Bound (Big Omega)

* f(n) 2 cg(n)foralln > n,
* o(n) 1s called an
asymptotic lower bound of f(n). fin)
* We write f(n)=Q(g(n))
* [t reads f(n) equals big omega of g(n).
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symptotically Tight Bound (Big Theta)
* fin) = O(g(n)) and f(n) = L2Ag(n))

 g(n) 1s called an

asymptotically tight bound of f(n).
* We write f(n)=0(g(n))
e It reads f(n) equals theta of g(n).

¢, g(n)

f(n)
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/
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Algorithm types

* Algorithm types we will consider include:
— Simple recursive algorithms
— Backtracking algorithms
m)p — Greedy algorithms
— Di1vide and conquer algorithms

=) _ Dynamic programming algorithmls
— Branch and bound algorithms
— Brute force algorithms

— Randomized algorithms
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Knapsack Problem

Knapsack Problem: Given # items, with ith item worth v, dollars and weighing
w; pounds, a thief wants to take as valuable a load as possible, but can carry at
most W pounds in his knapsack.

The 0-1 knapsack problem: Each item is either taken or not taken (0-1
decision).

The fractional knapsack problem: Allow to take fraction of items. CRGESN)
Exp: 3 = (60, 100, 120), 0 = (10, 20, 30), W= 50

- 29 420
item 3 30| $120 30
] | — +
; ) 50 30 3120
Er e +
— 20(% 100 + 20| 3100
ifert { 30 o+ |+
20 20| 3100
10 360 (10 360 10| 360
$60 $ 100 $ 120 bnapsack 9220 =sieo - =3I80 23240
Item 1 has greatest For the 0—1 version, any solution  Greedy algerithm is optimal
value per pound with item 1 is not optimal! for the fmetional version.

Greedy solution by taking items 1n order ot greatest value per pound 1s optimal
for the fractional version, but not for the 0-1 version.

The 0-1 knapsack problem 1s NP-complete, but can be solved in O(nl) time by
Dynamic Programming. (A polynomial-time DP??)
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The Fractional Knapsack Problem |

e (Given: A set S of n items, with each i1tem 1 having
— b, - a positive benefit
— W, - a positive weight
e (Goal: Choose items with maximum total benefit but with
weight at most W.

e [f we are allowed to take fractional amounts, then this 1s the
fractional knapsack problem.

— In this case, we let x, denote the amount we take of item 1

— Objective: maximize Z bi (xl. / Wi)

ieS

— Constraint; ZX <Ww

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald
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better solution
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o

Xi<W;, X;

— If we substitute some j with 1, we

get a better solution

— How much of i: min{w-x;, x;}
— Thus, there is no better solution

than the greedy one

Copyright © 2003 Pearson Education, Inc.

he Fractional Knapsack Algorithm

Greedy choice: Keep taking

ﬁ

item with highest value
(benefit to weight ratio)

— Since Zbl.(xl./wl.) = Z(bl./wl.)xl.

— Run time: O(n log niS Why?
e (Correctness: Suppose there 1s a

— there 1s an item 1 with higher
value than a chosen item j, but
» X>0 and vi<v;

Algorithm fractionalKnapsack(S, W)

Input: set .S of items w/ benefit b.
and weight w; max. weight W

Output: amount x; of each item i
to maximize benefit w/ weight
at most W

for each itemiin S

x; <0
v.<b,/w, {value}
w0 {total weight}

while w < W
remove item i w/ highest v;
X; <~ min{w,, W-w}
w<—w +min{w,, W-w}

5b_Algorithm DP-9




0-1 Knapsack problem (1/5)

* Given a knapsack with maximum capacity 7,
and a set S consisting of n items

* Each item i has some weight w; and benefit
value b, (all w;, b,and W are integer values)

.+ Problem:

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

How to pack the knapsack to achieve maximum total
value of packed items?
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0-1 Knapsack problem (2/5)

Weight Benefit value
This is a knapsack Items  W; b;

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Max weight: W = 20 9) 3
3 4
4 5
5 3
W =20
9 10
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0-1 Knapsack problem (3/5)

* Problem, 1n other words, 1s to find
max Z b. subject to Z w, < W
el el

* The problem 1s called a “0-1” Knapsack
problem, because each 1tem must be
entirely accepted or rejected.

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

* Another version of this problem 1s the
“Fractional Knapsack Problem”, where we
can take fractions of items.
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0-1 Knapsack problem (4/5)

Let’s first solve this problem with a
straightforward algorithm (Brute-force)

v'Since there are n items, there are 2” possible
combinations of items.

v"We go through all combinations and find
the one with the most total value and with
total weight less or equal to .

v'Running time will be O(2")

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald
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Brute force ?

Brute = Beast R

Brute E{Iy&f fi(Marcus Junius Brutus ) > /TS <
e EPEITH l44$§m§ﬁ BRI B T RS it — {1 S

HRE S|
@%E’\J%%J %‘Jf %Hﬁs‘(ﬁ 17 ) BIRIERE L1 Brute JFRE]

IANY

T B R SRR ERIRL L -

Brutus HJ%

fﬂ?ﬁ&jﬁm{ﬁﬁ S HIRE N A4

AGFEERE SR A 'ﬁmﬁa&% BEX -

'

In Shakespeare's "Julius Caesar," he 1s called Brute, and not
Brutus, because "Brute" 1s in the Vocative Case 1n Latin.
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19294F
the Sailor)

15 PR (Elzie Segan) BlIEHARBE X /1 K+ MR (PopEye

« 1933 Fleischer Studios ci# gk, Brute Blutoig Popeyel 9L ¥ HE!

196 1 -5 i)y

&R 38 (cartoon) !
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0-1 Knapsack problem (5/5)

* Can we do better?
— Yes, with an algorithm based on
Dynamic programming
— We need to carefully 1dentify the subproblems

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Key point:
If items are labeled I..n, then a subproblem

would be to find an optimal solution for
S, = {items labeled 1, 2, .. k]
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Algorithm types

* Algorithm types we will consider include:
— Simple recursive algorithms
— Backtracking algorithms
m)p — Greedy algorithms
— Divide and Conquer algorithms

=) _ Dynamic programming algorithmls

— Branch and bound algorithms
— Brute force algorithms

— Randomized algorithms
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The Greedy Method Technique

e The greedy method 1s a general algorithm design
paradigm, built on the following elements:

— configurations: different choices, collections, or values to find

— objective function: a score assigned to configurations, which we
want to either maximize or minimize

— A greedy algorithm always makes the choice that looks best at the
moment. (FFEIFRHEE, 1K EFZZEING)
— Top-down algorithmic structure

e With each step, reduce problem to a smaller problem

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

e [t works best when applied to problems with the greedy-
choice property:
— a globally-optimal solution can always be found by a series of
local improvements from a starting configuration.

The greedy method cannot always find an optimal solution!
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Coin Changing problem

e Problem: A dollar amount to reach and a collection of
coin amounts to use to get there.

— Configuration: A dollar amount yet to return to a customer
plus the coins already returned

— Objective function: Minimize number of coins returned.
Coinsin USA: 1¢ S5¢ 10¢ 25¢ 50¢
e (Greedy solution: Always return the largest coin you
can
— Example 1: Coins are valued $.32, $.08, $.01

e Has the greedy-choice property, since no amount over $.32 can be
made with a minimum number of coins by omitting a $.32 coin
(similarly for amounts over $.08, but under $.32).

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald
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Greedy Algorithm for Coin Changing problem

This algorithm makes change for an amount A using coins of
denominations
denom|1] > denom[2] > - - - > denom|n] = 1.

Input Parameters: denom, A
Output Parameters: None
greedy._coin_change(int denom[], int A) {
' 7 =1
while (4 > 0) {
c = A/denom[ 71 ]

printin(fuse ” + ¢ +

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

coins of denomination 7 +
denom| 7])
= A - c * denom[ 7]
7=17+1
}
}

Copyright © 2003 Pearson Education, Inc. 5b_Algorithm DP-19




Question ?

Suppose there are unlimited quantities of coins
of each denomination.

What property should the denominations c/, c2, ..., ck
have so that the greedy algorithm always yields an
optimal solution?

|DU} J9juULdNO0P DIASSN AQ palbald

~ v" Consider this example:

— Example 2: Coins are valued $.30, $.20, $.05, $.01

e Does not have greedy-choice property, since $.40 is best made
with two $.20’s, but the greedy solution will pick three coins
(which ones?)

UOISISA

The greedy method cannot always find an optimal solution!
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Consider the Coin set for examples

* For the following examples, we will assume
coins in the following denominations:

1¢ S5¢ 10¢ 21¢ 25¢
 We’ll use 63¢ as our goal

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

e This example is taken from:
Data Structures & Problem Solving using Java by Mark Allen Weiss

The greedy method cannot always find an optimal solution!

Copyright © 2003 Pearson Education, Inc. 5b_Algorithm DP-21




(1) A simple solution

We always need a 1¢ coin, otherwise no solution exists for
making one cent
To make K cents:
- |If there is a K-cent coin, then that one coin is the minimum
- Otherwise, for each value i < K,
e Find the minimum number of coins needed to make i cents
e Find the minimum number of coins needed to make K - i cents
- Choose the i that minimizes this sum

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

This algorithm can be viewed as divide-and-conquer,
or as brute force

— This solution is very recursive

— It requires exponential work
— It 1s infeasible to solve for 63¢

Copyright © 2003 Pearson Education, Inc. 5b_Algorithm DP-22



(2) Another solution

We can reduce the problem recursively by choosing
the first coin, and solving for the amount that is left

For 63¢:

— One 1¢ coin plus the best solution for 62¢
— One 5¢ coin plus the best solution for 58¢
— One 10¢ coin plus the best solution for 53¢
— One 21¢ coin plus the best solution for 42¢
— One 25¢ coin plus the best solution for 38¢

Choose the best solution from among the 5 given
above

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald
o

 Instead of solving 62 recursive problems, we solve 5
* This 1s still a very expensive algorithm
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(3) A dynamic programming solution

Idea: Solve first for one cent, then two cents, then three cents, et
up to the desired amount

— Save each answer in an array !

For each new amount N, compute all the possible pairs of
previous answers which sum to N

— For example, to find the solution for 13¢,
* First, solve for all of 1¢, 2¢, 3¢, ..., 12¢

» Next, choose the best solution among:
— Solution for 1¢ + solution for 12¢

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

— Solution for 2¢ + solution for 11¢
— Solution for 3¢ + solution for 10¢
— Solution for 4¢ + solution for 9¢
— Solution for 5¢ + solution for 8¢
— Solution for 6¢ + solution for 7¢
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e Suppose coins are 1¢, 3¢, and 4¢

There’s only one way to make 1¢ (one coin)
To make 2¢, try 1¢+1¢ (one coin + one coin = 2 coins)
To make 3¢, just use the 3¢ coin (one coin)
To make 4¢, just use the 4¢ coin (one coin)
To make 5¢, try
 1¢ +4¢ (1 coin + 1 coin = 2 coins)
e 2¢ + 3¢ (2 coins + 1 coin = 3 coins)
* The first solution is better, so best solution 1s 2 coins

To make 6¢, try
 1¢ +5¢ (1 coin + 2 coins = 3 coins)
e 2¢ +4¢ (2 coins + 1 coin = 3 coins)
3¢ +3¢ (1 comn+ 1 coin =2 coins) — best solution

Etc.

Copyright © 2003 Pearson Education, Inc.

Example using dynamic programming
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How good 1s the algorithm?

* The first algorithm is recursive, with a branching
factor of up to 62

— Possibly the average branching factor 1s somewhere around
half of that (31)

— The algorithm takes exponential time, with a large base
* The second algorithm 1s much better—it has a
branching factor of 5
— This 1s exponential time, with base 5
e The dynamic programming algorithm is O(N*K),
where N 1s the desired amount and K 1s the number of
different kinds of coins

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald
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Dynamic Programming (DP) ?

« Like divide-and-conquer, solve problem by combining the
solutions to sub-problems.

Differences between divide-and-conquer and DP:

— Independent sub-problems, solve sub-problems independently and
recursively, (so same sub(sub)problems solved repeatedly)

— Sub-problems are dependent, 1.e., sub-problems share sub-sub-
problems, every sub(sub)problem solved just once, solutions to
sub(sub)problems are stored in a table and used for solving higher
level sub-problems.

e DP reduces computation by

— Solving subproblems in a bottom-up fashion.

— Storing solution to a subproblem the first time it is solved.

— Looking up the solution when subproblem is encountered again.

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald
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Fibonacci sequence (1/4)

F=F +F, if i=3
« Solved by a recursive program:

£

* Much replicated computation is done.
It should be solved by a simple loop.

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald
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e Fibonaccisequence: 1,1,2,3,5.8,13,21, ...
F.=1 if i==1 ori== (assume F,=0)

@@@
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Recursive logic:
— F,=F,=1
— Ifi>2thenF,=F ,+F.,
Directly translates into a
recursive algorithm F:
F(@) {
if i=1) or (i=2)
x 1
else
x « F(i-1) + F(i-2)
return x
§
F's call tree is exponential,;
F is recomputed many times

for the same input value!

Copyright © 2003 Pearson Education, Inc.

Fibonacci Sequence (2/4)

# We can speed things up by
storing output values of F in
an array Aq

F(i) {

if (A != NULL) return A,

if i=1)or (i =2)
X1

else
X « F(i-1) + F(i-2)

Ap < X

return x

}

# Since there are ncells in A¢
and each cell takes (1) time
to compute, this is O(n)!

5b_Algorithm DP-29




# We have sped things up by
storing output values of F in
an array Ag

F(i) {

If (A != NULL) return A

if (i=1)or (i =2)
X1

else
X « F(i-1) + F(i-2)

Ap — X

return x

he

# But we don't need recursion at
all, just a loop through A/!

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald
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Fibonacci Sequence (3/4)

# The final algorithm is:
Fib(n) {
A; < new array of n int’s
for(i=1ton){
if(i=1)or(i=2)
X1
else
X < F(i-1) + F(i-2)
A[i] < x
}

return A.[n]

h
# This is a dynamic
programming
algorithm!
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Fibonacci Sequence (4/4)
using Dynamic programming

* Dynamic programming calculates
from bottom to top. (bottom-up)

|DU} J9juULdNO0P DIASSN AQ palbald

* Values are stored for later use.

UOISISA

* This reduces repetitive calculation.

Pascal Triangle 7|
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Application domain of DP

* Optimization problem: find a solution with
optimal (maximum or minimum) value.

* An optimal solution, not the optimal solution,
since may more than one optimal solution,
any one 1s OK.

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

 Dynamic Programming 1s an algorithm
design method that can be used when the
solution to a problem may be viewed as the
result of a sequence of decisions
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Typical steps of DP

Characterize the structure of an optimal
solution.

Recursively define the value of an optimal
solution.

Compute the value of an optimal solution 1n a
bottom-up fashion.

Compute an optimal solution from
computed/stored information.

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald
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for a solution to the original problem
— Example: Quicksort

— Example: Mergesort

— Example: Binary search

top-down algorithms

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Comparison with Divide-and-Conquer

Divide-and-conquer algorithms split a problem into separate
subproblems, solve the subproblems, and combine the results

Divide-and-Conquer

TP ENEAR 25 AT 78

Divide-and-Conquer algorithms can be thought of as

In contrast, a dynamic programming algorithm proceeds by

solving small problems, then combining them to find the

solution to larger problems

* Dynamic programming can be thought of as bottom-up

Copyright © 2003 Pearson Education, Inc.

5b_Algorithm DP-34




Divide and Conquer

* Divide the problem into a number of
sub-problems (similar to the original
problem but smaller);

* Conquer the sub-problems by solving them
recursively (if a sub-problem 1s small
enough, just solve 1t 1n a straightforward
manner (base case).)

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

* Combine the solutions to the sub-problems
into the solution for the original problem

Copyright © 2003 Pearson Education, Inc. 5b_Algorithm DP-35
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ivide and Conquer example : Merge Sort

Divide the n-element sequence to be sorted 1nto
two subsequences of n/2 element each

Conquer: Sort the two subsequences
recursively using merge sort

Combine: merge the two sorted subsequences
to produce the sorted answer

UOISIaA [P} Iajulidno0op bIAeaN AQ
o

* Note: during the recursion, 1f the subsequence
has only one element, then do nothing.
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Comparison with Greedy

« Common: optimal substructure

— Optimal substructure: An optimal solution to the
problem contains within its optimal solutions to
subproblems.

* E.g.,1f 4 1s an optimal solution to S, then 4'=A4 - {1} 1s an
optimal solution to §' = {i € S: 5, > f,}.

» Difference: greedy-choice property

— Greedy: A global optimal solution can be arrived at by
making a locally optimal choice.

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

— Dynamic programming needs to check the solutions to
subproblems.

* DP can be used if greedy solutions are not optimal.

The greedy method cannot always find an optimal solution!
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reedy vs. Dynamic Programming

The knapsack problem is a good example of the difference.

0-1 knapsack problem: not solvable by greedy.

— nitems.

— Itemiis worth $v; , weighs w. pounds.

— Find a most valuable subset of items with total weight < .

— Have to either take an item or not take it—can’t take part of it.

Fractional knapsack problem: solvable by greedy
— Like the 0-1 knapsack problem, but can take fraction of an item.
— Both have optimal substructure.

— But the fractional knapsack problem has the greedy-choice property,
and the 0-1 knapsack problem does not.

— To solve the fractional problem, rank items by value/weight: v,/ w; .
— Letvi/w;, =2 v, /w;, forall i.

UOISIOA |DU} J9JuLIdno0op KYASSN 49 peﬁjo

The greedy method cannot always find an optimal solution!
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Divide-and-Conquer 1n Sorting

* Mergesort
— O(n log n) always, but O(n) storage
'* Quick sort
— O(n log n) average, O(n"2) worst 1n time
— O(log n) storage
— Good 1n practice (>12)

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald
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.

Quick Sort (1/6)

Algorithm quick sort(array A, from, to)
Input: from - pointer to the starting position of array 4

to - pointer to the end position of array 4

Output: sorted array: 4’

Choose any one element as the pivot;

Find the first element a = A[1]

A[from] to A[to];

Find the first element b = A[j]
A[to] to A[from];
If 1 <j then exchange a and b,

larger than or equal to pivot from

smaller than or equal to pivot from

Repeat step from 2 to 4 until j <= 1;
If from < then recursive call quick sort(A, from, j);
If 1 <to then recursive call quick sort(A, 1, to);

Copyright © 2003 Pearson Education, Inc.
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Quick Sort (2/6)

* Quick sort
main idea: from
|
I st step: 3 @1 6

i

2nd step: 3 2 1@

1 4

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

3rdstep: 3 2

Chloose 5 as pivot tlo
5 4 8 () 10 7
| j

S
S

Smaller than any integer
right to 5

Copyright © 2003 Pearson Education, Inc.

greater than any integer
left to 5
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Quick Sort (3/6)

from pivot to

* Quick sort ) ) !

from  pivot to

b
shstep:(3) 201) 4 5 6 10 9 (7)

|
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Sthstep:1 2 3 4 5 ﬂ

6th step: 5 6 7 8 10 9
7th step: 7 8 10 9
8th step: 9 10
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Quick Sort (4/6)

public class QuickSorter { // Java function should be in a class
public static void sort (int| | a, int from, int to) {
if ((a == null) || (a.length < 2)) return;
int i = from, j = to;
int pivot = a[(from + to)/2];
do {
while ((i < to) && (a[i] < pivot)) i++;
while ((j > from) & & (a[j] >= pivot)) j--;
if (i <}j) { int tmp =al[i]; a [i] = a[j]; a[j] = tmps}
i+ j--
twhile (i <=j); exchange(a, i, (from+to)/2 ); /***/
if (from < j) sort(a, from, j);
if (i < to) sort(a, i, to);
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)
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Quick Sort (5/6)

3,4,6,1,10,9,5,20,19 14, 12,2,15,21, 13,18, 17,8, 16, 1

3,4,6,1,10,9,5,20,19, 1,12,2,15,21,13, 18,17, 8, 16, 14

i J

3,4,6,1,10,9, S0, 1, 12,2, 15,21, 13, 18, 17|l 6. 14
i ‘ J

3,4,6,1,10,9,5,8, 13,1, 12,2,15,21, 19, 18, 17, 20, 16, 14

—»
<«

l
3,4,6,1,10,9,5,8,13, 1,12, 2, 14 21,19, 18,17, 20, 16, 15

P I

3,4,6,1,10,9,5,8, 13,1, 12,2

UOISIOA |Dl} J9julidnoop DIA8SN AQ pajpald

Copyright © 2003 Pearson Education, Inc. 5b Algorithm DP-44




BB -

Aot oulgnoopbineoN AQ pajpal)

Quick Sort (6/6)

void qsort (int a[ ], int from, int to) {
intn=to - from + 1;
if ((n<2)|| (from >= to) ) return;
int k = (from + to)/2; int tmp =a[to]; a [to] = a[Kk]; a[K] = tmp;
int pivot = afto]; // choose a[to] as the pivot
inti=from, j=to-1;
while(i<j) {
while ((i < j) && (a[i] < pivot)) i++;
while ((i <j) && (a[j] >= pivet)) j--;
if (i <}j) { tmp =a[i]; a [i] = a[j]; a[j] = tmp;}

GO0

}5

tmp =ali]; a [i] = a[to]; a[to] = tmp; // exchange
if (from <i-1) gsort(a, from, i-1);

if (i < to) qsort(a, i+1, to);
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H K bugs KRR

//buga.c with Big BUG (quick sort)
/I ;@sortfE=E—fEK bug:
/I . VEGIRFAIREEEEEE | j IR AT RE e B EE !
/| program EFEE{TIRFE R ! Why?
void sort( int left, int right, double x| |) { // ZF=E2HIEFEEEMEAEFHFE]
inti, j; double tmp;
i =left; j=right+1; //ipoints to LEFT, j points to /58 ~—1{FE
while( i<=j ) {
do { i++; } while( x[i] >= x[left]); // Bug Bug Bug
do { j--; } while ( x[j] <= x][left]); /Bug Bug Bug
if(i<j) {tmp=x[i]; x[i]=x[j]; x[j]=tmp; }
)
tmp=x[j]; x[j]=x[left]; x[left]=tmp;
if(left< j-1) sort(left, j-1, x);
if(j+1 <right) sort(j+1, right, x);
} /] sort()
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/)N bugs HIRE 5

//bugb.c with small BUG (quick sort)
/I @sortf2=E—F/ bug : (EZEHAZZFEE fix Big Bug)

// Please try to fix it
void sort( int left, int right, double x| ]) {
int i, j; double tmp;

while( i<=j ) {
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do { j--; } while (j > left &&x]j] <= x[left]);
if(i<j) {tmp=x[i]; x[i]=x[j]; x[j]=tmp; }

}

tmp=x[j]; x[j]=x[left]; x[left]=tmp;

if(left< j-1) sort(left, j-1, x);

if(j+1 < right) sort(j+1, right, x);

}

/1. VIEGRTREE AR ! j AR AT RE g R !

i =left; j=right+1; //ipoints to LEFT, j points to A0 T —1F

do {i++; } while( i <right && x[i] >= x[left]); // Bug iZ{E

Copyright © 2003 Pearson Education, Inc.
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LT 3K data F52RK sorting 2(1/2)

//sortg.c -- quick sort
#include<stdio.h>
long n=0;
void sort( int left, int right, double x| ]) {
inti, j; double tmp, pivot;
i=left; j=right+l;
pivot = x|[left];
while( i<=j ) {
do { i++; ++n;} while( i< j && x[i] >= pivot);
if(i>= j) --n;
do { j--; ++n;} while (i<=j] &&Xx|j] <= pivot);
if(i > j) --n;
if(i<j) {tmp=xl[i]; x[i]=xIjl; x[j]=tmp; }
}
printf("'= n=%I1d", n);
tmp=x[j]; x[jl=x[left]; x[left]=tmp;
if(left< j-1) sort(left, j-1, x);
if(j+1 < right) sort(j+1, right, x);
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Fb 722K data F5E ¢ sorting ?2(2/2)

double y[ | = {15, 38, 12, 75, 39,88,20, 66, 49, 58};
#include<stdio.h>
void pout(double*, int);
int main( ) {
printf("'Before sort:\n'"'); pout(y, sizeof(y)/sizeof( y[0]) );
sort(0, sizeof(y)/sizeof( y[0]) -1,y );
printf(''==The number of data comparisms, n = %Ild\n", n);
/l
printf("" After sort:\n"'); pout(y, sizeof(y)/sizeof( y[0]) );
}
void pout(double*p, int n) {
int i;
for(i=0; i<=n-1; ++i) {
printf("%7.2f ", pl[i]);
} printf(" \n"");
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qsort( ) in C Library

* There 1s a library function for quick sort in
C Language: gsort( ).
» #include <stdlib.h>

void gsort(void *base, size t num, size t size,
int (*comp_func)(const void *, const void *) )
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void * base --- a pointer to the array to be sorted
size t num --- the number of elements

size tsize --- the element size

int (*cf) (...) --- 1s a pointer to a function used to compare

int comp func() /AEEME -1,0,1 K<, ==, >
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C++ STL <algorithm> SEAEE AR

k

=

#include <algorithm>
using namespace std;
int x| | = {38, 49, 15, 158, 25, 58, 88,66 }; // array of primitive data
#define n (sizeof(x)/sizeof(x[0]))
/...
sort(x, x+n); // ascending order
// what if we want to sort into descending order
sort(x, x+n, sortfun); // with compare function
sort(y, y+k, sortComparatorObject); // with Comparator Object

Comparison function?  Default: bool operator<(first, second)
C++ Comparison function £&bool

AEE true LR F—28 < FFE228 : ascending

Comparator N2 bool operator( ) (Obj a, Obj b) { /*...*/}

http://www.cplusplus.com/reference/algorithm/sort/
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Java P java.util. Arrays.sort( )

implements java.lang.Comparable

implement java.util.Comparator ./ class VB

TEEE Java Y2 I e SR e )

Hie 2K sort #7414 array (Not primitive data)
N3V compareTo( ), & 2RE% class 78

i, A 3ZE 5 {E A4S sort —{[i Comparator, 524G

BT
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Java ANH] LIRSS TE22 L
java.util. Arrays.sort( ) 2% Comparator ¥/J{1-?

ANMERI ey FH 224 sort .2 array BYYI1AIHY compareTo( )

ANEf compareTo( ), = Comparator NHY co

mpare( )

-1,0, 1

#heRB L C By gsort FIRILLEREKEY, int, Z{H[m
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Merge Sort (1/5)

Merging means the combination of two or more ordered sequence into

a single sequence. For example, can merge two sequences: 503, 703, 765
and 087, 512, 677 to obtain a sequence: 087, 503, 512, 677, 703, 765.

dN20p DIASSN AqQ palpal)

= A simple way to accomplish this 1s to compare the two smallest items,

o output the smallest, and then repeat the same process.

c:j':

® 503 703 765 503 703 765
£ {87 512 677 EE 87 { 512 677

703 765
=) ?7 503 {512 677

The smaller one goes first
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Merge Sort (2/5)

Algorithm Merge(sl, s2)
Input: two sequences: sl - x1 <x2 ...<x_ ands2-yl <y2..<y,
Output: a sorted sequence: z1 <z2 ... <z .
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1.[initialize] i=1,j=1k:=1;

2.[find smaller] 1f x; <y, goto step 3, otherwise goto step 5;

3.[output Xx,] 7. =X, k:=k+1,1:=i+1.1f i <m, goto step 2;
4.[transmity; < ... <y,] Z;, ..., Zpoy =Y oo, ¥, T€rminate the algorithm;
5.[output y ] 2 =Y, k =kt ] =j+1. If j <n, goto step 2;
6.[transmitx. < ...<x, ]z, ..., Z ., = X, ..., X,,. Terminate the algorithm,;
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Merge Sort (3/5)

Algorithm Merge-sorting(s)

Input: a sequences s = <X, ..., X, >
Output: a sorted sequence.

1. If |s| = 1, then return s;

2. k= |_m/2_|;

3. sl := Merge-sorting(x,, ..., X;);
4.s2 := Merge-sorting(X,, 1, ..., X,,,);
5. return(Merge(sl, s2));
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Merge(sl, s2) will merge the two halves sl and s2 together
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Mergesort (4/5) (1n C Language)

public void mergeSort ( double arr [ ],
int from, int to)
{

if (from <= to)
return;

int middle = (from + to ) / 2;
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mergeSort (arr, from, middle); if not yet sorted”...

mergeSort (arr, middle + 1, to); optional
shortcut

if (arr [middle] > arr [middle+ 1] ) <

{
copy (arr, from, to, temp) ; < double temp][ ] is
merge (temp, from, middle, to, arr); initialized outside
it the mergesort
I mergeSort method
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Mergesort (5/5) time complexity

* Takes roughly n-log, n comparisons.

* Without the shortcut, there 1s no best or worst
case.

* With the optional shortcut, the best case is

when the array is already sorted: takes only
(n-1) comparisons.
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http://en.wikipedia.org/wiki/Merge sort
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